File size: 83,937 Bytes
e3962e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 |
2022-10-03 23:25:34,518 - mmdet - INFO - Environment info:
------------------------------------------------------------
sys.platform: linux
Python: 3.7.3 (default, Jan 22 2021, 20:04:44) [GCC 8.3.0]
CUDA available: True
GPU 0,1,2,3,4,5,6,7: A100-SXM-80GB
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 11.3, V11.3.109
GCC: x86_64-linux-gnu-gcc (Debian 8.3.0-6) 8.3.0
PyTorch: 1.10.0
PyTorch compiling details: PyTorch built with:
- GCC 7.3
- C++ Version: 201402
- Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v2.2.3 (Git Hash 7336ca9f055cf1bfa13efb658fe15dc9b41f0740)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX512
- CUDA Runtime 11.3
- NVCC architecture flags: -gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86
- CuDNN 8.2
- Magma 2.5.2
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.2.0, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.10.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,
TorchVision: 0.11.1+cu113
OpenCV: 4.6.0
MMCV: 1.6.1
MMCV Compiler: GCC 9.3
MMCV CUDA Compiler: 11.3
MMDetection: 2.25.2+87c120c
------------------------------------------------------------
2022-10-03 23:25:35,633 - mmdet - INFO - Distributed training: True
2022-10-03 23:25:36,764 - mmdet - INFO - Config:
model = dict(
type='RetinaNet',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='SyncBN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
start_level=1,
add_extra_convs='on_input',
num_outs=5,
norm_cfg=dict(type='SyncBN', requires_grad=True)),
bbox_head=dict(
type='RetinaHead',
num_classes=20,
in_channels=256,
stacked_convs=4,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
octave_base_scale=4,
scales_per_octave=3,
ratios=[0.5, 1.0, 2.0],
strides=[8, 16, 32, 64, 128]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[1.0, 1.0, 1.0, 1.0]),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
train_cfg=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.4,
min_pos_iou=0,
ignore_iof_thr=-1),
allowed_border=-1,
pos_weight=-1,
debug=False),
test_cfg=dict(
nms_pre=1000,
min_bbox_size=0,
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100))
dataset_type = 'VOCDataset'
data_root = 'data/VOCdevkit/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Resize',
img_scale=[(1333, 480), (1333, 512), (1333, 544), (1333, 576),
(1333, 608), (1333, 640), (1333, 672), (1333, 704),
(1333, 736), (1333, 768), (1333, 800)],
multiscale_mode='value',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
type='VOCDataset',
ann_file=[
'data/VOCdevkit/VOC2007/ImageSets/Main/trainval.txt',
'data/VOCdevkit/VOC2012/ImageSets/Main/trainval.txt'
],
img_prefix=['data/VOCdevkit/VOC2007/', 'data/VOCdevkit/VOC2012/'],
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='Resize',
img_scale=[(1333, 480), (1333, 512), (1333, 544), (1333, 576),
(1333, 608), (1333, 640), (1333, 672), (1333, 704),
(1333, 736), (1333, 768), (1333, 800)],
multiscale_mode='value',
keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]),
val=dict(
type='VOCDataset',
ann_file='data/VOCdevkit/VOC2007/ImageSets/Main/test.txt',
img_prefix='data/VOCdevkit/VOC2007/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]),
test=dict(
type='VOCDataset',
ann_file='data/VOCdevkit/VOC2007/ImageSets/Main/test.txt',
img_prefix='data/VOCdevkit/VOC2007/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]))
evaluation = dict(interval=12000, metric='mAP', save_best='auto')
optimizer = dict(type='SGD', lr=0.015, momentum=0.9, weight_decay=5e-05)
optimizer_config = dict(grad_clip=None)
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[9000, 11000],
by_epoch=False)
runner = dict(type='IterBasedRunner', max_iters=12000)
checkpoint_config = dict(interval=12000)
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
custom_hooks = [
dict(type='NumClassCheckHook'),
dict(
type='MMDetWandbHook',
init_kwargs=dict(project='I2B', group='finetune'),
interval=50,
num_eval_images=0,
log_checkpoint=False)
]
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = 'pretrain/selfsup_retinanet_mstrain-soft-teacher_sampler-2048_temp0.5/final_model.pth'
resume_from = None
workflow = [('train', 1)]
opencv_num_threads = 0
mp_start_method = 'fork'
auto_scale_lr = dict(enable=False, base_batch_size=16)
custom_imports = None
norm_cfg = dict(type='SyncBN', requires_grad=True)
work_dir = 'work_dirs/finetune_retinanet_12k_voc0712_lr1.5e-2_wd5e-5'
auto_resume = False
gpu_ids = range(0, 8)
2022-10-03 23:25:36,764 - mmdet - INFO - Set random seed to 42, deterministic: False
2022-10-03 23:25:37,080 - mmdet - INFO - initialize ResNet with init_cfg {'type': 'Pretrained', 'checkpoint': 'torchvision://resnet50'}
2022-10-03 23:25:46,723 - mmdet - INFO - initialize FPN with init_cfg {'type': 'Xavier', 'layer': 'Conv2d', 'distribution': 'uniform'}
2022-10-03 23:25:46,781 - mmdet - INFO - initialize RetinaHead with init_cfg {'type': 'Normal', 'layer': 'Conv2d', 'std': 0.01, 'override': {'type': 'Normal', 'name': 'retina_cls', 'std': 0.01, 'bias_prob': 0.01}}
Name of parameter - Initialization information
backbone.conv1.weight - torch.Size([64, 3, 7, 7]):
PretrainedInit: load from torchvision://resnet50
backbone.bn1.weight - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.bn1.bias - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.conv1.weight - torch.Size([64, 64, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.bn1.weight - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.bn1.bias - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.conv2.weight - torch.Size([64, 64, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.bn2.weight - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.bn2.bias - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.conv3.weight - torch.Size([256, 64, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.bn3.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.bn3.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.downsample.0.weight - torch.Size([256, 64, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.downsample.1.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.0.downsample.1.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.1.conv1.weight - torch.Size([64, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.1.bn1.weight - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.1.bn1.bias - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.1.conv2.weight - torch.Size([64, 64, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.1.bn2.weight - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.1.bn2.bias - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.1.conv3.weight - torch.Size([256, 64, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.1.bn3.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.1.bn3.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.2.conv1.weight - torch.Size([64, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.2.bn1.weight - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.2.bn1.bias - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.2.conv2.weight - torch.Size([64, 64, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.2.bn2.weight - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.2.bn2.bias - torch.Size([64]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.2.conv3.weight - torch.Size([256, 64, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.2.bn3.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer1.2.bn3.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.conv1.weight - torch.Size([128, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.bn1.weight - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.bn1.bias - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.conv2.weight - torch.Size([128, 128, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.bn2.weight - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.bn2.bias - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.conv3.weight - torch.Size([512, 128, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.bn3.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.bn3.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.downsample.0.weight - torch.Size([512, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.downsample.1.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.0.downsample.1.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.1.conv1.weight - torch.Size([128, 512, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.1.bn1.weight - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.1.bn1.bias - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.1.conv2.weight - torch.Size([128, 128, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.1.bn2.weight - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.1.bn2.bias - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.1.conv3.weight - torch.Size([512, 128, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.1.bn3.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.1.bn3.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.2.conv1.weight - torch.Size([128, 512, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.2.bn1.weight - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.2.bn1.bias - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.2.conv2.weight - torch.Size([128, 128, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.2.bn2.weight - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.2.bn2.bias - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.2.conv3.weight - torch.Size([512, 128, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.2.bn3.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.2.bn3.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.3.conv1.weight - torch.Size([128, 512, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.3.bn1.weight - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.3.bn1.bias - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.3.conv2.weight - torch.Size([128, 128, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.3.bn2.weight - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.3.bn2.bias - torch.Size([128]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.3.conv3.weight - torch.Size([512, 128, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.3.bn3.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer2.3.bn3.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.conv1.weight - torch.Size([256, 512, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.bn1.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.bn1.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.conv2.weight - torch.Size([256, 256, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.bn2.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.bn2.