File size: 83,937 Bytes
e3962e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
2022-10-03 23:25:34,518 - mmdet - INFO - Environment info:
------------------------------------------------------------
sys.platform: linux
Python: 3.7.3 (default, Jan 22 2021, 20:04:44) [GCC 8.3.0]
CUDA available: True
GPU 0,1,2,3,4,5,6,7: A100-SXM-80GB
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 11.3, V11.3.109
GCC: x86_64-linux-gnu-gcc (Debian 8.3.0-6) 8.3.0
PyTorch: 1.10.0
PyTorch compiling details: PyTorch built with:
  - GCC 7.3
  - C++ Version: 201402
  - Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v2.2.3 (Git Hash 7336ca9f055cf1bfa13efb658fe15dc9b41f0740)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - LAPACK is enabled (usually provided by MKL)
  - NNPACK is enabled
  - CPU capability usage: AVX512
  - CUDA Runtime 11.3
  - NVCC architecture flags: -gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86
  - CuDNN 8.2
  - Magma 2.5.2
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.2.0, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.10.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, 

TorchVision: 0.11.1+cu113
OpenCV: 4.6.0
MMCV: 1.6.1
MMCV Compiler: GCC 9.3
MMCV CUDA Compiler: 11.3
MMDetection: 2.25.2+87c120c
------------------------------------------------------------

2022-10-03 23:25:35,633 - mmdet - INFO - Distributed training: True
2022-10-03 23:25:36,764 - mmdet - INFO - Config:
model = dict(
    type='RetinaNet',
    backbone=dict(
        type='ResNet',
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=1,
        norm_cfg=dict(type='SyncBN', requires_grad=True),
        norm_eval=True,
        style='pytorch',
        init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
    neck=dict(
        type='FPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        start_level=1,
        add_extra_convs='on_input',
        num_outs=5,
        norm_cfg=dict(type='SyncBN', requires_grad=True)),
    bbox_head=dict(
        type='RetinaHead',
        num_classes=20,
        in_channels=256,
        stacked_convs=4,
        feat_channels=256,
        anchor_generator=dict(
            type='AnchorGenerator',
            octave_base_scale=4,
            scales_per_octave=3,
            ratios=[0.5, 1.0, 2.0],
            strides=[8, 16, 32, 64, 128]),
        bbox_coder=dict(
            type='DeltaXYWHBBoxCoder',
            target_means=[0.0, 0.0, 0.0, 0.0],
            target_stds=[1.0, 1.0, 1.0, 1.0]),
        loss_cls=dict(
            type='FocalLoss',
            use_sigmoid=True,
            gamma=2.0,
            alpha=0.25,
            loss_weight=1.0),
        loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
    train_cfg=dict(
        assigner=dict(
            type='MaxIoUAssigner',
            pos_iou_thr=0.5,
            neg_iou_thr=0.4,
            min_pos_iou=0,
            ignore_iof_thr=-1),
        allowed_border=-1,
        pos_weight=-1,
        debug=False),
    test_cfg=dict(
        nms_pre=1000,
        min_bbox_size=0,
        score_thr=0.05,
        nms=dict(type='nms', iou_threshold=0.5),
        max_per_img=100))
dataset_type = 'VOCDataset'
data_root = 'data/VOCdevkit/'
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(
        type='Resize',
        img_scale=[(1333, 480), (1333, 512), (1333, 544), (1333, 576),
                   (1333, 608), (1333, 640), (1333, 672), (1333, 704),
                   (1333, 736), (1333, 768), (1333, 800)],
        multiscale_mode='value',
        keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(
        type='Normalize',
        mean=[123.675, 116.28, 103.53],
        std=[58.395, 57.12, 57.375],
        to_rgb=True),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(1333, 800),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(
                type='Normalize',
                mean=[123.675, 116.28, 103.53],
                std=[58.395, 57.12, 57.375],
                to_rgb=True),
            dict(type='Pad', size_divisor=32),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img'])
        ])
]
data = dict(
    samples_per_gpu=2,
    workers_per_gpu=2,
    train=dict(
        type='VOCDataset',
        ann_file=[
            'data/VOCdevkit/VOC2007/ImageSets/Main/trainval.txt',
            'data/VOCdevkit/VOC2012/ImageSets/Main/trainval.txt'
        ],
        img_prefix=['data/VOCdevkit/VOC2007/', 'data/VOCdevkit/VOC2012/'],
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(type='LoadAnnotations', with_bbox=True),
            dict(
                type='Resize',
                img_scale=[(1333, 480), (1333, 512), (1333, 544), (1333, 576),
                           (1333, 608), (1333, 640), (1333, 672), (1333, 704),
                           (1333, 736), (1333, 768), (1333, 800)],
                multiscale_mode='value',
                keep_ratio=True),
            dict(type='RandomFlip', flip_ratio=0.5),
            dict(
                type='Normalize',
                mean=[123.675, 116.28, 103.53],
                std=[58.395, 57.12, 57.375],
                to_rgb=True),
            dict(type='Pad', size_divisor=32),
            dict(type='DefaultFormatBundle'),
            dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
        ]),
    val=dict(
        type='VOCDataset',
        ann_file='data/VOCdevkit/VOC2007/ImageSets/Main/test.txt',
        img_prefix='data/VOCdevkit/VOC2007/',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(1333, 800),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Normalize',
                        mean=[123.675, 116.28, 103.53],
                        std=[58.395, 57.12, 57.375],
                        to_rgb=True),
                    dict(type='Pad', size_divisor=32),
                    dict(type='ImageToTensor', keys=['img']),
                    dict(type='Collect', keys=['img'])
                ])
        ]),
    test=dict(
        type='VOCDataset',
        ann_file='data/VOCdevkit/VOC2007/ImageSets/Main/test.txt',
        img_prefix='data/VOCdevkit/VOC2007/',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(1333, 800),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Normalize',
                        mean=[123.675, 116.28, 103.53],
                        std=[58.395, 57.12, 57.375],
                        to_rgb=True),
                    dict(type='Pad', size_divisor=32),
                    dict(type='ImageToTensor', keys=['img']),
                    dict(type='Collect', keys=['img'])
                ])
        ]))
evaluation = dict(interval=12000, metric='mAP', save_best='auto')
optimizer = dict(type='SGD', lr=0.015, momentum=0.9, weight_decay=5e-05)
optimizer_config = dict(grad_clip=None)
lr_config = dict(
    policy='step',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=0.001,
    step=[9000, 11000],
    by_epoch=False)
runner = dict(type='IterBasedRunner', max_iters=12000)
checkpoint_config = dict(interval=12000)
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
custom_hooks = [
    dict(type='NumClassCheckHook'),
    dict(
        type='MMDetWandbHook',
        init_kwargs=dict(project='I2B', group='finetune'),
        interval=50,
        num_eval_images=0,
        log_checkpoint=False)
]
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = 'pretrain/selfsup_retinanet_mstrain-soft-teacher_sampler-2048_temp0.5/final_model.pth'
resume_from = None
workflow = [('train', 1)]
opencv_num_threads = 0
mp_start_method = 'fork'
auto_scale_lr = dict(enable=False, base_batch_size=16)
custom_imports = None
norm_cfg = dict(type='SyncBN', requires_grad=True)
work_dir = 'work_dirs/finetune_retinanet_12k_voc0712_lr1.5e-2_wd5e-5'
auto_resume = False
gpu_ids = range(0, 8)

2022-10-03 23:25:36,764 - mmdet - INFO - Set random seed to 42, deterministic: False
2022-10-03 23:25:37,080 - mmdet - INFO - initialize ResNet with init_cfg {'type': 'Pretrained', 'checkpoint': 'torchvision://resnet50'}
2022-10-03 23:25:46,723 - mmdet - INFO - initialize FPN with init_cfg {'type': 'Xavier', 'layer': 'Conv2d', 'distribution': 'uniform'}
2022-10-03 23:25:46,781 - mmdet - INFO - initialize RetinaHead with init_cfg {'type': 'Normal', 'layer': 'Conv2d', 'std': 0.01, 'override': {'type': 'Normal', 'name': 'retina_cls', 'std': 0.01, 'bias_prob': 0.01}}
Name of parameter - Initialization information

backbone.conv1.weight - torch.Size([64, 3, 7, 7]): 
PretrainedInit: load from torchvision://resnet50 

backbone.bn1.weight - torch.Size([64]): 
PretrainedInit: load from torchvision://resnet50 

backbone.bn1.bias - torch.Size([64]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.0.conv1.weight - torch.Size([64, 64, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.0.bn1.weight - torch.Size([64]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.0.bn1.bias - torch.Size([64]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.0.conv2.weight - torch.Size([64, 64, 3, 3]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.0.bn2.weight - torch.Size([64]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.0.bn2.bias - torch.Size([64]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.0.conv3.weight - torch.Size([256, 64, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.0.bn3.weight - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.0.bn3.bias - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.0.downsample.0.weight - torch.Size([256, 64, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.0.downsample.1.weight - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.0.downsample.1.bias - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.1.conv1.weight - torch.Size([64, 256, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.1.bn1.weight - torch.Size([64]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.1.bn1.bias - torch.Size([64]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.1.conv2.weight - torch.Size([64, 64, 3, 3]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.1.bn2.weight - torch.Size([64]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.1.bn2.bias - torch.Size([64]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.1.conv3.weight - torch.Size([256, 64, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.1.bn3.weight - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.1.bn3.bias - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.2.conv1.weight - torch.Size([64, 256, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.2.bn1.weight - torch.Size([64]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.2.bn1.bias - torch.Size([64]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.2.conv2.weight - torch.Size([64, 64, 3, 3]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.2.bn2.weight - torch.Size([64]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.2.bn2.bias - torch.Size([64]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.2.conv3.weight - torch.Size([256, 64, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.2.bn3.weight - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer1.2.bn3.bias - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.0.conv1.weight - torch.Size([128, 256, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.0.bn1.weight - torch.Size([128]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.0.bn1.bias - torch.Size([128]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.0.conv2.weight - torch.Size([128, 128, 3, 3]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.0.bn2.weight - torch.Size([128]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.0.bn2.bias - torch.Size([128]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.0.conv3.weight - torch.Size([512, 128, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.0.bn3.weight - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.0.bn3.bias - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.0.downsample.0.weight - torch.Size([512, 256, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.0.downsample.1.weight - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.0.downsample.1.bias - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.1.conv1.weight - torch.Size([128, 512, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.1.bn1.weight - torch.Size([128]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.1.bn1.bias - torch.Size([128]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.1.conv2.weight - torch.Size([128, 128, 3, 3]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.1.bn2.weight - torch.Size([128]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.1.bn2.bias - torch.Size([128]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.1.conv3.weight - torch.Size([512, 128, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.1.bn3.weight - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.1.bn3.bias - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.2.conv1.weight - torch.Size([128, 512, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.2.bn1.weight - torch.Size([128]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.2.bn1.bias - torch.Size([128]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.2.conv2.weight - torch.Size([128, 128, 3, 3]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.2.bn2.weight - torch.Size([128]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.2.bn2.bias - torch.Size([128]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.2.conv3.weight - torch.Size([512, 128, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.2.bn3.weight - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.2.bn3.bias - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.3.conv1.weight - torch.Size([128, 512, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.3.bn1.weight - torch.Size([128]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.3.bn1.bias - torch.Size([128]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.3.conv2.weight - torch.Size([128, 128, 3, 3]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.3.bn2.weight - torch.Size([128]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.3.bn2.bias - torch.Size([128]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.3.conv3.weight - torch.Size([512, 128, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.3.bn3.weight - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer2.3.bn3.bias - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.0.conv1.weight - torch.Size([256, 512, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.0.bn1.weight - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.0.bn1.bias - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.0.conv2.weight - torch.Size([256, 256, 3, 3]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.0.bn2.weight - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.0.bn2.bias - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.0.conv3.weight - torch.Size([1024, 256, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.0.bn3.weight - torch.Size([1024]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.0.bn3.bias - torch.Size([1024]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.0.downsample.0.weight - torch.Size([1024, 512, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.0.downsample.1.weight - torch.Size([1024]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.0.downsample.1.bias - torch.Size([1024]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.1.conv1.weight - torch.Size([256, 1024, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.1.bn1.weight - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.1.bn1.bias - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.1.conv2.weight - torch.Size([256, 256, 3, 3]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.1.bn2.weight - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.1.bn2.bias - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.1.conv3.weight - torch.Size([1024, 256, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.1.bn3.weight - torch.Size([1024]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.1.bn3.bias - torch.Size([1024]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.2.conv1.weight - torch.Size([256, 1024, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.2.bn1.weight - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.2.bn1.bias - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.2.conv2.weight - torch.Size([256, 256, 3, 3]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.2.bn2.weight - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.2.bn2.bias - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.2.conv3.weight - torch.Size([1024, 256, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.2.bn3.weight - torch.Size([1024]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.2.bn3.bias - torch.Size([1024]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.3.conv1.weight - torch.Size([256, 1024, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.3.bn1.weight - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.3.bn1.bias - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.3.conv2.weight - torch.Size([256, 256, 3, 3]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.3.bn2.weight - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.3.bn2.bias - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.3.conv3.weight - torch.Size([1024, 256, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.3.bn3.weight - torch.Size([1024]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.3.bn3.bias - torch.Size([1024]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.4.conv1.weight - torch.Size([256, 1024, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.4.bn1.weight - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.4.bn1.bias - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.4.conv2.weight - torch.Size([256, 256, 3, 3]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.4.bn2.weight - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.4.bn2.bias - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.4.conv3.weight - torch.Size([1024, 256, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.4.bn3.weight - torch.Size([1024]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.4.bn3.bias - torch.Size([1024]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.5.conv1.weight - torch.Size([256, 1024, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.5.bn1.weight - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.5.bn1.bias - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.5.conv2.weight - torch.Size([256, 256, 3, 3]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.5.bn2.weight - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.5.bn2.bias - torch.Size([256]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.5.conv3.weight - torch.Size([1024, 256, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.5.bn3.weight - torch.Size([1024]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer3.5.bn3.bias - torch.Size([1024]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.0.conv1.weight - torch.Size([512, 1024, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.0.bn1.weight - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.0.bn1.bias - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.0.conv2.weight - torch.Size([512, 512, 3, 3]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.0.bn2.weight - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.0.bn2.bias - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.0.conv3.weight - torch.Size([2048, 512, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.0.bn3.weight - torch.Size([2048]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.0.bn3.bias - torch.Size([2048]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.0.downsample.0.weight - torch.Size([2048, 1024, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.0.downsample.1.weight - torch.Size([2048]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.0.downsample.1.bias - torch.Size([2048]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.1.conv1.weight - torch.Size([512, 2048, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.1.bn1.weight - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.1.bn1.bias - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.1.conv2.weight - torch.Size([512, 512, 3, 3]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.1.bn2.weight - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.1.bn2.bias - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.1.conv3.weight - torch.Size([2048, 512, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.1.bn3.weight - torch.Size([2048]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.1.bn3.bias - torch.Size([2048]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.2.conv1.weight - torch.Size([512, 2048, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.2.bn1.weight - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.2.bn1.bias - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.2.conv2.weight - torch.Size([512, 512, 3, 3]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.2.bn2.weight - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.2.bn2.bias - torch.Size([512]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.2.conv3.weight - torch.Size([2048, 512, 1, 1]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.2.bn3.weight - torch.Size([2048]): 
PretrainedInit: load from torchvision://resnet50 

backbone.layer4.2.bn3.bias - torch.Size([2048]): 
PretrainedInit: load from torchvision://resnet50 

neck.lateral_convs.0.conv.weight - torch.Size([256, 512, 1, 1]): 
XavierInit: gain=1, distribution=uniform, bias=0 

neck.lateral_convs.0.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of RetinaNet  

neck.lateral_convs.0.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of RetinaNet  

neck.lateral_convs.1.conv.weight - torch.Size([256, 1024, 1, 1]): 
XavierInit: gain=1, distribution=uniform, bias=0 

neck.lateral_convs.1.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of RetinaNet  

neck.lateral_convs.1.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of RetinaNet  

neck.lateral_convs.2.conv.weight - torch.Size([256, 2048, 1, 1]): 
XavierInit: gain=1, distribution=uniform, bias=0 

neck.lateral_convs.2.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of RetinaNet  

neck.lateral_convs.2.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of RetinaNet  

neck.fpn_convs.0.conv.weight - torch.Size([256, 256, 3, 3]): 
XavierInit: gain=1, distribution=uniform, bias=0 

neck.fpn_convs.0.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of RetinaNet  

neck.fpn_convs.0.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of RetinaNet  

neck.fpn_convs.1.conv.weight - torch.Size([256, 256, 3, 3]): 
XavierInit: gain=1, distribution=uniform, bias=0 

neck.fpn_convs.1.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of RetinaNet  

neck.fpn_convs.1.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of RetinaNet  

neck.fpn_convs.2.conv.weight - torch.Size([256, 256, 3, 3]): 
XavierInit: gain=1, distribution=uniform, bias=0 

neck.fpn_convs.2.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of RetinaNet  

neck.fpn_convs.2.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of RetinaNet  

neck.fpn_convs.3.conv.weight - torch.Size([256, 2048, 3, 3]): 
XavierInit: gain=1, distribution=uniform, bias=0 

neck.fpn_convs.3.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of RetinaNet  

neck.fpn_convs.3.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of RetinaNet  

neck.fpn_convs.4.conv.weight - torch.Size([256, 256, 3, 3]): 
XavierInit: gain=1, distribution=uniform, bias=0 

neck.fpn_convs.4.bn.weight - torch.Size([256]): 
The value is the same before and after calling `init_weights` of RetinaNet  

neck.fpn_convs.4.bn.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of RetinaNet  

bbox_head.cls_convs.0.conv.weight - torch.Size([256, 256, 3, 3]): 
NormalInit: mean=0, std=0.01, bias=0 

bbox_head.cls_convs.0.conv.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of RetinaNet  

bbox_head.cls_convs.1.conv.weight - torch.Size([256, 256, 3, 3]): 
NormalInit: mean=0, std=0.01, bias=0 

bbox_head.cls_convs.1.conv.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of RetinaNet  

bbox_head.cls_convs.2.conv.weight - torch.Size([256, 256, 3, 3]): 
NormalInit: mean=0, std=0.01, bias=0 

bbox_head.cls_convs.2.conv.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of RetinaNet  

bbox_head.cls_convs.3.conv.weight - torch.Size([256, 256, 3, 3]): 
NormalInit: mean=0, std=0.01, bias=0 

bbox_head.cls_convs.3.conv.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of RetinaNet  

bbox_head.reg_convs.0.conv.weight - torch.Size([256, 256, 3, 3]): 
NormalInit: mean=0, std=0.01, bias=0 

bbox_head.reg_convs.0.conv.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of RetinaNet  

bbox_head.reg_convs.1.conv.weight - torch.Size([256, 256, 3, 3]): 
NormalInit: mean=0, std=0.01, bias=0 

bbox_head.reg_convs.1.conv.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of RetinaNet  

bbox_head.reg_convs.2.conv.weight - torch.Size([256, 256, 3, 3]): 
NormalInit: mean=0, std=0.01, bias=0 

bbox_head.reg_convs.2.conv.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of RetinaNet  

bbox_head.reg_convs.3.conv.weight - torch.Size([256, 256, 3, 3]): 
NormalInit: mean=0, std=0.01, bias=0 

bbox_head.reg_convs.3.conv.bias - torch.Size([256]): 
The value is the same before and after calling `init_weights` of RetinaNet  

bbox_head.retina_cls.weight - torch.Size([180, 256, 3, 3]): 
NormalInit: mean=0, std=0.01, bias=-4.59511985013459 

bbox_head.retina_cls.bias - torch.Size([180]): 
NormalInit: mean=0, std=0.01, bias=-4.59511985013459 

bbox_head.retina_reg.weight - torch.Size([36, 256, 3, 3]): 
NormalInit: mean=0, std=0.01, bias=0 

bbox_head.retina_reg.bias - torch.Size([36]): 
NormalInit: mean=0, std=0.01, bias=0 
2022-10-03 23:25:48,644 - mmdet - INFO - Automatic scaling of learning rate (LR) has been disabled.
2022-10-03 23:25:49,424 - mmdet - INFO - load checkpoint from local path: pretrain/selfsup_retinanet_mstrain-soft-teacher_sampler-2048_temp0.5/final_model.pth
2022-10-03 23:25:49,532 - mmdet - WARNING - The model and loaded state dict do not match exactly