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.conv3.weight - torch.Size([1024, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.bn3.weight - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.bn3.bias - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.downsample.0.weight - torch.Size([1024, 512, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.downsample.1.weight - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.0.downsample.1.bias - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.1.conv1.weight - torch.Size([256, 1024, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.1.bn1.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.1.bn1.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.1.conv2.weight - torch.Size([256, 256, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.1.bn2.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.1.bn2.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.1.conv3.weight - torch.Size([1024, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.1.bn3.weight - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.1.bn3.bias - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.2.conv1.weight - torch.Size([256, 1024, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.2.bn1.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.2.bn1.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.2.conv2.weight - torch.Size([256, 256, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.2.bn2.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.2.bn2.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.2.conv3.weight - torch.Size([1024, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.2.bn3.weight - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.2.bn3.bias - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.3.conv1.weight - torch.Size([256, 1024, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.3.bn1.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.3.bn1.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.3.conv2.weight - torch.Size([256, 256, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.3.bn2.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.3.bn2.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.3.conv3.weight - torch.Size([1024, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.3.bn3.weight - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.3.bn3.bias - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.4.conv1.weight - torch.Size([256, 1024, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.4.bn1.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.4.bn1.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.4.conv2.weight - torch.Size([256, 256, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.4.bn2.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.4.bn2.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.4.conv3.weight - torch.Size([1024, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.4.bn3.weight - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.4.bn3.bias - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.5.conv1.weight - torch.Size([256, 1024, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.5.bn1.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.5.bn1.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.5.conv2.weight - torch.Size([256, 256, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.5.bn2.weight - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.5.bn2.bias - torch.Size([256]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.5.conv3.weight - torch.Size([1024, 256, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.5.bn3.weight - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer3.5.bn3.bias - torch.Size([1024]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.conv1.weight - torch.Size([512, 1024, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.bn1.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.bn1.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.conv2.weight - torch.Size([512, 512, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.bn2.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.bn2.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.conv3.weight - torch.Size([2048, 512, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.bn3.weight - torch.Size([2048]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.bn3.bias - torch.Size([2048]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.downsample.0.weight - torch.Size([2048, 1024, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.downsample.1.weight - torch.Size([2048]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.0.downsample.1.bias - torch.Size([2048]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.1.conv1.weight - torch.Size([512, 2048, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.1.bn1.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.1.bn1.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.1.conv2.weight - torch.Size([512, 512, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.1.bn2.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.1.bn2.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.1.conv3.weight - torch.Size([2048, 512, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.1.bn3.weight - torch.Size([2048]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.1.bn3.bias - torch.Size([2048]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.2.conv1.weight - torch.Size([512, 2048, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.2.bn1.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.2.bn1.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.2.conv2.weight - torch.Size([512, 512, 3, 3]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.2.bn2.weight - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.2.bn2.bias - torch.Size([512]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.2.conv3.weight - torch.Size([2048, 512, 1, 1]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.2.bn3.weight - torch.Size([2048]):
PretrainedInit: load from torchvision://resnet50
backbone.layer4.2.bn3.bias - torch.Size([2048]):
PretrainedInit: load from torchvision://resnet50
neck.lateral_convs.0.conv.weight - torch.Size([256, 512, 1, 1]):
XavierInit: gain=1, distribution=uniform, bias=0
neck.lateral_convs.0.bn.weight - torch.Size([256]):
The value is the same before and after calling `init_weights` of RetinaNet
neck.lateral_convs.0.bn.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of RetinaNet
neck.lateral_convs.1.conv.weight - torch.Size([256, 1024, 1, 1]):
XavierInit: gain=1, distribution=uniform, bias=0
neck.lateral_convs.1.bn.weight - torch.Size([256]):
The value is the same before and after calling `init_weights` of RetinaNet
neck.lateral_convs.1.bn.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of RetinaNet
neck.lateral_convs.2.conv.weight - torch.Size([256, 2048, 1, 1]):
XavierInit: gain=1, distribution=uniform, bias=0
neck.lateral_convs.2.bn.weight - torch.Size([256]):
The value is the same before and after calling `init_weights` of RetinaNet
neck.lateral_convs.2.bn.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of RetinaNet
neck.fpn_convs.0.conv.weight - torch.Size([256, 256, 3, 3]):
XavierInit: gain=1, distribution=uniform, bias=0
neck.fpn_convs.0.bn.weight - torch.Size([256]):
The value is the same before and after calling `init_weights` of RetinaNet
neck.fpn_convs.0.bn.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of RetinaNet
neck.fpn_convs.1.conv.weight - torch.Size([256, 256, 3, 3]):
XavierInit: gain=1, distribution=uniform, bias=0
neck.fpn_convs.1.bn.weight - torch.Size([256]):
The value is the same before and after calling `init_weights` of RetinaNet
neck.fpn_convs.1.bn.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of RetinaNet
neck.fpn_convs.2.conv.weight - torch.Size([256, 256, 3, 3]):
XavierInit: gain=1, distribution=uniform, bias=0
neck.fpn_convs.2.bn.weight - torch.Size([256]):
The value is the same before and after calling `init_weights` of RetinaNet
neck.fpn_convs.2.bn.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of RetinaNet
neck.fpn_convs.3.conv.weight - torch.Size([256, 2048, 3, 3]):
XavierInit: gain=1, distribution=uniform, bias=0
neck.fpn_convs.3.bn.weight - torch.Size([256]):
The value is the same before and after calling `init_weights` of RetinaNet
neck.fpn_convs.3.bn.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of RetinaNet
neck.fpn_convs.4.conv.weight - torch.Size([256, 256, 3, 3]):
XavierInit: gain=1, distribution=uniform, bias=0
neck.fpn_convs.4.bn.weight - torch.Size([256]):
The value is the same before and after calling `init_weights` of RetinaNet
neck.fpn_convs.4.bn.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of RetinaNet
bbox_head.cls_convs.0.conv.weight - torch.Size([256, 256, 3, 3]):
NormalInit: mean=0, std=0.01, bias=0
bbox_head.cls_convs.0.conv.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of RetinaNet
bbox_head.cls_convs.1.conv.weight - torch.Size([256, 256, 3, 3]):
NormalInit: mean=0, std=0.01, bias=0
bbox_head.cls_convs.1.conv.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of RetinaNet
bbox_head.cls_convs.2.conv.weight - torch.Size([256, 256, 3, 3]):
NormalInit: mean=0, std=0.01, bias=0
bbox_head.cls_convs.2.conv.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of RetinaNet
bbox_head.cls_convs.3.conv.weight - torch.Size([256, 256, 3, 3]):
NormalInit: mean=0, std=0.01, bias=0
bbox_head.cls_convs.3.conv.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of RetinaNet
bbox_head.reg_convs.0.conv.weight - torch.Size([256, 256, 3, 3]):
NormalInit: mean=0, std=0.01, bias=0
bbox_head.reg_convs.0.conv.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of RetinaNet
bbox_head.reg_convs.1.conv.weight - torch.Size([256, 256, 3, 3]):
NormalInit: mean=0, std=0.01, bias=0
bbox_head.reg_convs.1.conv.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of RetinaNet
bbox_head.reg_convs.2.conv.weight - torch.Size([256, 256, 3, 3]):
NormalInit: mean=0, std=0.01, bias=0
bbox_head.reg_convs.2.conv.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of RetinaNet
bbox_head.reg_convs.3.conv.weight - torch.Size([256, 256, 3, 3]):
NormalInit: mean=0, std=0.01, bias=0
bbox_head.reg_convs.3.conv.bias - torch.Size([256]):
The value is the same before and after calling `init_weights` of RetinaNet
bbox_head.retina_cls.weight - torch.Size([180, 256, 3, 3]):
NormalInit: mean=0, std=0.01, bias=-4.59511985013459
bbox_head.retina_cls.bias - torch.Size([180]):
NormalInit: mean=0, std=0.01, bias=-4.59511985013459
bbox_head.retina_reg.weight - torch.Size([36, 256, 3, 3]):
NormalInit: mean=0, std=0.01, bias=0
bbox_head.retina_reg.bias - torch.Size([36]):
NormalInit: mean=0, std=0.01, bias=0
2022-10-03 23:25:48,644 - mmdet - INFO - Automatic scaling of learning rate (LR) has been disabled.