unexpected key in source state_dict: neck.lateral_convs.0.conv.bias, neck.lateral_convs.1.conv.bias, neck.lateral_convs.2.conv.bias, neck.fpn_convs.0.conv.bias, neck.fpn_convs.1.conv.bias, neck.fpn_convs.2.conv.bias, neck.fpn_convs.3.conv.bias, neck.fpn_convs.4.conv.bias

missing keys in source state_dict: neck.lateral_convs.0.bn.weight, neck.lateral_convs.0.bn.bias, neck.lateral_convs.0.bn.running_mean, neck.lateral_convs.0.bn.running_var, neck.lateral_convs.1.bn.weight, neck.lateral_convs.1.bn.bias, neck.lateral_convs.1.bn.running_mean, neck.lateral_convs.1.bn.running_var, neck.lateral_convs.2.bn.weight, neck.lateral_convs.2.bn.bias, neck.lateral_convs.2.bn.running_mean, neck.lateral_convs.2.bn.running_var, neck.fpn_convs.0.bn.weight, neck.fpn_convs.0.bn.bias, neck.fpn_convs.0.bn.running_mean, neck.fpn_convs.0.bn.running_var, neck.fpn_convs.1.bn.weight, neck.fpn_convs.1.bn.bias, neck.fpn_convs.1.bn.running_mean, neck.fpn_convs.1.bn.running_var, neck.fpn_convs.2.bn.weight, neck.fpn_convs.2.bn.bias, neck.fpn_convs.2.bn.running_mean, neck.fpn_convs.2.bn.running_var, neck.fpn_convs.3.bn.weight, neck.fpn_convs.3.bn.bias, neck.fpn_convs.3.bn.running_mean, neck.fpn_convs.3.bn.running_var, neck.fpn_convs.4.bn.weight, neck.fpn_convs.4.bn.bias, neck.fpn_convs.4.bn.running_mean, neck.fpn_convs.4.bn.running_var, bbox_head.retina_cls.weight, bbox_head.retina_cls.bias, bbox_head.retina_reg.weight, bbox_head.retina_reg.bias

2022-10-03 23:25:49,538 - mmdet - INFO - Start running, host: tiger@n136-144-086, work_dir: /home/tiger/code/mmdet/work_dirs/finetune_retinanet_12k_voc0712_lr1.5e-2_wd5e-5
2022-10-03 23:25:49,538 - mmdet - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH   ) StepLrUpdaterHook                  
(NORMAL      ) CheckpointHook                     
(NORMAL      ) MMDetWandbHook                     
(LOW         ) DistEvalHook                       
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
before_train_epoch:
(VERY_HIGH   ) StepLrUpdaterHook                  
(NORMAL      ) NumClassCheckHook                  
(NORMAL      ) MMDetWandbHook                     
(LOW         ) IterTimerHook                      
(LOW         ) DistEvalHook                       
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
before_train_iter:
(VERY_HIGH   ) StepLrUpdaterHook                  
(LOW         ) IterTimerHook                      
(LOW         ) DistEvalHook                       
 -------------------- 
after_train_iter:
(ABOVE_NORMAL) OptimizerHook                      
(NORMAL      ) CheckpointHook                     
(NORMAL      ) MMDetWandbHook                     
(LOW         ) IterTimerHook                      
(LOW         ) DistEvalHook                       
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
after_train_epoch:
(NORMAL      ) CheckpointHook                     
(NORMAL      ) MMDetWandbHook                     
(LOW         ) DistEvalHook                       
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
before_val_epoch:
(NORMAL      ) NumClassCheckHook                  
(NORMAL      ) MMDetWandbHook                     
(LOW         ) IterTimerHook                      
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
before_val_iter:
(LOW         ) IterTimerHook                      
 -------------------- 
after_val_iter:
(LOW         ) IterTimerHook                      
 -------------------- 
after_val_epoch:
(NORMAL      ) MMDetWandbHook                     
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
after_run:
(NORMAL      ) MMDetWandbHook                     
(VERY_LOW    ) TextLoggerHook                     
 -------------------- 
2022-10-03 23:25:49,539 - mmdet - INFO - workflow: [('train', 1)], max: 12000 iters
2022-10-03 23:25:49,539 - mmdet - INFO - Checkpoints will be saved to /home/tiger/code/mmdet/work_dirs/finetune_retinanet_12k_voc0712_lr1.5e-2_wd5e-5 by HardDiskBackend.
2022-10-03 23:25:55,378 - mmdet - INFO - Iter [50/12000]	lr: 1.484e-03, eta: 0:17:55, time: 0.090, data_time: 0.006, memory: 3221, loss_cls: 1.1629, loss_bbox: 0.6614, loss: 1.8243
2022-10-03 23:25:59,656 - mmdet - INFO - Iter [100/12000]	lr: 2.982e-03, eta: 0:17:24, time: 0.086, data_time: 0.006, memory: 3222, loss_cls: 1.1584, loss_bbox: 0.5555, loss: 1.7139
2022-10-03 23:26:05,649 - mmdet - INFO - Iter [150/12000]	lr: 4.481e-03, eta: 0:19:26, time: 0.120, data_time: 0.005, memory: 3223, loss_cls: 1.0891, loss_bbox: 0.4517, loss: 1.5408
2022-10-03 23:26:09,824 - mmdet - INFO - Iter [200/12000]	lr: 5.979e-03, eta: 0:18:37, time: 0.083, data_time: 0.005, memory: 3223, loss_cls: 0.8258, loss_bbox: 0.4111, loss: 1.2369
2022-10-03 23:26:14,107 - mmdet - INFO - Iter [250/12000]	lr: 7.478e-03, eta: 0:18:11, time: 0.086, data_time: 0.006, memory: 3223, loss_cls: 0.7845, loss_bbox: 0.4073, loss: 1.1919
2022-10-03 23:26:18,252 - mmdet - INFO - Iter [300/12000]	lr: 8.976e-03, eta: 0:17:47, time: 0.083, data_time: 0.005, memory: 3223, loss_cls: 0.7312, loss_bbox: 0.3949, loss: 1.1262
2022-10-03 23:26:22,505 - mmdet - INFO - Iter [350/12000]	lr: 1.047e-02, eta: 0:17:32, time: 0.085, data_time: 0.006, memory: 3223, loss_cls: 0.6597, loss_bbox: 0.3889, loss: 1.0485
2022-10-03 23:26:26,620 - mmdet - INFO - Iter [400/12000]	lr: 1.197e-02, eta: 0:17:16, time: 0.082, data_time: 0.006, memory: 3223, loss_cls: 0.6312, loss_bbox: 0.3784, loss: 1.0096
2022-10-03 23:26:30,838 - mmdet - INFO - Iter [450/12000]	lr: 1.347e-02, eta: 0:17:05, time: 0.084, data_time: 0.005, memory: 3223, loss_cls: 0.8423, loss_bbox: 0.4101, loss: 1.2524
2022-10-03 23:26:34,914 - mmdet - INFO - Iter [500/12000]	lr: 1.497e-02, eta: 0:16:52, time: 0.081, data_time: 0.006, memory: 3223, loss_cls: 0.9053, loss_bbox: 0.4874, loss: 1.3928
2022-10-03 23:26:39,238 - mmdet - INFO - Iter [550/12000]	lr: 1.500e-02, eta: 0:16:46, time: 0.087, data_time: 0.006, memory: 3223, loss_cls: 0.7680, loss_bbox: 0.4204, loss: 1.1885
2022-10-03 23:26:43,449 - mmdet - INFO - Iter [600/12000]	lr: 1.500e-02, eta: 0:16:38, time: 0.084, data_time: 0.006, memory: 3223, loss_cls: 0.7605, loss_bbox: 0.4015, loss: 1.1619
2022-10-03 23:26:47,714 - mmdet - INFO - Iter [650/12000]	lr: 1.500e-02, eta: 0:16:32, time: 0.085, data_time: 0.006, memory: 3223, loss_cls: 0.8102, loss_bbox: 0.3966, loss: 1.2068
2022-10-03 23:26:51,904 - mmdet - INFO - Iter [700/12000]	lr: 1.500e-02, eta: 0:16:25, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.6460, loss_bbox: 0.3687, loss: 1.0146
2022-10-03 23:26:56,191 - mmdet - INFO - Iter [750/12000]	lr: 1.500e-02, eta: 0:16:19, time: 0.086, data_time: 0.006, memory: 3224, loss_cls: 0.6535, loss_bbox: 0.3552, loss: 1.0088
2022-10-03 23:27:00,473 - mmdet - INFO - Iter [800/12000]	lr: 1.500e-02, eta: 0:16:14, time: 0.086, data_time: 0.006, memory: 3224, loss_cls: 0.5858, loss_bbox: 0.3599, loss: 0.9457
2022-10-03 23:27:04,500 - mmdet - INFO - Iter [850/12000]	lr: 1.500e-02, eta: 0:16:05, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.5724, loss_bbox: 0.3407, loss: 0.9132
2022-10-03 23:27:08,607 - mmdet - INFO - Iter [900/12000]	lr: 1.500e-02, eta: 0:15:58, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.5498, loss_bbox: 0.3449, loss: 0.8947
2022-10-03 23:27:12,689 - mmdet - INFO - Iter [950/12000]	lr: 1.500e-02, eta: 0:15:51, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.5324, loss_bbox: 0.3411, loss: 0.8735
2022-10-03 23:27:16,695 - mmdet - INFO - Exp name: retinanet_mstrain_12k_voc0712.py
2022-10-03 23:27:16,696 - mmdet - INFO - Iter [1000/12000]	lr: 1.500e-02, eta: 0:15:43, time: 0.080, data_time: 0.005, memory: 3224, loss_cls: 0.5129, loss_bbox: 0.3193, loss: 0.8322
2022-10-03 23:27:20,708 - mmdet - INFO - Iter [1050/12000]	lr: 1.500e-02, eta: 0:15:36, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.5172, loss_bbox: 0.3283, loss: 0.8456
2022-10-03 23:27:24,758 - mmdet - INFO - Iter [1100/12000]	lr: 1.500e-02, eta: 0:15:30, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.4909, loss_bbox: 0.3207, loss: 0.8116
2022-10-03 23:27:29,067 - mmdet - INFO - Iter [1150/12000]	lr: 1.500e-02, eta: 0:15:26, time: 0.086, data_time: 0.006, memory: 3224, loss_cls: 0.5034, loss_bbox: 0.3272, loss: 0.8305
2022-10-03 23:27:33,084 - mmdet - INFO - Iter [1200/12000]	lr: 1.500e-02, eta: 0:15:19, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.4889, loss_bbox: 0.3240, loss: 0.8129
2022-10-03 23:27:38,387 - mmdet - INFO - Iter [1250/12000]	lr: 1.500e-02, eta: 0:15:24, time: 0.106, data_time: 0.006, memory: 3224, loss_cls: 0.4536, loss_bbox: 0.3185, loss: 0.7721
2022-10-03 23:27:42,429 - mmdet - INFO - Iter [1300/12000]	lr: 1.500e-02, eta: 0:15:18, time: 0.081, data_time: 0.005, memory: 3224, loss_cls: 0.4639, loss_bbox: 0.3065, loss: 0.7703
2022-10-03 23:27:46,548 - mmdet - INFO - Iter [1350/12000]	lr: 1.500e-02, eta: 0:15:12, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.4371, loss_bbox: 0.3044, loss: 0.7415
2022-10-03 23:27:50,692 - mmdet - INFO - Iter [1400/12000]	lr: 1.500e-02, eta: 0:15:07, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.4519, loss_bbox: 0.3134, loss: 0.7653
2022-10-03 23:27:54,677 - mmdet - INFO - Iter [1450/12000]	lr: 1.500e-02, eta: 0:15:00, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.4309, loss_bbox: 0.3055, loss: 0.7364
2022-10-03 23:27:58,762 - mmdet - INFO - Iter [1500/12000]	lr: 1.500e-02, eta: 0:14:55, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.4384, loss_bbox: 0.3167, loss: 0.7551
2022-10-03 23:28:02,790 - mmdet - INFO - Iter [1550/12000]	lr: 1.500e-02, eta: 0:14:49, time: 0.081, data_time: 0.005, memory: 3224, loss_cls: 0.4355, loss_bbox: 0.3069, loss: 0.7424
2022-10-03 23:28:06,777 - mmdet - INFO - Iter [1600/12000]	lr: 1.500e-02, eta: 0:14:43, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.4055, loss_bbox: 0.3089, loss: 0.7144
2022-10-03 23:28:10,767 - mmdet - INFO - Iter [1650/12000]	lr: 1.500e-02, eta: 0:14:37, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.4069, loss_bbox: 0.3050, loss: 0.7119
2022-10-03 23:28:14,828 - mmdet - INFO - Iter [1700/12000]	lr: 1.500e-02, eta: 0:14:32, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.4004, loss_bbox: 0.3055, loss: 0.7058
2022-10-03 23:28:19,091 - mmdet - INFO - Iter [1750/12000]	lr: 1.500e-02, eta: 0:14:28, time: 0.085, data_time: 0.006, memory: 3224, loss_cls: 0.4183, loss_bbox: 0.3042, loss: 0.7225
2022-10-03 23:28:23,263 - mmdet - INFO - Iter [1800/12000]	lr: 1.500e-02, eta: 0:14:23, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.4023, loss_bbox: 0.3023, loss: 0.7046
2022-10-03 23:28:27,267 - mmdet - INFO - Iter [1850/12000]	lr: 1.500e-02, eta: 0:14:17, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.3761, loss_bbox: 0.2956, loss: 0.6717
2022-10-03 23:28:31,555 - mmdet - INFO - Iter [1900/12000]	lr: 1.500e-02, eta: 0:14:14, time: 0.086, data_time: 0.006, memory: 3224, loss_cls: 0.4005, loss_bbox: 0.3044, loss: 0.7049
2022-10-03 23:28:35,749 - mmdet - INFO - Iter [1950/12000]	lr: 1.500e-02, eta: 0:14:09, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.3999, loss_bbox: 0.2954, loss: 0.6952