2022-10-03 23:25:49,424 - mmdet - INFO - load checkpoint from local path: pretrain/selfsup_retinanet_mstrain-soft-teacher_sampler-2048_temp0.5/final_model.pth
2022-10-03 23:25:49,532 - mmdet - WARNING - The model and loaded state dict do not match exactly
unexpected key in source state_dict: neck.lateral_convs.0.conv.bias, neck.lateral_convs.1.conv.bias, neck.lateral_convs.2.conv.bias, neck.fpn_convs.0.conv.bias, neck.fpn_convs.1.conv.bias, neck.fpn_convs.2.conv.bias, neck.fpn_convs.3.conv.bias, neck.fpn_convs.4.conv.bias
missing keys in source state_dict: neck.lateral_convs.0.bn.weight, neck.lateral_convs.0.bn.bias, neck.lateral_convs.0.bn.running_mean, neck.lateral_convs.0.bn.running_var, neck.lateral_convs.1.bn.weight, neck.lateral_convs.1.bn.bias, neck.lateral_convs.1.bn.running_mean, neck.lateral_convs.1.bn.running_var, neck.lateral_convs.2.bn.weight, neck.lateral_convs.2.bn.bias, neck.lateral_convs.2.bn.running_mean, neck.lateral_convs.2.bn.running_var, neck.fpn_convs.0.bn.weight, neck.fpn_convs.0.bn.bias, neck.fpn_convs.0.bn.running_mean, neck.fpn_convs.0.bn.running_var, neck.fpn_convs.1.bn.weight, neck.fpn_convs.1.bn.bias, neck.fpn_convs.1.bn.running_mean, neck.fpn_convs.1.bn.running_var, neck.fpn_convs.2.bn.weight, neck.fpn_convs.2.bn.bias, neck.fpn_convs.2.bn.running_mean, neck.fpn_convs.2.bn.running_var, neck.fpn_convs.3.bn.weight, neck.fpn_convs.3.bn.bias, neck.fpn_convs.3.bn.running_mean, neck.fpn_convs.3.bn.running_var, neck.fpn_convs.4.bn.weight, neck.fpn_convs.4.bn.bias, neck.fpn_convs.4.bn.running_mean, neck.fpn_convs.4.bn.running_var, bbox_head.retina_cls.weight, bbox_head.retina_cls.bias, bbox_head.retina_reg.weight, bbox_head.retina_reg.bias
2022-10-03 23:25:49,538 - mmdet - INFO - Start running, host: tiger@n136-144-086, work_dir: /home/tiger/code/mmdet/work_dirs/finetune_retinanet_12k_voc0712_lr1.5e-2_wd5e-5
2022-10-03 23:25:49,538 - mmdet - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH ) StepLrUpdaterHook
(NORMAL ) CheckpointHook
(NORMAL ) MMDetWandbHook
(LOW ) DistEvalHook
(VERY_LOW ) TextLoggerHook
--------------------
before_train_epoch:
(VERY_HIGH ) StepLrUpdaterHook
(NORMAL ) NumClassCheckHook
(NORMAL ) MMDetWandbHook
(LOW ) IterTimerHook
(LOW ) DistEvalHook
(VERY_LOW ) TextLoggerHook
--------------------
before_train_iter:
(VERY_HIGH ) StepLrUpdaterHook
(LOW ) IterTimerHook
(LOW ) DistEvalHook
--------------------
after_train_iter:
(ABOVE_NORMAL) OptimizerHook
(NORMAL ) CheckpointHook
(NORMAL ) MMDetWandbHook
(LOW ) IterTimerHook
(LOW ) DistEvalHook
(VERY_LOW ) TextLoggerHook
--------------------
after_train_epoch:
(NORMAL ) CheckpointHook
(NORMAL ) MMDetWandbHook
(LOW ) DistEvalHook
(VERY_LOW ) TextLoggerHook
--------------------
before_val_epoch:
(NORMAL ) NumClassCheckHook
(NORMAL ) MMDetWandbHook
(LOW ) IterTimerHook
(VERY_LOW ) TextLoggerHook
--------------------
before_val_iter:
(LOW ) IterTimerHook
--------------------
after_val_iter:
(LOW ) IterTimerHook
--------------------
after_val_epoch:
(NORMAL ) MMDetWandbHook
(VERY_LOW ) TextLoggerHook
--------------------
after_run:
(NORMAL ) MMDetWandbHook
(VERY_LOW ) TextLoggerHook
--------------------
2022-10-03 23:25:49,539 - mmdet - INFO - workflow: [('train', 1)], max: 12000 iters
2022-10-03 23:25:49,539 - mmdet - INFO - Checkpoints will be saved to /home/tiger/code/mmdet/work_dirs/finetune_retinanet_12k_voc0712_lr1.5e-2_wd5e-5 by HardDiskBackend.
2022-10-03 23:25:55,378 - mmdet - INFO - Iter [50/12000] lr: 1.484e-03, eta: 0:17:55, time: 0.090, data_time: 0.006, memory: 3221, loss_cls: 1.1629, loss_bbox: 0.6614, loss: 1.8243
2022-10-03 23:25:59,656 - mmdet - INFO - Iter [100/12000] lr: 2.982e-03, eta: 0:17:24, time: 0.086, data_time: 0.006, memory: 3222, loss_cls: 1.1584, loss_bbox: 0.5555, loss: 1.7139
2022-10-03 23:26:05,649 - mmdet - INFO - Iter [150/12000] lr: 4.481e-03, eta: 0:19:26, time: 0.120, data_time: 0.005, memory: 3223, loss_cls: 1.0891, loss_bbox: 0.4517, loss: 1.5408
2022-10-03 23:26:09,824 - mmdet - INFO - Iter [200/12000] lr: 5.979e-03, eta: 0:18:37, time: 0.083, data_time: 0.005, memory: 3223, loss_cls: 0.8258, loss_bbox: 0.4111, loss: 1.2369
2022-10-03 23:26:14,107 - mmdet - INFO - Iter [250/12000] lr: 7.478e-03, eta: 0:18:11, time: 0.086, data_time: 0.006, memory: 3223, loss_cls: 0.7845, loss_bbox: 0.4073, loss: 1.1919
2022-10-03 23:26:18,252 - mmdet - INFO - Iter [300/12000] lr: 8.976e-03, eta: 0:17:47, time: 0.083, data_time: 0.005, memory: 3223, loss_cls: 0.7312, loss_bbox: 0.3949, loss: 1.1262
2022-10-03 23:26:22,505 - mmdet - INFO - Iter [350/12000] lr: 1.047e-02, eta: 0:17:32, time: 0.085, data_time: 0.006, memory: 3223, loss_cls: 0.6597, loss_bbox: 0.3889, loss: 1.0485
2022-10-03 23:26:26,620 - mmdet - INFO - Iter [400/12000] lr: 1.197e-02, eta: 0:17:16, time: 0.082, data_time: 0.006, memory: 3223, loss_cls: 0.6312, loss_bbox: 0.3784, loss: 1.0096
2022-10-03 23:26:30,838 - mmdet - INFO - Iter [450/12000] lr: 1.347e-02, eta: 0:17:05, time: 0.084, data_time: 0.005, memory: 3223, loss_cls: 0.8423, loss_bbox: 0.4101, loss: 1.2524
2022-10-03 23:26:34,914 - mmdet - INFO - Iter [500/12000] lr: 1.497e-02, eta: 0:16:52, time: 0.081, data_time: 0.006, memory: 3223, loss_cls: 0.9053, loss_bbox: 0.4874, loss: 1.3928
2022-10-03 23:26:39,238 - mmdet - INFO - Iter [550/12000] lr: 1.500e-02, eta: 0:16:46, time: 0.087, data_time: 0.006, memory: 3223, loss_cls: 0.7680, loss_bbox: 0.4204, loss: 1.1885
2022-10-03 23:26:43,449 - mmdet - INFO - Iter [600/12000] lr: 1.500e-02, eta: 0:16:38, time: 0.084, data_time: 0.006, memory: 3223, loss_cls: 0.7605, loss_bbox: 0.4015, loss: 1.1619
2022-10-03 23:26:47,714 - mmdet - INFO - Iter [650/12000] lr: 1.500e-02, eta: 0:16:32, time: 0.085, data_time: 0.006, memory: 3223, loss_cls: 0.8102, loss_bbox: 0.3966, loss: 1.2068
2022-10-03 23:26:51,904 - mmdet - INFO - Iter [700/12000] lr: 1.500e-02, eta: 0:16:25, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.6460, loss_bbox: 0.3687, loss: 1.0146
2022-10-03 23:26:56,191 - mmdet - INFO - Iter [750/12000] lr: 1.500e-02, eta: 0:16:19, time: 0.086, data_time: 0.006, memory: 3224, loss_cls: 0.6535, loss_bbox: 0.3552, loss: 1.0088
2022-10-03 23:27:00,473 - mmdet - INFO - Iter [800/12000] lr: 1.500e-02, eta: 0:16:14, time: 0.086, data_time: 0.006, memory: 3224, loss_cls: 0.5858, loss_bbox: 0.3599, loss: 0.9457
2022-10-03 23:27:04,500 - mmdet - INFO - Iter [850/12000] lr: 1.500e-02, eta: 0:16:05, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.5724, loss_bbox: 0.3407, loss: 0.9132
2022-10-03 23:27:08,607 - mmdet - INFO - Iter [900/12000] lr: 1.500e-02, eta: 0:15:58, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.5498, loss_bbox: 0.3449, loss: 0.8947
2022-10-03 23:27:12,689 - mmdet - INFO - Iter [950/12000] lr: 1.500e-02, eta: 0:15:51, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.5324, loss_bbox: 0.3411, loss: 0.8735
2022-10-03 23:27:16,695 - mmdet - INFO - Exp name: retinanet_mstrain_12k_voc0712.py
2022-10-03 23:27:16,696 - mmdet - INFO - Iter [1000/12000] lr: 1.500e-02, eta: 0:15:43, time: 0.080, data_time: 0.005, memory: 3224, loss_cls: 0.5129, loss_bbox: 0.3193, loss: 0.8322
2022-10-03 23:27:20,708 - mmdet - INFO - Iter [1050/12000] lr: 1.500e-02, eta: 0:15:36, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.5172, loss_bbox: 0.3283, loss: 0.8456
2022-10-03 23:27:24,758 - mmdet - INFO - Iter [1100/12000] lr: 1.500e-02, eta: 0:15:30, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.4909, loss_bbox: 0.3207, loss: 0.8116
2022-10-03 23:27:29,067 - mmdet - INFO - Iter [1150/12000] lr: 1.500e-02, eta: 0:15:26, time: 0.086, data_time: 0.006, memory: 3224, loss_cls: 0.5034, loss_bbox: 0.3272, loss: 0.8305
2022-10-03 23:27:33,084 - mmdet - INFO - Iter [1200/12000] lr: 1.500e-02, eta: 0:15:19, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.4889, loss_bbox: 0.3240, loss: 0.8129
2022-10-03 23:27:38,387 - mmdet - INFO - Iter [1250/12000] lr: 1.500e-02, eta: 0:15:24, time: 0.106, data_time: 0.006, memory: 3224, loss_cls: 0.4536, loss_bbox: 0.3185, loss: 0.7721
2022-10-03 23:27:42,429 - mmdet - INFO - Iter [1300/12000] lr: 1.500e-02, eta: 0:15:18, time: 0.081, data_time: 0.005, memory: 3224, loss_cls: 0.4639, loss_bbox: 0.3065, loss: 0.7703
2022-10-03 23:27:46,548 - mmdet - INFO - Iter [1350/12000] lr: 1.500e-02, eta: 0:15:12, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.4371, loss_bbox: 0.3044, loss: 0.7415
2022-10-03 23:27:50,692 - mmdet - INFO - Iter [1400/12000] lr: 1.500e-02, eta: 0:15:07, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.4519, loss_bbox: 0.3134, loss: 0.7653
2022-10-03 23:27:54,677 - mmdet - INFO - Iter [1450/12000] lr: 1.500e-02, eta: 0:15:00, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.4309, loss_bbox: 0.3055, loss: 0.7364
2022-10-03 23:27:58,762 - mmdet - INFO - Iter [1500/12000] lr: 1.500e-02, eta: 0:14:55, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.4384, loss_bbox: 0.3167, loss: 0.7551
2022-10-03 23:28:02,790 - mmdet - INFO - Iter [1550/12000] lr: 1.500e-02, eta: 0:14:49, time: 0.081, data_time: 0.005, memory: 3224, loss_cls: 0.4355, loss_bbox: 0.3069, loss: 0.7424
2022-10-03 23:28:06,777 - mmdet - INFO - Iter [1600/12000] lr: 1.500e-02, eta: 0:14:43, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.4055, loss_bbox: 0.3089, loss: 0.7144
2022-10-03 23:28:10,767 - mmdet - INFO - Iter [1650/12000] lr: 1.500e-02, eta: 0:14:37, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.4069, loss_bbox: 0.3050, loss: 0.7119
2022-10-03 23:28:14,828 - mmdet - INFO - Iter [1700/12000] lr: 1.500e-02, eta: 0:14:32, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.4004, loss_bbox: 0.3055, loss: 0.7058
2022-10-03 23:28:19,091 - mmdet - INFO - Iter [1750/12000] lr: 1.500e-02, eta: 0:14:28, time: 0.085, data_time: 0.006, memory: 3224, loss_cls: 0.4183, loss_bbox: 0.3042, loss: 0.7225
2022-10-03 23:28:23,263 - mmdet - INFO - Iter [1800/12000] lr: 1.500e-02, eta: 0:14:23, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.4023, loss_bbox: 0.3023, loss: 0.7046
2022-10-03 23:28:27,267 - mmdet - INFO - Iter [1850/12000] lr: 1.500e-02, eta: 0:14:17, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.3761, loss_bbox: 0.2956, loss: 0.6717
2022-10-03 23:28:31,555 - mmdet - INFO - Iter [1900/12000] lr: 1.500e-02, eta: 0:14:14, time: 0.086, data_time: 0.006, memory: 3224, loss_cls: 0.4005, loss_bbox: 0.3044, loss: 0.7049
2022-10-03 23:28:35,749 - mmdet - INFO - Iter [1950/12000] lr: 1.500e-02, eta: 0:14:09, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.3999, loss_bbox: 0.2954, loss: 0.6952
2022-10-03 23:28:39,943 - mmdet - INFO - Exp name: retinanet_mstrain_12k_voc0712.py
2022-10-03 23:28:39,944 - mmdet - INFO - Iter [2000/12000] lr: 1.500e-02, eta: 0:14:05, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.3785, loss_bbox: 0.2902, loss: 0.6687
2022-10-03 23:28:43,964 - mmdet - INFO - Iter [2050/12000] lr: 1.500e-02, eta: 0:14:00, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.3586, loss_bbox: 0.2902, loss: 0.6489
2022-10-03 23:28:48,052 - mmdet - INFO - Iter [2100/12000] lr: 1.500e-02, eta: 0:13:55, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.3824, loss_bbox: 0.2926, loss: 0.6750
2022-10-03 23:28:52,112 - mmdet - INFO - Iter [2150/12000] lr: 1.500e-02, eta: 0:13:50, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.3551, loss_bbox: 0.2795, loss: 0.6346
2022-10-03 23:28:56,312 - mmdet - INFO - Iter [2200/12000] lr: 1.500e-02, eta: 0:13:45, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.3408, loss_bbox: 0.2830, loss: 0.6238
2022-10-03 23:29:00,350 - mmdet - INFO - Iter [2250/12000] lr: 1.500e-02, eta: 0:13:40, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.3448, loss_bbox: 0.2823, loss: 0.6270
2022-10-03 23:29:04,412 - mmdet - INFO - Iter [2300/12000] lr: 1.500e-02, eta: 0:13:36, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.3532, loss_bbox: 0.2838, loss: 0.6370
2022-10-03 23:29:08,485 - mmdet - INFO - Iter [2350/12000] lr: 1.500e-02, eta: 0:13:31, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.3550, loss_bbox: 0.2873, loss: 0.6422
2022-10-03 23:29:12,494 - mmdet - INFO - Iter [2400/12000] lr: 1.500e-02, eta: 0:13:26, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.3385, loss_bbox: 0.2863, loss: 0.6248
2022-10-03 23:29:16,498 - mmdet - INFO - Iter [2450/12000] lr: 1.500e-02, eta: 0:13:21, time: 0.080, data_time: 0.005, memory: 3224, loss_cls: 0.3352, loss_bbox: 0.2791, loss: 0.6143
2022-10-03 23:29:20,492 - mmdet - INFO - Iter [2500/12000] lr: 1.500e-02, eta: 0:13:16, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.3293, loss_bbox: 0.2816, loss: 0.6109
2022-10-03 23:29:24,513 - mmdet - INFO - Iter [2550/12000] lr: 1.500e-02, eta: 0:13:11, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.3459, loss_bbox: 0.2878, loss: 0.6337
2022-10-03 23:29:28,596 - mmdet - INFO - Iter [2600/12000] lr: 1.500e-02, eta: 0:13:07, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.3378, loss_bbox: 0.2843, loss: 0.6221
2022-10-03 23:29:32,760 - mmdet - INFO - Iter [2650/12000] lr: 1.500e-02, eta: 0:13:02, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.3347, loss_bbox: 0.2786, loss: 0.6133
2022-10-03 23:29:36,728 - mmdet - INFO - Iter [2700/12000] lr: 1.500e-02, eta: 0:12:57, time: 0.079, data_time: 0.006, memory: 3224, loss_cls: 0.3163, loss_bbox: 0.2768, loss: 0.5931
2022-10-03 23:29:40,777 - mmdet - INFO - Iter [2750/12000] lr: 1.500e-02, eta: 0:12:53, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.3499, loss_bbox: 0.2751, loss: 0.6250
2022-10-03 23:29:44,893 - mmdet - INFO - Iter [2800/12000] lr: 1.500e-02, eta: 0:12:48, time: 0.082, data_time: 0.005, memory: 3224, loss_cls: 0.3302, loss_bbox: 0.2774, loss: 0.6076
2022-10-03 23:29:48,991 - mmdet - INFO - Iter [2850/12000] lr: 1.500e-02, eta: 0:12:44, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.3143, loss_bbox: 0.2723, loss: 0.5866
2022-10-03 23:29:53,020 - mmdet - INFO - Iter [2900/12000] lr: 1.500e-02, eta: 0:12:39, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.3332, loss_bbox: 0.2821, loss: 0.6153
2022-10-03 23:29:57,164 - mmdet - INFO - Iter [2950/12000] lr: 1.500e-02, eta: 0:12:35, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.3081, loss_bbox: 0.2870, loss: 0.5952
2022-10-03 23:30:01,178 - mmdet - INFO - Exp name: retinanet_mstrain_12k_voc0712.py
2022-10-03 23:30:01,178 - mmdet - INFO - Iter [3000/12000] lr: 1.500e-02, eta: 0:12:30, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.3119, loss_bbox: 0.2731, loss: 0.5851
2022-10-03 23:30:05,167 - mmdet - INFO - Iter [3050/12000] lr: 1.500e-02, eta: 0:12:26, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.3114, loss_bbox: 0.2781, loss: 0.5895
2022-10-03 23:30:09,289 - mmdet - INFO - Iter [3100/12000] lr: 1.500e-02, eta: 0:12:21, time: 0.082, data_time: 0.005, memory: 3224, loss_cls: 0.2978, loss_bbox: 0.2683, loss: 0.5661