2022-10-03 23:28:39,943 - mmdet - INFO - Exp name: retinanet_mstrain_12k_voc0712.py
2022-10-03 23:28:39,944 - mmdet - INFO - Iter [2000/12000]	lr: 1.500e-02, eta: 0:14:05, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.3785, loss_bbox: 0.2902, loss: 0.6687
2022-10-03 23:28:43,964 - mmdet - INFO - Iter [2050/12000]	lr: 1.500e-02, eta: 0:14:00, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.3586, loss_bbox: 0.2902, loss: 0.6489
2022-10-03 23:28:48,052 - mmdet - INFO - Iter [2100/12000]	lr: 1.500e-02, eta: 0:13:55, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.3824, loss_bbox: 0.2926, loss: 0.6750
2022-10-03 23:28:52,112 - mmdet - INFO - Iter [2150/12000]	lr: 1.500e-02, eta: 0:13:50, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.3551, loss_bbox: 0.2795, loss: 0.6346
2022-10-03 23:28:56,312 - mmdet - INFO - Iter [2200/12000]	lr: 1.500e-02, eta: 0:13:45, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.3408, loss_bbox: 0.2830, loss: 0.6238
2022-10-03 23:29:00,350 - mmdet - INFO - Iter [2250/12000]	lr: 1.500e-02, eta: 0:13:40, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.3448, loss_bbox: 0.2823, loss: 0.6270
2022-10-03 23:29:04,412 - mmdet - INFO - Iter [2300/12000]	lr: 1.500e-02, eta: 0:13:36, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.3532, loss_bbox: 0.2838, loss: 0.6370
2022-10-03 23:29:08,485 - mmdet - INFO - Iter [2350/12000]	lr: 1.500e-02, eta: 0:13:31, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.3550, loss_bbox: 0.2873, loss: 0.6422
2022-10-03 23:29:12,494 - mmdet - INFO - Iter [2400/12000]	lr: 1.500e-02, eta: 0:13:26, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.3385, loss_bbox: 0.2863, loss: 0.6248
2022-10-03 23:29:16,498 - mmdet - INFO - Iter [2450/12000]	lr: 1.500e-02, eta: 0:13:21, time: 0.080, data_time: 0.005, memory: 3224, loss_cls: 0.3352, loss_bbox: 0.2791, loss: 0.6143
2022-10-03 23:29:20,492 - mmdet - INFO - Iter [2500/12000]	lr: 1.500e-02, eta: 0:13:16, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.3293, loss_bbox: 0.2816, loss: 0.6109
2022-10-03 23:29:24,513 - mmdet - INFO - Iter [2550/12000]	lr: 1.500e-02, eta: 0:13:11, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.3459, loss_bbox: 0.2878, loss: 0.6337
2022-10-03 23:29:28,596 - mmdet - INFO - Iter [2600/12000]	lr: 1.500e-02, eta: 0:13:07, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.3378, loss_bbox: 0.2843, loss: 0.6221
2022-10-03 23:29:32,760 - mmdet - INFO - Iter [2650/12000]	lr: 1.500e-02, eta: 0:13:02, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.3347, loss_bbox: 0.2786, loss: 0.6133
2022-10-03 23:29:36,728 - mmdet - INFO - Iter [2700/12000]	lr: 1.500e-02, eta: 0:12:57, time: 0.079, data_time: 0.006, memory: 3224, loss_cls: 0.3163, loss_bbox: 0.2768, loss: 0.5931
2022-10-03 23:29:40,777 - mmdet - INFO - Iter [2750/12000]	lr: 1.500e-02, eta: 0:12:53, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.3499, loss_bbox: 0.2751, loss: 0.6250
2022-10-03 23:29:44,893 - mmdet - INFO - Iter [2800/12000]	lr: 1.500e-02, eta: 0:12:48, time: 0.082, data_time: 0.005, memory: 3224, loss_cls: 0.3302, loss_bbox: 0.2774, loss: 0.6076
2022-10-03 23:29:48,991 - mmdet - INFO - Iter [2850/12000]	lr: 1.500e-02, eta: 0:12:44, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.3143, loss_bbox: 0.2723, loss: 0.5866
2022-10-03 23:29:53,020 - mmdet - INFO - Iter [2900/12000]	lr: 1.500e-02, eta: 0:12:39, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.3332, loss_bbox: 0.2821, loss: 0.6153
2022-10-03 23:29:57,164 - mmdet - INFO - Iter [2950/12000]	lr: 1.500e-02, eta: 0:12:35, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.3081, loss_bbox: 0.2870, loss: 0.5952
2022-10-03 23:30:01,178 - mmdet - INFO - Exp name: retinanet_mstrain_12k_voc0712.py
2022-10-03 23:30:01,178 - mmdet - INFO - Iter [3000/12000]	lr: 1.500e-02, eta: 0:12:30, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.3119, loss_bbox: 0.2731, loss: 0.5851
2022-10-03 23:30:05,167 - mmdet - INFO - Iter [3050/12000]	lr: 1.500e-02, eta: 0:12:26, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.3114, loss_bbox: 0.2781, loss: 0.5895
2022-10-03 23:30:09,289 - mmdet - INFO - Iter [3100/12000]	lr: 1.500e-02, eta: 0:12:21, time: 0.082, data_time: 0.005, memory: 3224, loss_cls: 0.2978, loss_bbox: 0.2683, loss: 0.5661
2022-10-03 23:30:13,342 - mmdet - INFO - Iter [3150/12000]	lr: 1.500e-02, eta: 0:12:17, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2990, loss_bbox: 0.2785, loss: 0.5775
2022-10-03 23:30:17,344 - mmdet - INFO - Iter [3200/12000]	lr: 1.500e-02, eta: 0:12:12, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.3079, loss_bbox: 0.2673, loss: 0.5753
2022-10-03 23:30:21,436 - mmdet - INFO - Iter [3250/12000]	lr: 1.500e-02, eta: 0:12:08, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.3240, loss_bbox: 0.2747, loss: 0.5987
2022-10-03 23:30:25,542 - mmdet - INFO - Iter [3300/12000]	lr: 1.500e-02, eta: 0:12:04, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.3110, loss_bbox: 0.2722, loss: 0.5833
2022-10-03 23:30:29,587 - mmdet - INFO - Iter [3350/12000]	lr: 1.500e-02, eta: 0:11:59, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2929, loss_bbox: 0.2691, loss: 0.5621
2022-10-03 23:30:33,639 - mmdet - INFO - Iter [3400/12000]	lr: 1.500e-02, eta: 0:11:55, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2892, loss_bbox: 0.2625, loss: 0.5517
2022-10-03 23:30:37,892 - mmdet - INFO - Iter [3450/12000]	lr: 1.500e-02, eta: 0:11:51, time: 0.085, data_time: 0.006, memory: 3224, loss_cls: 0.2942, loss_bbox: 0.2680, loss: 0.5622
2022-10-03 23:30:41,912 - mmdet - INFO - Iter [3500/12000]	lr: 1.500e-02, eta: 0:11:46, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2985, loss_bbox: 0.2610, loss: 0.5595
2022-10-03 23:30:45,927 - mmdet - INFO - Iter [3550/12000]	lr: 1.500e-02, eta: 0:11:42, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2857, loss_bbox: 0.2597, loss: 0.5454
2022-10-03 23:30:49,914 - mmdet - INFO - Iter [3600/12000]	lr: 1.500e-02, eta: 0:11:37, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2872, loss_bbox: 0.2613, loss: 0.5485
2022-10-03 23:30:53,850 - mmdet - INFO - Iter [3650/12000]	lr: 1.500e-02, eta: 0:11:33, time: 0.079, data_time: 0.006, memory: 3224, loss_cls: 0.2985, loss_bbox: 0.2699, loss: 0.5684
2022-10-03 23:30:57,902 - mmdet - INFO - Iter [3700/12000]	lr: 1.500e-02, eta: 0:11:28, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2794, loss_bbox: 0.2603, loss: 0.5397
2022-10-03 23:31:01,903 - mmdet - INFO - Iter [3750/12000]	lr: 1.500e-02, eta: 0:11:24, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2825, loss_bbox: 0.2614, loss: 0.5439
2022-10-03 23:31:05,932 - mmdet - INFO - Iter [3800/12000]	lr: 1.500e-02, eta: 0:11:19, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2832, loss_bbox: 0.2694, loss: 0.5527
2022-10-03 23:31:09,947 - mmdet - INFO - Iter [3850/12000]	lr: 1.500e-02, eta: 0:11:15, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2898, loss_bbox: 0.2653, loss: 0.5550
2022-10-03 23:31:13,985 - mmdet - INFO - Iter [3900/12000]	lr: 1.500e-02, eta: 0:11:11, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2617, loss_bbox: 0.2559, loss: 0.5176
2022-10-03 23:31:17,999 - mmdet - INFO - Iter [3950/12000]	lr: 1.500e-02, eta: 0:11:06, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2774, loss_bbox: 0.2668, loss: 0.5442
2022-10-03 23:31:21,989 - mmdet - INFO - Exp name: retinanet_mstrain_12k_voc0712.py
2022-10-03 23:31:21,990 - mmdet - INFO - Iter [4000/12000]	lr: 1.500e-02, eta: 0:11:02, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2797, loss_bbox: 0.2677, loss: 0.5474
2022-10-03 23:31:25,993 - mmdet - INFO - Iter [4050/12000]	lr: 1.500e-02, eta: 0:10:57, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2798, loss_bbox: 0.2619, loss: 0.5417
2022-10-03 23:31:30,069 - mmdet - INFO - Iter [4100/12000]	lr: 1.500e-02, eta: 0:10:53, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.2771, loss_bbox: 0.2648, loss: 0.5419
2022-10-03 23:31:34,132 - mmdet - INFO - Iter [4150/12000]	lr: 1.500e-02, eta: 0:10:49, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2628, loss_bbox: 0.2520, loss: 0.5149
2022-10-03 23:31:38,088 - mmdet - INFO - Iter [4200/12000]	lr: 1.500e-02, eta: 0:10:44, time: 0.079, data_time: 0.006, memory: 3224, loss_cls: 0.2628, loss_bbox: 0.2463, loss: 0.5091
2022-10-03 23:31:42,091 - mmdet - INFO - Iter [4250/12000]	lr: 1.500e-02, eta: 0:10:40, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2621, loss_bbox: 0.2472, loss: 0.5094
2022-10-03 23:31:46,112 - mmdet - INFO - Iter [4300/12000]	lr: 1.500e-02, eta: 0:10:36, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2675, loss_bbox: 0.2574, loss: 0.5249
2022-10-03 23:31:50,251 - mmdet - INFO - Iter [4350/12000]	lr: 1.500e-02, eta: 0:10:31, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.2620, loss_bbox: 0.2527, loss: 0.5147
2022-10-03 23:31:54,474 - mmdet - INFO - Iter [4400/12000]	lr: 1.500e-02, eta: 0:10:27, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.2705, loss_bbox: 0.2546, loss: 0.5251
2022-10-03 23:31:58,523 - mmdet - INFO - Iter [4450/12000]	lr: 1.500e-02, eta: 0:10:23, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2602, loss_bbox: 0.2542, loss: 0.5143
2022-10-03 23:32:02,530 - mmdet - INFO - Iter [4500/12000]	lr: 1.500e-02, eta: 0:10:19, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2608, loss_bbox: 0.2560, loss: 0.5168
2022-10-03 23:32:06,487 - mmdet - INFO - Iter [4550/12000]	lr: 1.500e-02, eta: 0:10:14, time: 0.079, data_time: 0.005, memory: 3224, loss_cls: 0.2590, loss_bbox: 0.2553, loss: 0.5143
2022-10-03 23:32:10,530 - mmdet - INFO - Iter [4600/12000]	lr: 1.500e-02, eta: 0:10:10, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2641, loss_bbox: 0.2479, loss: 0.5120