2022-10-03 23:30:13,342 - mmdet - INFO - Iter [3150/12000] lr: 1.500e-02, eta: 0:12:17, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2990, loss_bbox: 0.2785, loss: 0.5775
2022-10-03 23:30:17,344 - mmdet - INFO - Iter [3200/12000] lr: 1.500e-02, eta: 0:12:12, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.3079, loss_bbox: 0.2673, loss: 0.5753
2022-10-03 23:30:21,436 - mmdet - INFO - Iter [3250/12000] lr: 1.500e-02, eta: 0:12:08, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.3240, loss_bbox: 0.2747, loss: 0.5987
2022-10-03 23:30:25,542 - mmdet - INFO - Iter [3300/12000] lr: 1.500e-02, eta: 0:12:04, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.3110, loss_bbox: 0.2722, loss: 0.5833
2022-10-03 23:30:29,587 - mmdet - INFO - Iter [3350/12000] lr: 1.500e-02, eta: 0:11:59, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2929, loss_bbox: 0.2691, loss: 0.5621
2022-10-03 23:30:33,639 - mmdet - INFO - Iter [3400/12000] lr: 1.500e-02, eta: 0:11:55, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2892, loss_bbox: 0.2625, loss: 0.5517
2022-10-03 23:30:37,892 - mmdet - INFO - Iter [3450/12000] lr: 1.500e-02, eta: 0:11:51, time: 0.085, data_time: 0.006, memory: 3224, loss_cls: 0.2942, loss_bbox: 0.2680, loss: 0.5622
2022-10-03 23:30:41,912 - mmdet - INFO - Iter [3500/12000] lr: 1.500e-02, eta: 0:11:46, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2985, loss_bbox: 0.2610, loss: 0.5595
2022-10-03 23:30:45,927 - mmdet - INFO - Iter [3550/12000] lr: 1.500e-02, eta: 0:11:42, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2857, loss_bbox: 0.2597, loss: 0.5454
2022-10-03 23:30:49,914 - mmdet - INFO - Iter [3600/12000] lr: 1.500e-02, eta: 0:11:37, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2872, loss_bbox: 0.2613, loss: 0.5485
2022-10-03 23:30:53,850 - mmdet - INFO - Iter [3650/12000] lr: 1.500e-02, eta: 0:11:33, time: 0.079, data_time: 0.006, memory: 3224, loss_cls: 0.2985, loss_bbox: 0.2699, loss: 0.5684
2022-10-03 23:30:57,902 - mmdet - INFO - Iter [3700/12000] lr: 1.500e-02, eta: 0:11:28, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2794, loss_bbox: 0.2603, loss: 0.5397
2022-10-03 23:31:01,903 - mmdet - INFO - Iter [3750/12000] lr: 1.500e-02, eta: 0:11:24, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2825, loss_bbox: 0.2614, loss: 0.5439
2022-10-03 23:31:05,932 - mmdet - INFO - Iter [3800/12000] lr: 1.500e-02, eta: 0:11:19, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2832, loss_bbox: 0.2694, loss: 0.5527
2022-10-03 23:31:09,947 - mmdet - INFO - Iter [3850/12000] lr: 1.500e-02, eta: 0:11:15, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2898, loss_bbox: 0.2653, loss: 0.5550
2022-10-03 23:31:13,985 - mmdet - INFO - Iter [3900/12000] lr: 1.500e-02, eta: 0:11:11, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2617, loss_bbox: 0.2559, loss: 0.5176
2022-10-03 23:31:17,999 - mmdet - INFO - Iter [3950/12000] lr: 1.500e-02, eta: 0:11:06, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2774, loss_bbox: 0.2668, loss: 0.5442
2022-10-03 23:31:21,989 - mmdet - INFO - Exp name: retinanet_mstrain_12k_voc0712.py
2022-10-03 23:31:21,990 - mmdet - INFO - Iter [4000/12000] lr: 1.500e-02, eta: 0:11:02, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2797, loss_bbox: 0.2677, loss: 0.5474
2022-10-03 23:31:25,993 - mmdet - INFO - Iter [4050/12000] lr: 1.500e-02, eta: 0:10:57, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2798, loss_bbox: 0.2619, loss: 0.5417
2022-10-03 23:31:30,069 - mmdet - INFO - Iter [4100/12000] lr: 1.500e-02, eta: 0:10:53, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.2771, loss_bbox: 0.2648, loss: 0.5419
2022-10-03 23:31:34,132 - mmdet - INFO - Iter [4150/12000] lr: 1.500e-02, eta: 0:10:49, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2628, loss_bbox: 0.2520, loss: 0.5149
2022-10-03 23:31:38,088 - mmdet - INFO - Iter [4200/12000] lr: 1.500e-02, eta: 0:10:44, time: 0.079, data_time: 0.006, memory: 3224, loss_cls: 0.2628, loss_bbox: 0.2463, loss: 0.5091
2022-10-03 23:31:42,091 - mmdet - INFO - Iter [4250/12000] lr: 1.500e-02, eta: 0:10:40, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2621, loss_bbox: 0.2472, loss: 0.5094
2022-10-03 23:31:46,112 - mmdet - INFO - Iter [4300/12000] lr: 1.500e-02, eta: 0:10:36, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2675, loss_bbox: 0.2574, loss: 0.5249
2022-10-03 23:31:50,251 - mmdet - INFO - Iter [4350/12000] lr: 1.500e-02, eta: 0:10:31, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.2620, loss_bbox: 0.2527, loss: 0.5147
2022-10-03 23:31:54,474 - mmdet - INFO - Iter [4400/12000] lr: 1.500e-02, eta: 0:10:27, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.2705, loss_bbox: 0.2546, loss: 0.5251
2022-10-03 23:31:58,523 - mmdet - INFO - Iter [4450/12000] lr: 1.500e-02, eta: 0:10:23, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2602, loss_bbox: 0.2542, loss: 0.5143
2022-10-03 23:32:02,530 - mmdet - INFO - Iter [4500/12000] lr: 1.500e-02, eta: 0:10:19, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2608, loss_bbox: 0.2560, loss: 0.5168
2022-10-03 23:32:06,487 - mmdet - INFO - Iter [4550/12000] lr: 1.500e-02, eta: 0:10:14, time: 0.079, data_time: 0.005, memory: 3224, loss_cls: 0.2590, loss_bbox: 0.2553, loss: 0.5143
2022-10-03 23:32:10,530 - mmdet - INFO - Iter [4600/12000] lr: 1.500e-02, eta: 0:10:10, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2641, loss_bbox: 0.2479, loss: 0.5120
2022-10-03 23:32:14,604 - mmdet - INFO - Iter [4650/12000] lr: 1.500e-02, eta: 0:10:06, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2534, loss_bbox: 0.2519, loss: 0.5053
2022-10-03 23:32:18,657 - mmdet - INFO - Iter [4700/12000] lr: 1.500e-02, eta: 0:10:02, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2575, loss_bbox: 0.2584, loss: 0.5159
2022-10-03 23:32:22,641 - mmdet - INFO - Iter [4750/12000] lr: 1.500e-02, eta: 0:09:57, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2542, loss_bbox: 0.2506, loss: 0.5048
2022-10-03 23:32:26,629 - mmdet - INFO - Iter [4800/12000] lr: 1.500e-02, eta: 0:09:53, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2532, loss_bbox: 0.2537, loss: 0.5069
2022-10-03 23:32:30,627 - mmdet - INFO - Iter [4850/12000] lr: 1.500e-02, eta: 0:09:49, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2557, loss_bbox: 0.2487, loss: 0.5044
2022-10-03 23:32:34,633 - mmdet - INFO - Iter [4900/12000] lr: 1.500e-02, eta: 0:09:44, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2509, loss_bbox: 0.2476, loss: 0.4985
2022-10-03 23:32:38,691 - mmdet - INFO - Iter [4950/12000] lr: 1.500e-02, eta: 0:09:40, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2586, loss_bbox: 0.2498, loss: 0.5084
2022-10-03 23:32:42,703 - mmdet - INFO - Exp name: retinanet_mstrain_12k_voc0712.py
2022-10-03 23:32:42,703 - mmdet - INFO - Iter [5000/12000] lr: 1.500e-02, eta: 0:09:36, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2594, loss_bbox: 0.2504, loss: 0.5098
2022-10-03 23:32:46,796 - mmdet - INFO - Iter [5050/12000] lr: 1.500e-02, eta: 0:09:32, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.2681, loss_bbox: 0.2601, loss: 0.5282
2022-10-03 23:32:51,033 - mmdet - INFO - Iter [5100/12000] lr: 1.500e-02, eta: 0:09:28, time: 0.085, data_time: 0.006, memory: 3224, loss_cls: 0.2681, loss_bbox: 0.2526, loss: 0.5208
2022-10-03 23:32:55,077 - mmdet - INFO - Iter [5150/12000] lr: 1.500e-02, eta: 0:09:24, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2772, loss_bbox: 0.2604, loss: 0.5376