2022-10-03 23:32:14,604 - mmdet - INFO - Iter [4650/12000]	lr: 1.500e-02, eta: 0:10:06, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2534, loss_bbox: 0.2519, loss: 0.5053
2022-10-03 23:32:18,657 - mmdet - INFO - Iter [4700/12000]	lr: 1.500e-02, eta: 0:10:02, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2575, loss_bbox: 0.2584, loss: 0.5159
2022-10-03 23:32:22,641 - mmdet - INFO - Iter [4750/12000]	lr: 1.500e-02, eta: 0:09:57, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2542, loss_bbox: 0.2506, loss: 0.5048
2022-10-03 23:32:26,629 - mmdet - INFO - Iter [4800/12000]	lr: 1.500e-02, eta: 0:09:53, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2532, loss_bbox: 0.2537, loss: 0.5069
2022-10-03 23:32:30,627 - mmdet - INFO - Iter [4850/12000]	lr: 1.500e-02, eta: 0:09:49, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2557, loss_bbox: 0.2487, loss: 0.5044
2022-10-03 23:32:34,633 - mmdet - INFO - Iter [4900/12000]	lr: 1.500e-02, eta: 0:09:44, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2509, loss_bbox: 0.2476, loss: 0.4985
2022-10-03 23:32:38,691 - mmdet - INFO - Iter [4950/12000]	lr: 1.500e-02, eta: 0:09:40, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2586, loss_bbox: 0.2498, loss: 0.5084
2022-10-03 23:32:42,703 - mmdet - INFO - Exp name: retinanet_mstrain_12k_voc0712.py
2022-10-03 23:32:42,703 - mmdet - INFO - Iter [5000/12000]	lr: 1.500e-02, eta: 0:09:36, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2594, loss_bbox: 0.2504, loss: 0.5098
2022-10-03 23:32:46,796 - mmdet - INFO - Iter [5050/12000]	lr: 1.500e-02, eta: 0:09:32, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.2681, loss_bbox: 0.2601, loss: 0.5282
2022-10-03 23:32:51,033 - mmdet - INFO - Iter [5100/12000]	lr: 1.500e-02, eta: 0:09:28, time: 0.085, data_time: 0.006, memory: 3224, loss_cls: 0.2681, loss_bbox: 0.2526, loss: 0.5208
2022-10-03 23:32:55,077 - mmdet - INFO - Iter [5150/12000]	lr: 1.500e-02, eta: 0:09:24, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2772, loss_bbox: 0.2604, loss: 0.5376
2022-10-03 23:32:59,205 - mmdet - INFO - Iter [5200/12000]	lr: 1.500e-02, eta: 0:09:20, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.2518, loss_bbox: 0.2492, loss: 0.5010
2022-10-03 23:33:03,230 - mmdet - INFO - Iter [5250/12000]	lr: 1.500e-02, eta: 0:09:15, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2322, loss_bbox: 0.2438, loss: 0.4760
2022-10-03 23:33:07,247 - mmdet - INFO - Iter [5300/12000]	lr: 1.500e-02, eta: 0:09:11, time: 0.080, data_time: 0.005, memory: 3224, loss_cls: 0.2459, loss_bbox: 0.2391, loss: 0.4850
2022-10-03 23:33:11,416 - mmdet - INFO - Iter [5350/12000]	lr: 1.500e-02, eta: 0:09:07, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.2367, loss_bbox: 0.2383, loss: 0.4750
2022-10-03 23:33:15,470 - mmdet - INFO - Iter [5400/12000]	lr: 1.500e-02, eta: 0:09:03, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2256, loss_bbox: 0.2401, loss: 0.4656
2022-10-03 23:33:19,550 - mmdet - INFO - Iter [5450/12000]	lr: 1.500e-02, eta: 0:08:59, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.2442, loss_bbox: 0.2445, loss: 0.4888
2022-10-03 23:33:23,503 - mmdet - INFO - Iter [5500/12000]	lr: 1.500e-02, eta: 0:08:54, time: 0.079, data_time: 0.006, memory: 3224, loss_cls: 0.2401, loss_bbox: 0.2421, loss: 0.4822
2022-10-03 23:33:27,517 - mmdet - INFO - Iter [5550/12000]	lr: 1.500e-02, eta: 0:08:50, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2480, loss_bbox: 0.2451, loss: 0.4932
2022-10-03 23:33:31,526 - mmdet - INFO - Iter [5600/12000]	lr: 1.500e-02, eta: 0:08:46, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2328, loss_bbox: 0.2398, loss: 0.4726
2022-10-03 23:33:35,585 - mmdet - INFO - Iter [5650/12000]	lr: 1.500e-02, eta: 0:08:42, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2306, loss_bbox: 0.2366, loss: 0.4672
2022-10-03 23:33:39,590 - mmdet - INFO - Iter [5700/12000]	lr: 1.500e-02, eta: 0:08:38, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2448, loss_bbox: 0.2429, loss: 0.4877
2022-10-03 23:33:43,583 - mmdet - INFO - Iter [5750/12000]	lr: 1.500e-02, eta: 0:08:33, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2457, loss_bbox: 0.2471, loss: 0.4928
2022-10-03 23:33:47,547 - mmdet - INFO - Iter [5800/12000]	lr: 1.500e-02, eta: 0:08:29, time: 0.079, data_time: 0.006, memory: 3224, loss_cls: 0.2367, loss_bbox: 0.2458, loss: 0.4825
2022-10-03 23:33:51,620 - mmdet - INFO - Iter [5850/12000]	lr: 1.500e-02, eta: 0:08:25, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2548, loss_bbox: 0.2479, loss: 0.5027
2022-10-03 23:33:55,720 - mmdet - INFO - Iter [5900/12000]	lr: 1.500e-02, eta: 0:08:21, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.2380, loss_bbox: 0.2433, loss: 0.4812
2022-10-03 23:33:59,801 - mmdet - INFO - Iter [5950/12000]	lr: 1.500e-02, eta: 0:08:17, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.2395, loss_bbox: 0.2469, loss: 0.4864
2022-10-03 23:34:03,792 - mmdet - INFO - Exp name: retinanet_mstrain_12k_voc0712.py
2022-10-03 23:34:03,793 - mmdet - INFO - Iter [6000/12000]	lr: 1.500e-02, eta: 0:08:12, time: 0.080, data_time: 0.005, memory: 3224, loss_cls: 0.2369, loss_bbox: 0.2395, loss: 0.4764
2022-10-03 23:34:07,771 - mmdet - INFO - Iter [6050/12000]	lr: 1.500e-02, eta: 0:08:08, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2330, loss_bbox: 0.2465, loss: 0.4794
2022-10-03 23:34:11,820 - mmdet - INFO - Iter [6100/12000]	lr: 1.500e-02, eta: 0:08:04, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2389, loss_bbox: 0.2384, loss: 0.4773
2022-10-03 23:34:15,828 - mmdet - INFO - Iter [6150/12000]	lr: 1.500e-02, eta: 0:08:00, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2498, loss_bbox: 0.2481, loss: 0.4979
2022-10-03 23:34:19,887 - mmdet - INFO - Iter [6200/12000]	lr: 1.500e-02, eta: 0:07:56, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2274, loss_bbox: 0.2364, loss: 0.4638
2022-10-03 23:34:23,879 - mmdet - INFO - Iter [6250/12000]	lr: 1.500e-02, eta: 0:07:51, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2375, loss_bbox: 0.2369, loss: 0.4744
2022-10-03 23:34:27,922 - mmdet - INFO - Iter [6300/12000]	lr: 1.500e-02, eta: 0:07:47, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2253, loss_bbox: 0.2289, loss: 0.4542
2022-10-03 23:34:31,934 - mmdet - INFO - Iter [6350/12000]	lr: 1.500e-02, eta: 0:07:43, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2235, loss_bbox: 0.2355, loss: 0.4591
2022-10-03 23:34:36,158 - mmdet - INFO - Iter [6400/12000]	lr: 1.500e-02, eta: 0:07:39, time: 0.085, data_time: 0.006, memory: 3224, loss_cls: 0.2184, loss_bbox: 0.2300, loss: 0.4484
2022-10-03 23:34:40,332 - mmdet - INFO - Iter [6450/12000]	lr: 1.500e-02, eta: 0:07:35, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.2324, loss_bbox: 0.2364, loss: 0.4689
2022-10-03 23:34:44,335 - mmdet - INFO - Iter [6500/12000]	lr: 1.500e-02, eta: 0:07:31, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2435, loss_bbox: 0.2395, loss: 0.4831
2022-10-03 23:34:48,486 - mmdet - INFO - Iter [6550/12000]	lr: 1.500e-02, eta: 0:07:27, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.2383, loss_bbox: 0.2421, loss: 0.4804
2022-10-03 23:34:52,504 - mmdet - INFO - Iter [6600/12000]	lr: 1.500e-02, eta: 0:07:23, time: 0.080, data_time: 0.005, memory: 3224, loss_cls: 0.2283, loss_bbox: 0.2329, loss: 0.4611
2022-10-03 23:34:56,575 - mmdet - INFO - Iter [6650/12000]	lr: 1.500e-02, eta: 0:07:18, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2189, loss_bbox: 0.2293, loss: 0.4481
2022-10-03 23:35:00,702 - mmdet - INFO - Iter [6700/12000]	lr: 1.500e-02, eta: 0:07:14, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.2155, loss_bbox: 0.2316, loss: 0.4471
2022-10-03 23:35:04,665 - mmdet - INFO - Iter [6750/12000]	lr: 1.500e-02, eta: 0:07:10, time: 0.079, data_time: 0.006, memory: 3224, loss_cls: 0.2328, loss_bbox: 0.2393, loss: 0.4722
2022-10-03 23:35:08,662 - mmdet - INFO - Iter [6800/12000]	lr: 1.500e-02, eta: 0:07:06, time: 0.080, data_time: 0.005, memory: 3224, loss_cls: 0.2150, loss_bbox: 0.2267, loss: 0.4417
2022-10-03 23:35:12,647 - mmdet - INFO - Iter [6850/12000]	lr: 1.500e-02, eta: 0:07:02, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2233, loss_bbox: 0.2365, loss: 0.4599
2022-10-03 23:35:16,806 - mmdet - INFO - Iter [6900/12000]	lr: 1.500e-02, eta: 0:06:58, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.2348, loss_bbox: 0.2479, loss: 0.4827
2022-10-03 23:35:20,900 - mmdet - INFO - Iter [6950/12000]	lr: 1.500e-02, eta: 0:06:54, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.2296, loss_bbox: 0.2341, loss: 0.4637
2022-10-03 23:35:24,930 - mmdet - INFO - Exp name: retinanet_mstrain_12k_voc0712.py
2022-10-03 23:35:24,930 - mmdet - INFO - Iter [7000/12000]	lr: 1.500e-02, eta: 0:06:50, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2317, loss_bbox: 0.2416, loss: 0.4734
2022-10-03 23:35:28,924 - mmdet - INFO - Iter [7050/12000]	lr: 1.500e-02, eta: 0:06:45, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2193, loss_bbox: 0.2366, loss: 0.4560
2022-10-03 23:35:33,144 - mmdet - INFO - Iter [7100/12000]	lr: 1.500e-02, eta: 0:06:41, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.2232, loss_bbox: 0.2417, loss: 0.4648
2022-10-03 23:35:37,317 - mmdet - INFO - Iter [7150/12000]	lr: 1.500e-02, eta: 0:06:37, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.2292, loss_bbox: 0.2381, loss: 0.4673
2022-10-03 23:35:41,335 - mmdet - INFO - Iter [7200/12000]	lr: 1.500e-02, eta: 0:06:33, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2321, loss_bbox: 0.2379, loss: 0.4700
2022-10-03 23:35:45,276 - mmdet - INFO - Iter [7250/12000]	lr: 1.500e-02, eta: 0:06:29, time: 0.079, data_time: 0.006, memory: 3224, loss_cls: 0.2142, loss_bbox: 0.2347, loss: 0.4490
2022-10-03 23:35:49,461 - mmdet - INFO - Iter [7300/12000]	lr: 1.500e-02, eta: 0:06:25, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.2111, loss_bbox: 0.2279, loss: 0.4390
2022-10-03 23:35:53,549 - mmdet - INFO - Iter [7350/12000]	lr: 1.500e-02, eta: 0:06:21, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.2049, loss_bbox: 0.2236, loss: 0.4284
2022-10-03 23:35:57,655 - mmdet - INFO - Iter [7400/12000]	lr: 1.500e-02, eta: 0:06:17, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.2121, loss_bbox: 0.2243, loss: 0.4365
2022-10-03 23:36:01,893 - mmdet - INFO - Iter [7450/12000]	lr: 1.500e-02, eta: 0:06:13, time: 0.085, data_time: 0.006, memory: 3224, loss_cls: 0.2258, loss_bbox: 0.2258, loss: 0.4517
2022-10-03 23:36:06,160 - mmdet - INFO - Iter [7500/12000]	lr: 1.500e-02, eta: 0:06:09, time: 0.085, data_time: 0.006, memory: 3224, loss_cls: 0.2130, loss_bbox: 0.2297, loss: 0.4427
2022-10-03 23:36:10,458 - mmdet - INFO - Iter [7550/12000]	lr: 1.500e-02, eta: 0:06:05, time: 0.086, data_time: 0.006, memory: 3224, loss_cls: 0.2112, loss_bbox: 0.2282, loss: 0.4394
2022-10-03 23:36:14,596 - mmdet - INFO - Iter [7600/12000]	lr: 1.500e-02, eta: 0:06:01, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.2162, loss_bbox: 0.2296, loss: 0.4459
2022-10-03 23:36:18,558 - mmdet - INFO - Iter [7650/12000]	lr: 1.500e-02, eta: 0:05:56, time: 0.079, data_time: 0.006, memory: 3224, loss_cls: 0.2151, loss_bbox: 0.2276, loss: 0.4427
2022-10-03 23:36:22,654 - mmdet - INFO - Iter [7700/12000]	lr: 1.500e-02, eta: 0:05:52, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.2154, loss_bbox: 0.2197, loss: 0.4351
2022-10-03 23:36:26,888 - mmdet - INFO - Iter [7750/12000]	lr: 1.500e-02, eta: 0:05:48, time: 0.085, data_time: 0.006, memory: 3224, loss_cls: 0.2141, loss_bbox: 0.2336, loss: 0.4477
2022-10-03 23:36:31,091 - mmdet - INFO - Iter [7800/12000]	lr: 1.500e-02, eta: 0:05:44, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.2094, loss_bbox: 0.2219, loss: 0.4313
2022-10-03 23:36:35,109 - mmdet - INFO - Iter [7850/12000]	lr: 1.500e-02, eta: 0:05:40, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2152, loss_bbox: 0.2270, loss: 0.4422
2022-10-03 23:36:39,058 - mmdet - INFO - Iter [7900/12000]	lr: 1.500e-02, eta: 0:05:36, time: 0.079, data_time: 0.006, memory: 3224, loss_cls: 0.2235, loss_bbox: 0.2284, loss: 0.4519
2022-10-03 23:36:43,089 - mmdet - INFO - Iter [7950/12000]	lr: 1.500e-02, eta: 0:05:32, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2086, loss_bbox: 0.2243, loss: 0.4329
2022-10-03 23:36:47,082 - mmdet - INFO - Exp name: retinanet_mstrain_12k_voc0712.py
2022-10-03 23:36:47,082 - mmdet - INFO - Iter [8000/12000]	lr: 1.500e-02, eta: 0:05:28, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2060, loss_bbox: 0.2271, loss: 0.4331
2022-10-03 23:36:51,090 - mmdet - INFO - Iter [8050/12000]	lr: 1.500e-02, eta: 0:05:23, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2273, loss_bbox: 0.2295, loss: 0.4568
2022-10-03 23:36:55,155 - mmdet - INFO - Iter [8100/12000]	lr: 1.500e-02, eta: 0:05:19, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2213, loss_bbox: 0.2310, loss: 0.4522
2022-10-03 23:36:59,214 - mmdet - INFO - Iter [8150/12000]	lr: 1.500e-02, eta: 0:05:15, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2237, loss_bbox: 0.2350, loss: 0.4587
2022-10-03 23:37:03,175 - mmdet - INFO - Iter [8200/12000]	lr: 1.500e-02, eta: 0:05:11, time: 0.079, data_time: 0.005, memory: 3224, loss_cls: 0.2133, loss_bbox: 0.2278, loss: 0.4411
2022-10-03 23:37:07,150 - mmdet - INFO - Iter [8250/12000]	lr: 1.500e-02, eta: 0:05:07, time: 0.079, data_time: 0.005, memory: 3224, loss_cls: 0.2180, loss_bbox: 0.2319, loss: 0.4499
2022-10-03 23:37:11,356 - mmdet - INFO - Iter [8300/12000]	lr: 1.500e-02, eta: 0:05:03, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.2139, loss_bbox: 0.2265, loss: 0.4404
2022-10-03 23:37:15,482 - mmdet - INFO - Iter [8350/12000]	lr: 1.500e-02, eta: 0:04:59, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.1983, loss_bbox: 0.2135, loss: 0.4118
2022-10-03 23:37:19,702 - mmdet - INFO - Iter [8400/12000]	lr: 1.500e-02, eta: 0:04:55, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.1954, loss_bbox: 0.2159, loss: 0.4113
2022-10-03 23:37:23,798 - mmdet - INFO - Iter [8450/12000]	lr: 1.500e-02, eta: 0:04:51, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.2016, loss_bbox: 0.2227, loss: 0.4243
2022-10-03 23:37:27,846 - mmdet - INFO - Iter [8500/12000]	lr: 1.500e-02, eta: 0:04:46, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2044, loss_bbox: 0.2293, loss: 0.4337
2022-10-03 23:37:31,839 - mmdet - INFO - Iter [8550/12000]	lr: 1.500e-02, eta: 0:04:42, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1912, loss_bbox: 0.2162, loss: 0.4074
2022-10-03 23:37:35,786 - mmdet - INFO - Iter [8600/12000]	lr: 1.500e-02, eta: 0:04:38, time: 0.079, data_time: 0.006, memory: 3224, loss_cls: 0.1917, loss_bbox: 0.2146, loss: 0.4063
2022-10-03 23:37:39,875 - mmdet - INFO - Iter [8650/12000]	lr: 1.500e-02, eta: 0:04:34, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.1972, loss_bbox: 0.2203, loss: 0.4175
2022-10-03 23:37:43,892 - mmdet - INFO - Iter [8700/12000]	lr: 1.500e-02, eta: 0:04:30, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2027, loss_bbox: 0.2158, loss: 0.4185
2022-10-03 23:37:47,911 - mmdet - INFO - Iter [8750/12000]	lr: 1.500e-02, eta: 0:04:26, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2064, loss_bbox: 0.2343, loss: 0.4407
2022-10-03 23:37:52,017 - mmdet - INFO - Iter [8800/12000]	lr: 1.500e-02, eta: 0:04:22, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.1968, loss_bbox: 0.2174, loss: 0.4142
2022-10-03 23:37:56,011 - mmdet - INFO - Iter [8850/12000]	lr: 1.500e-02, eta: 0:04:18, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1885, loss_bbox: 0.2162, loss: 0.4047
2022-10-03 23:38:00,134 - mmdet - INFO - Iter [8900/12000]	lr: 1.500e-02, eta: 0:04:13, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.2002, loss_bbox: 0.2231, loss: 0.4233
2022-10-03 23:38:04,124 - mmdet - INFO - Iter [8950/12000]	lr: 1.500e-02, eta: 0:04:09, time: 0.080, data_time: 0.005, memory: 3224, loss_cls: 0.2095, loss_bbox: 0.2255, loss: 0.4350
2022-10-03 23:38:08,120 - mmdet - INFO - Exp name: retinanet_mstrain_12k_voc0712.py
2022-10-03 23:38:08,120 - mmdet - INFO - Iter [9000/12000]	lr: 1.500e-02, eta: 0:04:05, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2179, loss_bbox: 0.2354, loss: 0.4533
2022-10-03 23:38:12,120 - mmdet - INFO - Iter [9050/12000]	lr: 1.500e-03, eta: 0:04:01, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1897, loss_bbox: 0.2153, loss: 0.4050
2022-10-03 23:38:16,101 - mmdet - INFO - Iter [9100/12000]	lr: 1.500e-03, eta: 0:03:57, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1712, loss_bbox: 0.2062, loss: 0.3774
2022-10-03 23:38:20,219 - mmdet - INFO - Iter [9150/12000]	lr: 1.500e-03, eta: 0:03:53, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.1705, loss_bbox: 0.2064, loss: 0.3768
2022-10-03 23:38:24,213 - mmdet - INFO - Iter [9200/12000]	lr: 1.500e-03, eta: 0:03:49, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1665, loss_bbox: 0.1998, loss: 0.3663
2022-10-03 23:38:28,257 - mmdet - INFO - Iter [9250/12000]	lr: 1.500e-03, eta: 0:03:45, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.1659, loss_bbox: 0.2035, loss: 0.3695
2022-10-03 23:38:32,538 - mmdet - INFO - Iter [9300/12000]	lr: 1.500e-03, eta: 0:03:41, time: 0.086, data_time: 0.006, memory: 3224, loss_cls: 0.1672, loss_bbox: 0.1965, loss: 0.3637
2022-10-03 23:38:36,700 - mmdet - INFO - Iter [9350/12000]	lr: 1.500e-03, eta: 0:03:37, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.1513, loss_bbox: 0.1907, loss: 0.3420
2022-10-03 23:38:40,755 - mmdet - INFO - Iter [9400/12000]	lr: 1.500e-03, eta: 0:03:32, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.1528, loss_bbox: 0.1907, loss: 0.3435
2022-10-03 23:38:44,827 - mmdet - INFO - Iter [9450/12000]	lr: 1.500e-03, eta: 0:03:28, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.1436, loss_bbox: 0.1825, loss: 0.3260
2022-10-03 23:38:48,828 - mmdet - INFO - Iter [9500/12000]	lr: 1.500e-03, eta: 0:03:24, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1446, loss_bbox: 0.1885, loss: 0.3330
2022-10-03 23:38:53,071 - mmdet - INFO - Iter [9550/12000]	lr: 1.500e-03, eta: 0:03:20, time: 0.085, data_time: 0.006, memory: 3224, loss_cls: 0.1454, loss_bbox: 0.1821, loss: 0.3275
2022-10-03 23:38:57,363 - mmdet - INFO - Iter [9600/12000]	lr: 1.500e-03, eta: 0:03:16, time: 0.086, data_time: 0.006, memory: 3224, loss_cls: 0.1452, loss_bbox: 0.1871, loss: 0.3324
2022-10-03 23:39:01,565 - mmdet - INFO - Iter [9650/12000]	lr: 1.500e-03, eta: 0:03:12, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.1359, loss_bbox: 0.1872, loss: 0.3231
2022-10-03 23:39:05,566 - mmdet - INFO - Iter [9700/12000]	lr: 1.500e-03, eta: 0:03:08, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1465, loss_bbox: 0.1884, loss: 0.3349
2022-10-03 23:39:09,749 - mmdet - INFO - Iter [9750/12000]	lr: 1.500e-03, eta: 0:03:04, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.1463, loss_bbox: 0.1783, loss: 0.3245
2022-10-03 23:39:13,983 - mmdet - INFO - Iter [9800/12000]	lr: 1.500e-03, eta: 0:03:00, time: 0.085, data_time: 0.006, memory: 3224, loss_cls: 0.1454, loss_bbox: 0.1846, loss: 0.3300
2022-10-03 23:39:18,054 - mmdet - INFO - Iter [9850/12000]	lr: 1.500e-03, eta: 0:02:56, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.1478, loss_bbox: 0.1887, loss: 0.3366