2022-10-03 23:32:59,205 - mmdet - INFO - Iter [5200/12000] lr: 1.500e-02, eta: 0:09:20, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.2518, loss_bbox: 0.2492, loss: 0.5010
2022-10-03 23:33:03,230 - mmdet - INFO - Iter [5250/12000] lr: 1.500e-02, eta: 0:09:15, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2322, loss_bbox: 0.2438, loss: 0.4760
2022-10-03 23:33:07,247 - mmdet - INFO - Iter [5300/12000] lr: 1.500e-02, eta: 0:09:11, time: 0.080, data_time: 0.005, memory: 3224, loss_cls: 0.2459, loss_bbox: 0.2391, loss: 0.4850
2022-10-03 23:33:11,416 - mmdet - INFO - Iter [5350/12000] lr: 1.500e-02, eta: 0:09:07, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.2367, loss_bbox: 0.2383, loss: 0.4750
2022-10-03 23:33:15,470 - mmdet - INFO - Iter [5400/12000] lr: 1.500e-02, eta: 0:09:03, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2256, loss_bbox: 0.2401, loss: 0.4656
2022-10-03 23:33:19,550 - mmdet - INFO - Iter [5450/12000] lr: 1.500e-02, eta: 0:08:59, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.2442, loss_bbox: 0.2445, loss: 0.4888
2022-10-03 23:33:23,503 - mmdet - INFO - Iter [5500/12000] lr: 1.500e-02, eta: 0:08:54, time: 0.079, data_time: 0.006, memory: 3224, loss_cls: 0.2401, loss_bbox: 0.2421, loss: 0.4822
2022-10-03 23:33:27,517 - mmdet - INFO - Iter [5550/12000] lr: 1.500e-02, eta: 0:08:50, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2480, loss_bbox: 0.2451, loss: 0.4932
2022-10-03 23:33:31,526 - mmdet - INFO - Iter [5600/12000] lr: 1.500e-02, eta: 0:08:46, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2328, loss_bbox: 0.2398, loss: 0.4726
2022-10-03 23:33:35,585 - mmdet - INFO - Iter [5650/12000] lr: 1.500e-02, eta: 0:08:42, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2306, loss_bbox: 0.2366, loss: 0.4672
2022-10-03 23:33:39,590 - mmdet - INFO - Iter [5700/12000] lr: 1.500e-02, eta: 0:08:38, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2448, loss_bbox: 0.2429, loss: 0.4877
2022-10-03 23:33:43,583 - mmdet - INFO - Iter [5750/12000] lr: 1.500e-02, eta: 0:08:33, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2457, loss_bbox: 0.2471, loss: 0.4928
2022-10-03 23:33:47,547 - mmdet - INFO - Iter [5800/12000] lr: 1.500e-02, eta: 0:08:29, time: 0.079, data_time: 0.006, memory: 3224, loss_cls: 0.2367, loss_bbox: 0.2458, loss: 0.4825
2022-10-03 23:33:51,620 - mmdet - INFO - Iter [5850/12000] lr: 1.500e-02, eta: 0:08:25, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2548, loss_bbox: 0.2479, loss: 0.5027
2022-10-03 23:33:55,720 - mmdet - INFO - Iter [5900/12000] lr: 1.500e-02, eta: 0:08:21, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.2380, loss_bbox: 0.2433, loss: 0.4812
2022-10-03 23:33:59,801 - mmdet - INFO - Iter [5950/12000] lr: 1.500e-02, eta: 0:08:17, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.2395, loss_bbox: 0.2469, loss: 0.4864
2022-10-03 23:34:03,792 - mmdet - INFO - Exp name: retinanet_mstrain_12k_voc0712.py
2022-10-03 23:34:03,793 - mmdet - INFO - Iter [6000/12000] lr: 1.500e-02, eta: 0:08:12, time: 0.080, data_time: 0.005, memory: 3224, loss_cls: 0.2369, loss_bbox: 0.2395, loss: 0.4764
2022-10-03 23:34:07,771 - mmdet - INFO - Iter [6050/12000] lr: 1.500e-02, eta: 0:08:08, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2330, loss_bbox: 0.2465, loss: 0.4794
2022-10-03 23:34:11,820 - mmdet - INFO - Iter [6100/12000] lr: 1.500e-02, eta: 0:08:04, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2389, loss_bbox: 0.2384, loss: 0.4773
2022-10-03 23:34:15,828 - mmdet - INFO - Iter [6150/12000] lr: 1.500e-02, eta: 0:08:00, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2498, loss_bbox: 0.2481, loss: 0.4979
2022-10-03 23:34:19,887 - mmdet - INFO - Iter [6200/12000] lr: 1.500e-02, eta: 0:07:56, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2274, loss_bbox: 0.2364, loss: 0.4638
2022-10-03 23:34:23,879 - mmdet - INFO - Iter [6250/12000] lr: 1.500e-02, eta: 0:07:51, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2375, loss_bbox: 0.2369, loss: 0.4744
2022-10-03 23:34:27,922 - mmdet - INFO - Iter [6300/12000] lr: 1.500e-02, eta: 0:07:47, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2253, loss_bbox: 0.2289, loss: 0.4542
2022-10-03 23:34:31,934 - mmdet - INFO - Iter [6350/12000] lr: 1.500e-02, eta: 0:07:43, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2235, loss_bbox: 0.2355, loss: 0.4591
2022-10-03 23:34:36,158 - mmdet - INFO - Iter [6400/12000] lr: 1.500e-02, eta: 0:07:39, time: 0.085, data_time: 0.006, memory: 3224, loss_cls: 0.2184, loss_bbox: 0.2300, loss: 0.4484
2022-10-03 23:34:40,332 - mmdet - INFO - Iter [6450/12000] lr: 1.500e-02, eta: 0:07:35, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.2324, loss_bbox: 0.2364, loss: 0.4689
2022-10-03 23:34:44,335 - mmdet - INFO - Iter [6500/12000] lr: 1.500e-02, eta: 0:07:31, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2435, loss_bbox: 0.2395, loss: 0.4831
2022-10-03 23:34:48,486 - mmdet - INFO - Iter [6550/12000] lr: 1.500e-02, eta: 0:07:27, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.2383, loss_bbox: 0.2421, loss: 0.4804
2022-10-03 23:34:52,504 - mmdet - INFO - Iter [6600/12000] lr: 1.500e-02, eta: 0:07:23, time: 0.080, data_time: 0.005, memory: 3224, loss_cls: 0.2283, loss_bbox: 0.2329, loss: 0.4611
2022-10-03 23:34:56,575 - mmdet - INFO - Iter [6650/12000] lr: 1.500e-02, eta: 0:07:18, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2189, loss_bbox: 0.2293, loss: 0.4481
2022-10-03 23:35:00,702 - mmdet - INFO - Iter [6700/12000] lr: 1.500e-02, eta: 0:07:14, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.2155, loss_bbox: 0.2316, loss: 0.4471
2022-10-03 23:35:04,665 - mmdet - INFO - Iter [6750/12000] lr: 1.500e-02, eta: 0:07:10, time: 0.079, data_time: 0.006, memory: 3224, loss_cls: 0.2328, loss_bbox: 0.2393, loss: 0.4722
2022-10-03 23:35:08,662 - mmdet - INFO - Iter [6800/12000] lr: 1.500e-02, eta: 0:07:06, time: 0.080, data_time: 0.005, memory: 3224, loss_cls: 0.2150, loss_bbox: 0.2267, loss: 0.4417
2022-10-03 23:35:12,647 - mmdet - INFO - Iter [6850/12000] lr: 1.500e-02, eta: 0:07:02, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2233, loss_bbox: 0.2365, loss: 0.4599
2022-10-03 23:35:16,806 - mmdet - INFO - Iter [6900/12000] lr: 1.500e-02, eta: 0:06:58, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.2348, loss_bbox: 0.2479, loss: 0.4827
2022-10-03 23:35:20,900 - mmdet - INFO - Iter [6950/12000] lr: 1.500e-02, eta: 0:06:54, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.2296, loss_bbox: 0.2341, loss: 0.4637
2022-10-03 23:35:24,930 - mmdet - INFO - Exp name: retinanet_mstrain_12k_voc0712.py
2022-10-03 23:35:24,930 - mmdet - INFO - Iter [7000/12000] lr: 1.500e-02, eta: 0:06:50, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2317, loss_bbox: 0.2416, loss: 0.4734
2022-10-03 23:35:28,924 - mmdet - INFO - Iter [7050/12000] lr: 1.500e-02, eta: 0:06:45, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2193, loss_bbox: 0.2366, loss: 0.4560
2022-10-03 23:35:33,144 - mmdet - INFO - Iter [7100/12000] lr: 1.500e-02, eta: 0:06:41, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.2232, loss_bbox: 0.2417, loss: 0.4648
2022-10-03 23:35:37,317 - mmdet - INFO - Iter [7150/12000] lr: 1.500e-02, eta: 0:06:37, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.2292, loss_bbox: 0.2381, loss: 0.4673
2022-10-03 23:35:41,335 - mmdet - INFO - Iter [7200/12000] lr: 1.500e-02, eta: 0:06:33, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2321, loss_bbox: 0.2379, loss: 0.4700
2022-10-03 23:35:45,276 - mmdet - INFO - Iter [7250/12000] lr: 1.500e-02, eta: 0:06:29, time: 0.079, data_time: 0.006, memory: 3224, loss_cls: 0.2142, loss_bbox: 0.2347, loss: 0.4490
2022-10-03 23:35:49,461 - mmdet - INFO - Iter [7300/12000] lr: 1.500e-02, eta: 0:06:25, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.2111, loss_bbox: 0.2279, loss: 0.4390
2022-10-03 23:35:53,549 - mmdet - INFO - Iter [7350/12000] lr: 1.500e-02, eta: 0:06:21, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.2049, loss_bbox: 0.2236, loss: 0.4284
2022-10-03 23:35:57,655 - mmdet - INFO - Iter [7400/12000] lr: 1.500e-02, eta: 0:06:17, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.2121, loss_bbox: 0.2243, loss: 0.4365
2022-10-03 23:36:01,893 - mmdet - INFO - Iter [7450/12000] lr: 1.500e-02, eta: 0:06:13, time: 0.085, data_time: 0.006, memory: 3224, loss_cls: 0.2258, loss_bbox: 0.2258, loss: 0.4517
2022-10-03 23:36:06,160 - mmdet - INFO - Iter [7500/12000] lr: 1.500e-02, eta: 0:06:09, time: 0.085, data_time: 0.006, memory: 3224, loss_cls: 0.2130, loss_bbox: 0.2297, loss: 0.4427
2022-10-03 23:36:10,458 - mmdet - INFO - Iter [7550/12000] lr: 1.500e-02, eta: 0:06:05, time: 0.086, data_time: 0.006, memory: 3224, loss_cls: 0.2112, loss_bbox: 0.2282, loss: 0.4394
2022-10-03 23:36:14,596 - mmdet - INFO - Iter [7600/12000] lr: 1.500e-02, eta: 0:06:01, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.2162, loss_bbox: 0.2296, loss: 0.4459
2022-10-03 23:36:18,558 - mmdet - INFO - Iter [7650/12000] lr: 1.500e-02, eta: 0:05:56, time: 0.079, data_time: 0.006, memory: 3224, loss_cls: 0.2151, loss_bbox: 0.2276, loss: 0.4427
2022-10-03 23:36:22,654 - mmdet - INFO - Iter [7700/12000] lr: 1.500e-02, eta: 0:05:52, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.2154, loss_bbox: 0.2197, loss: 0.4351
2022-10-03 23:36:26,888 - mmdet - INFO - Iter [7750/12000] lr: 1.500e-02, eta: 0:05:48, time: 0.085, data_time: 0.006, memory: 3224, loss_cls: 0.2141, loss_bbox: 0.2336, loss: 0.4477
2022-10-03 23:36:31,091 - mmdet - INFO - Iter [7800/12000] lr: 1.500e-02, eta: 0:05:44, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.2094, loss_bbox: 0.2219, loss: 0.4313
2022-10-03 23:36:35,109 - mmdet - INFO - Iter [7850/12000] lr: 1.500e-02, eta: 0:05:40, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2152, loss_bbox: 0.2270, loss: 0.4422
2022-10-03 23:36:39,058 - mmdet - INFO - Iter [7900/12000] lr: 1.500e-02, eta: 0:05:36, time: 0.079, data_time: 0.006, memory: 3224, loss_cls: 0.2235, loss_bbox: 0.2284, loss: 0.4519
2022-10-03 23:36:43,089 - mmdet - INFO - Iter [7950/12000] lr: 1.500e-02, eta: 0:05:32, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2086, loss_bbox: 0.2243, loss: 0.4329
2022-10-03 23:36:47,082 - mmdet - INFO - Exp name: retinanet_mstrain_12k_voc0712.py
2022-10-03 23:36:47,082 - mmdet - INFO - Iter [8000/12000] lr: 1.500e-02, eta: 0:05:28, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2060, loss_bbox: 0.2271, loss: 0.4331
2022-10-03 23:36:51,090 - mmdet - INFO - Iter [8050/12000] lr: 1.500e-02, eta: 0:05:23, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2273, loss_bbox: 0.2295, loss: 0.4568
2022-10-03 23:36:55,155 - mmdet - INFO - Iter [8100/12000] lr: 1.500e-02, eta: 0:05:19, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2213, loss_bbox: 0.2310, loss: 0.4522
2022-10-03 23:36:59,214 - mmdet - INFO - Iter [8150/12000] lr: 1.500e-02, eta: 0:05:15, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2237, loss_bbox: 0.2350, loss: 0.4587
2022-10-03 23:37:03,175 - mmdet - INFO - Iter [8200/12000] lr: 1.500e-02, eta: 0:05:11, time: 0.079, data_time: 0.005, memory: 3224, loss_cls: 0.2133, loss_bbox: 0.2278, loss: 0.4411
2022-10-03 23:37:07,150 - mmdet - INFO - Iter [8250/12000] lr: 1.500e-02, eta: 0:05:07, time: 0.079, data_time: 0.005, memory: 3224, loss_cls: 0.2180, loss_bbox: 0.2319, loss: 0.4499
2022-10-03 23:37:11,356 - mmdet - INFO - Iter [8300/12000] lr: 1.500e-02, eta: 0:05:03, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.2139, loss_bbox: 0.2265, loss: 0.4404
2022-10-03 23:37:15,482 - mmdet - INFO - Iter [8350/12000] lr: 1.500e-02, eta: 0:04:59, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.1983, loss_bbox: 0.2135, loss: 0.4118
2022-10-03 23:37:19,702 - mmdet - INFO - Iter [8400/12000] lr: 1.500e-02, eta: 0:04:55, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.1954, loss_bbox: 0.2159, loss: 0.4113
2022-10-03 23:37:23,798 - mmdet - INFO - Iter [8450/12000] lr: 1.500e-02, eta: 0:04:51, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.2016, loss_bbox: 0.2227, loss: 0.4243
2022-10-03 23:37:27,846 - mmdet - INFO - Iter [8500/12000] lr: 1.500e-02, eta: 0:04:46, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.2044, loss_bbox: 0.2293, loss: 0.4337
2022-10-03 23:37:31,839 - mmdet - INFO - Iter [8550/12000] lr: 1.500e-02, eta: 0:04:42, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1912, loss_bbox: 0.2162, loss: 0.4074
2022-10-03 23:37:35,786 - mmdet - INFO - Iter [8600/12000] lr: 1.500e-02, eta: 0:04:38, time: 0.079, data_time: 0.006, memory: 3224, loss_cls: 0.1917, loss_bbox: 0.2146, loss: 0.4063
2022-10-03 23:37:39,875 - mmdet - INFO - Iter [8650/12000] lr: 1.500e-02, eta: 0:04:34, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.1972, loss_bbox: 0.2203, loss: 0.4175
2022-10-03 23:37:43,892 - mmdet - INFO - Iter [8700/12000] lr: 1.500e-02, eta: 0:04:30, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2027, loss_bbox: 0.2158, loss: 0.4185
2022-10-03 23:37:47,911 - mmdet - INFO - Iter [8750/12000] lr: 1.500e-02, eta: 0:04:26, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2064, loss_bbox: 0.2343, loss: 0.4407
2022-10-03 23:37:52,017 - mmdet - INFO - Iter [8800/12000] lr: 1.500e-02, eta: 0:04:22, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.1968, loss_bbox: 0.2174, loss: 0.4142
2022-10-03 23:37:56,011 - mmdet - INFO - Iter [8850/12000] lr: 1.500e-02, eta: 0:04:18, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1885, loss_bbox: 0.2162, loss: 0.4047
2022-10-03 23:38:00,134 - mmdet - INFO - Iter [8900/12000] lr: 1.500e-02, eta: 0:04:13, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.2002, loss_bbox: 0.2231, loss: 0.4233
2022-10-03 23:38:04,124 - mmdet - INFO - Iter [8950/12000] lr: 1.500e-02, eta: 0:04:09, time: 0.080, data_time: 0.005, memory: 3224, loss_cls: 0.2095, loss_bbox: 0.2255, loss: 0.4350
2022-10-03 23:38:08,120 - mmdet - INFO - Exp name: retinanet_mstrain_12k_voc0712.py
2022-10-03 23:38:08,120 - mmdet - INFO - Iter [9000/12000] lr: 1.500e-02, eta: 0:04:05, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.2179, loss_bbox: 0.2354, loss: 0.4533
2022-10-03 23:38:12,120 - mmdet - INFO - Iter [9050/12000] lr: 1.500e-03, eta: 0:04:01, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1897, loss_bbox: 0.2153, loss: 0.4050
2022-10-03 23:38:16,101 - mmdet - INFO - Iter [9100/12000] lr: 1.500e-03, eta: 0:03:57, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1712, loss_bbox: 0.2062, loss: 0.3774
2022-10-03 23:38:20,219 - mmdet - INFO - Iter [9150/12000] lr: 1.500e-03, eta: 0:03:53, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.1705, loss_bbox: 0.2064, loss: 0.3768
2022-10-03 23:38:24,213 - mmdet - INFO - Iter [9200/12000] lr: 1.500e-03, eta: 0:03:49, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1665, loss_bbox: 0.1998, loss: 0.3663