2022-10-03 23:39:22,168 - mmdet - INFO - Iter [9900/12000]	lr: 1.500e-03, eta: 0:02:52, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.1466, loss_bbox: 0.1900, loss: 0.3366
2022-10-03 23:39:26,300 - mmdet - INFO - Iter [9950/12000]	lr: 1.500e-03, eta: 0:02:47, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.1438, loss_bbox: 0.1887, loss: 0.3325
2022-10-03 23:39:30,376 - mmdet - INFO - Exp name: retinanet_mstrain_12k_voc0712.py
2022-10-03 23:39:30,377 - mmdet - INFO - Iter [10000/12000]	lr: 1.500e-03, eta: 0:02:43, time: 0.081, data_time: 0.005, memory: 3224, loss_cls: 0.1425, loss_bbox: 0.1841, loss: 0.3266
2022-10-03 23:39:34,388 - mmdet - INFO - Iter [10050/12000]	lr: 1.500e-03, eta: 0:02:39, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1405, loss_bbox: 0.1827, loss: 0.3233
2022-10-03 23:39:38,375 - mmdet - INFO - Iter [10100/12000]	lr: 1.500e-03, eta: 0:02:35, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1465, loss_bbox: 0.1857, loss: 0.3322
2022-10-03 23:39:42,580 - mmdet - INFO - Iter [10150/12000]	lr: 1.500e-03, eta: 0:02:31, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.1381, loss_bbox: 0.1795, loss: 0.3176
2022-10-03 23:39:46,711 - mmdet - INFO - Iter [10200/12000]	lr: 1.500e-03, eta: 0:02:27, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.1452, loss_bbox: 0.1838, loss: 0.3290
2022-10-03 23:39:50,718 - mmdet - INFO - Iter [10250/12000]	lr: 1.500e-03, eta: 0:02:23, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1435, loss_bbox: 0.1849, loss: 0.3284
2022-10-03 23:39:54,727 - mmdet - INFO - Iter [10300/12000]	lr: 1.500e-03, eta: 0:02:19, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1427, loss_bbox: 0.1860, loss: 0.3287
2022-10-03 23:39:58,749 - mmdet - INFO - Iter [10350/12000]	lr: 1.500e-03, eta: 0:02:15, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1485, loss_bbox: 0.1881, loss: 0.3366
2022-10-03 23:40:02,757 - mmdet - INFO - Iter [10400/12000]	lr: 1.500e-03, eta: 0:02:11, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1377, loss_bbox: 0.1817, loss: 0.3194
2022-10-03 23:40:06,778 - mmdet - INFO - Iter [10450/12000]	lr: 1.500e-03, eta: 0:02:06, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1335, loss_bbox: 0.1789, loss: 0.3124
2022-10-03 23:40:10,973 - mmdet - INFO - Iter [10500/12000]	lr: 1.500e-03, eta: 0:02:02, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.1336, loss_bbox: 0.1866, loss: 0.3202
2022-10-03 23:40:15,026 - mmdet - INFO - Iter [10550/12000]	lr: 1.500e-03, eta: 0:01:58, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.1347, loss_bbox: 0.1769, loss: 0.3116
2022-10-03 23:40:19,063 - mmdet - INFO - Iter [10600/12000]	lr: 1.500e-03, eta: 0:01:54, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.1328, loss_bbox: 0.1807, loss: 0.3135
2022-10-03 23:40:23,236 - mmdet - INFO - Iter [10650/12000]	lr: 1.500e-03, eta: 0:01:50, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.1388, loss_bbox: 0.1812, loss: 0.3200
2022-10-03 23:40:27,364 - mmdet - INFO - Iter [10700/12000]	lr: 1.500e-03, eta: 0:01:46, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.1409, loss_bbox: 0.1863, loss: 0.3272
2022-10-03 23:40:31,421 - mmdet - INFO - Iter [10750/12000]	lr: 1.500e-03, eta: 0:01:42, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.1357, loss_bbox: 0.1779, loss: 0.3136
2022-10-03 23:40:35,447 - mmdet - INFO - Iter [10800/12000]	lr: 1.500e-03, eta: 0:01:38, time: 0.080, data_time: 0.005, memory: 3224, loss_cls: 0.1373, loss_bbox: 0.1832, loss: 0.3205
2022-10-03 23:40:39,435 - mmdet - INFO - Iter [10850/12000]	lr: 1.500e-03, eta: 0:01:34, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1369, loss_bbox: 0.1763, loss: 0.3132
2022-10-03 23:40:43,619 - mmdet - INFO - Iter [10900/12000]	lr: 1.500e-03, eta: 0:01:30, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.1321, loss_bbox: 0.1768, loss: 0.3089
2022-10-03 23:40:47,784 - mmdet - INFO - Iter [10950/12000]	lr: 1.500e-03, eta: 0:01:25, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.1333, loss_bbox: 0.1819, loss: 0.3152
2022-10-03 23:40:51,741 - mmdet - INFO - Exp name: retinanet_mstrain_12k_voc0712.py
2022-10-03 23:40:51,742 - mmdet - INFO - Iter [11000/12000]	lr: 1.500e-03, eta: 0:01:21, time: 0.079, data_time: 0.006, memory: 3224, loss_cls: 0.1382, loss_bbox: 0.1829, loss: 0.3211
2022-10-03 23:40:55,915 - mmdet - INFO - Iter [11050/12000]	lr: 1.500e-04, eta: 0:01:17, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.1316, loss_bbox: 0.1733, loss: 0.3049
2022-10-03 23:40:59,957 - mmdet - INFO - Iter [11100/12000]	lr: 1.500e-04, eta: 0:01:13, time: 0.081, data_time: 0.005, memory: 3224, loss_cls: 0.1339, loss_bbox: 0.1824, loss: 0.3163
2022-10-03 23:41:03,948 - mmdet - INFO - Iter [11150/12000]	lr: 1.500e-04, eta: 0:01:09, time: 0.080, data_time: 0.005, memory: 3224, loss_cls: 0.1324, loss_bbox: 0.1758, loss: 0.3082
2022-10-03 23:41:07,959 - mmdet - INFO - Iter [11200/12000]	lr: 1.500e-04, eta: 0:01:05, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1334, loss_bbox: 0.1796, loss: 0.3130
2022-10-03 23:41:11,955 - mmdet - INFO - Iter [11250/12000]	lr: 1.500e-04, eta: 0:01:01, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1316, loss_bbox: 0.1796, loss: 0.3112
2022-10-03 23:41:15,974 - mmdet - INFO - Iter [11300/12000]	lr: 1.500e-04, eta: 0:00:57, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1321, loss_bbox: 0.1769, loss: 0.3091
2022-10-03 23:41:20,077 - mmdet - INFO - Iter [11350/12000]	lr: 1.500e-04, eta: 0:00:53, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.1374, loss_bbox: 0.1751, loss: 0.3125
2022-10-03 23:41:24,078 - mmdet - INFO - Iter [11400/12000]	lr: 1.500e-04, eta: 0:00:49, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1315, loss_bbox: 0.1763, loss: 0.3078
2022-10-03 23:41:28,124 - mmdet - INFO - Iter [11450/12000]	lr: 1.500e-04, eta: 0:00:45, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.1331, loss_bbox: 0.1792, loss: 0.3123
2022-10-03 23:41:32,144 - mmdet - INFO - Iter [11500/12000]	lr: 1.500e-04, eta: 0:00:40, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1207, loss_bbox: 0.1679, loss: 0.2886
2022-10-03 23:41:36,142 - mmdet - INFO - Iter [11550/12000]	lr: 1.500e-04, eta: 0:00:36, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1375, loss_bbox: 0.1823, loss: 0.3198
2022-10-03 23:41:40,174 - mmdet - INFO - Iter [11600/12000]	lr: 1.500e-04, eta: 0:00:32, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.1275, loss_bbox: 0.1758, loss: 0.3033
2022-10-03 23:41:44,256 - mmdet - INFO - Iter [11650/12000]	lr: 1.500e-04, eta: 0:00:28, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.1376, loss_bbox: 0.1794, loss: 0.3171
2022-10-03 23:41:48,314 - mmdet - INFO - Iter [11700/12000]	lr: 1.500e-04, eta: 0:00:24, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.1246, loss_bbox: 0.1731, loss: 0.2976
2022-10-03 23:41:52,368 - mmdet - INFO - Iter [11750/12000]	lr: 1.500e-04, eta: 0:00:20, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.1330, loss_bbox: 0.1800, loss: 0.3130
2022-10-03 23:41:56,339 - mmdet - INFO - Iter [11800/12000]	lr: 1.500e-04, eta: 0:00:16, time: 0.079, data_time: 0.006, memory: 3224, loss_cls: 0.1323, loss_bbox: 0.1737, loss: 0.3060
2022-10-03 23:42:00,341 - mmdet - INFO - Iter [11850/12000]	lr: 1.500e-04, eta: 0:00:12, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1308, loss_bbox: 0.1803, loss: 0.3111
2022-10-03 23:42:04,373 - mmdet - INFO - Iter [11900/12000]	lr: 1.500e-04, eta: 0:00:08, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.1270, loss_bbox: 0.1711, loss: 0.2981
2022-10-03 23:42:08,494 - mmdet - INFO - Iter [11950/12000]	lr: 1.500e-04, eta: 0:00:04, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.1334, loss_bbox: 0.1811, loss: 0.3145
2022-10-03 23:42:12,730 - mmdet - INFO - Saving checkpoint at 12000 iterations
2022-10-03 23:42:13,292 - mmdet - INFO - Exp name: retinanet_mstrain_12k_voc0712.py
2022-10-03 23:42:13,293 - mmdet - INFO - Iter [12000/12000]	lr: 1.500e-04, eta: 0:00:00, time: 0.096, data_time: 0.006, memory: 3224, loss_cls: 0.1328, loss_bbox: 0.1773, loss: 0.3101
2022-10-03 23:42:35,293 - mmdet - INFO - 
+-------------+------+-------+--------+-------+
| class       | gts  | dets  | recall | ap    |
+-------------+------+-------+--------+-------+
| aeroplane   | 285  | 4350  | 0.982  | 0.858 |
| bicycle     | 337  | 7182  | 0.982  | 0.852 |
| bird        | 459  | 6594  | 0.976  | 0.843 |
| boat        | 263  | 10306 | 0.977  | 0.748 |
| bottle      | 469  | 15005 | 0.949  | 0.708 |
| bus         | 213  | 5621  | 0.991  | 0.854 |
| car         | 1201 | 18728 | 0.989  | 0.884 |
| cat         | 358  | 3995  | 0.989  | 0.890 |
| chair       | 756  | 27501 | 0.963  | 0.659 |
| cow         | 244  | 4390  | 0.996  | 0.835 |
| diningtable | 206  | 13269 | 0.956  | 0.696 |
| dog         | 489  | 5970  | 0.990  | 0.867 |
| horse       | 348  | 5822  | 0.997  | 0.858 |
| motorbike   | 325  | 7104  | 0.985  | 0.842 |
| person      | 4528 | 52884 | 0.988  | 0.854 |
| pottedplant | 480  | 13789 | 0.944  | 0.582 |
| sheep       | 242  | 4454  | 0.988  | 0.819 |
| sofa        | 239  | 8932  | 0.983  | 0.758 |
| train       | 282  | 5723  | 0.986  | 0.855 |
| tvmonitor   | 308  | 7857  | 0.971  | 0.820 |
+-------------+------+-------+--------+-------+
| mAP         |      |       |        | 0.804 |
+-------------+------+-------+--------+-------+
2022-10-03 23:42:35,884 - mmdet - INFO - Now best checkpoint is saved as best_mAP_iter_12000.pth.
2022-10-03 23:42:35,885 - mmdet - INFO - Best mAP is 0.8042 at 12000 iter.
2022-10-03 23:42:35,885 - mmdet - INFO - Exp name: retinanet_mstrain_12k_voc0712.py
2022-10-03 23:42:35,885 - mmdet - INFO - Iter(val) [619]	mAP: 0.8042, AP50: 0.8040