2022-10-03 23:38:28,257 - mmdet - INFO - Iter [9250/12000] lr: 1.500e-03, eta: 0:03:45, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.1659, loss_bbox: 0.2035, loss: 0.3695
2022-10-03 23:38:32,538 - mmdet - INFO - Iter [9300/12000] lr: 1.500e-03, eta: 0:03:41, time: 0.086, data_time: 0.006, memory: 3224, loss_cls: 0.1672, loss_bbox: 0.1965, loss: 0.3637
2022-10-03 23:38:36,700 - mmdet - INFO - Iter [9350/12000] lr: 1.500e-03, eta: 0:03:37, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.1513, loss_bbox: 0.1907, loss: 0.3420
2022-10-03 23:38:40,755 - mmdet - INFO - Iter [9400/12000] lr: 1.500e-03, eta: 0:03:32, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.1528, loss_bbox: 0.1907, loss: 0.3435
2022-10-03 23:38:44,827 - mmdet - INFO - Iter [9450/12000] lr: 1.500e-03, eta: 0:03:28, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.1436, loss_bbox: 0.1825, loss: 0.3260
2022-10-03 23:38:48,828 - mmdet - INFO - Iter [9500/12000] lr: 1.500e-03, eta: 0:03:24, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1446, loss_bbox: 0.1885, loss: 0.3330
2022-10-03 23:38:53,071 - mmdet - INFO - Iter [9550/12000] lr: 1.500e-03, eta: 0:03:20, time: 0.085, data_time: 0.006, memory: 3224, loss_cls: 0.1454, loss_bbox: 0.1821, loss: 0.3275
2022-10-03 23:38:57,363 - mmdet - INFO - Iter [9600/12000] lr: 1.500e-03, eta: 0:03:16, time: 0.086, data_time: 0.006, memory: 3224, loss_cls: 0.1452, loss_bbox: 0.1871, loss: 0.3324
2022-10-03 23:39:01,565 - mmdet - INFO - Iter [9650/12000] lr: 1.500e-03, eta: 0:03:12, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.1359, loss_bbox: 0.1872, loss: 0.3231
2022-10-03 23:39:05,566 - mmdet - INFO - Iter [9700/12000] lr: 1.500e-03, eta: 0:03:08, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1465, loss_bbox: 0.1884, loss: 0.3349
2022-10-03 23:39:09,749 - mmdet - INFO - Iter [9750/12000] lr: 1.500e-03, eta: 0:03:04, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.1463, loss_bbox: 0.1783, loss: 0.3245
2022-10-03 23:39:13,983 - mmdet - INFO - Iter [9800/12000] lr: 1.500e-03, eta: 0:03:00, time: 0.085, data_time: 0.006, memory: 3224, loss_cls: 0.1454, loss_bbox: 0.1846, loss: 0.3300
2022-10-03 23:39:18,054 - mmdet - INFO - Iter [9850/12000] lr: 1.500e-03, eta: 0:02:56, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.1478, loss_bbox: 0.1887, loss: 0.3366
2022-10-03 23:39:22,168 - mmdet - INFO - Iter [9900/12000] lr: 1.500e-03, eta: 0:02:52, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.1466, loss_bbox: 0.1900, loss: 0.3366
2022-10-03 23:39:26,300 - mmdet - INFO - Iter [9950/12000] lr: 1.500e-03, eta: 0:02:47, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.1438, loss_bbox: 0.1887, loss: 0.3325
2022-10-03 23:39:30,376 - mmdet - INFO - Exp name: retinanet_mstrain_12k_voc0712.py
2022-10-03 23:39:30,377 - mmdet - INFO - Iter [10000/12000] lr: 1.500e-03, eta: 0:02:43, time: 0.081, data_time: 0.005, memory: 3224, loss_cls: 0.1425, loss_bbox: 0.1841, loss: 0.3266
2022-10-03 23:39:34,388 - mmdet - INFO - Iter [10050/12000] lr: 1.500e-03, eta: 0:02:39, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1405, loss_bbox: 0.1827, loss: 0.3233
2022-10-03 23:39:38,375 - mmdet - INFO - Iter [10100/12000] lr: 1.500e-03, eta: 0:02:35, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1465, loss_bbox: 0.1857, loss: 0.3322
2022-10-03 23:39:42,580 - mmdet - INFO - Iter [10150/12000] lr: 1.500e-03, eta: 0:02:31, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.1381, loss_bbox: 0.1795, loss: 0.3176
2022-10-03 23:39:46,711 - mmdet - INFO - Iter [10200/12000] lr: 1.500e-03, eta: 0:02:27, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.1452, loss_bbox: 0.1838, loss: 0.3290
2022-10-03 23:39:50,718 - mmdet - INFO - Iter [10250/12000] lr: 1.500e-03, eta: 0:02:23, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1435, loss_bbox: 0.1849, loss: 0.3284
2022-10-03 23:39:54,727 - mmdet - INFO - Iter [10300/12000] lr: 1.500e-03, eta: 0:02:19, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1427, loss_bbox: 0.1860, loss: 0.3287
2022-10-03 23:39:58,749 - mmdet - INFO - Iter [10350/12000] lr: 1.500e-03, eta: 0:02:15, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1485, loss_bbox: 0.1881, loss: 0.3366
2022-10-03 23:40:02,757 - mmdet - INFO - Iter [10400/12000] lr: 1.500e-03, eta: 0:02:11, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1377, loss_bbox: 0.1817, loss: 0.3194
2022-10-03 23:40:06,778 - mmdet - INFO - Iter [10450/12000] lr: 1.500e-03, eta: 0:02:06, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1335, loss_bbox: 0.1789, loss: 0.3124
2022-10-03 23:40:10,973 - mmdet - INFO - Iter [10500/12000] lr: 1.500e-03, eta: 0:02:02, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.1336, loss_bbox: 0.1866, loss: 0.3202
2022-10-03 23:40:15,026 - mmdet - INFO - Iter [10550/12000] lr: 1.500e-03, eta: 0:01:58, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.1347, loss_bbox: 0.1769, loss: 0.3116
2022-10-03 23:40:19,063 - mmdet - INFO - Iter [10600/12000] lr: 1.500e-03, eta: 0:01:54, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.1328, loss_bbox: 0.1807, loss: 0.3135
2022-10-03 23:40:23,236 - mmdet - INFO - Iter [10650/12000] lr: 1.500e-03, eta: 0:01:50, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.1388, loss_bbox: 0.1812, loss: 0.3200
2022-10-03 23:40:27,364 - mmdet - INFO - Iter [10700/12000] lr: 1.500e-03, eta: 0:01:46, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.1409, loss_bbox: 0.1863, loss: 0.3272
2022-10-03 23:40:31,421 - mmdet - INFO - Iter [10750/12000] lr: 1.500e-03, eta: 0:01:42, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.1357, loss_bbox: 0.1779, loss: 0.3136
2022-10-03 23:40:35,447 - mmdet - INFO - Iter [10800/12000] lr: 1.500e-03, eta: 0:01:38, time: 0.080, data_time: 0.005, memory: 3224, loss_cls: 0.1373, loss_bbox: 0.1832, loss: 0.3205
2022-10-03 23:40:39,435 - mmdet - INFO - Iter [10850/12000] lr: 1.500e-03, eta: 0:01:34, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1369, loss_bbox: 0.1763, loss: 0.3132
2022-10-03 23:40:43,619 - mmdet - INFO - Iter [10900/12000] lr: 1.500e-03, eta: 0:01:30, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.1321, loss_bbox: 0.1768, loss: 0.3089
2022-10-03 23:40:47,784 - mmdet - INFO - Iter [10950/12000] lr: 1.500e-03, eta: 0:01:25, time: 0.083, data_time: 0.006, memory: 3224, loss_cls: 0.1333, loss_bbox: 0.1819, loss: 0.3152
2022-10-03 23:40:51,741 - mmdet - INFO - Exp name: retinanet_mstrain_12k_voc0712.py
2022-10-03 23:40:51,742 - mmdet - INFO - Iter [11000/12000] lr: 1.500e-03, eta: 0:01:21, time: 0.079, data_time: 0.006, memory: 3224, loss_cls: 0.1382, loss_bbox: 0.1829, loss: 0.3211
2022-10-03 23:40:55,915 - mmdet - INFO - Iter [11050/12000] lr: 1.500e-04, eta: 0:01:17, time: 0.084, data_time: 0.006, memory: 3224, loss_cls: 0.1316, loss_bbox: 0.1733, loss: 0.3049
2022-10-03 23:40:59,957 - mmdet - INFO - Iter [11100/12000] lr: 1.500e-04, eta: 0:01:13, time: 0.081, data_time: 0.005, memory: 3224, loss_cls: 0.1339, loss_bbox: 0.1824, loss: 0.3163
2022-10-03 23:41:03,948 - mmdet - INFO - Iter [11150/12000] lr: 1.500e-04, eta: 0:01:09, time: 0.080, data_time: 0.005, memory: 3224, loss_cls: 0.1324, loss_bbox: 0.1758, loss: 0.3082
2022-10-03 23:41:07,959 - mmdet - INFO - Iter [11200/12000] lr: 1.500e-04, eta: 0:01:05, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1334, loss_bbox: 0.1796, loss: 0.3130
2022-10-03 23:41:11,955 - mmdet - INFO - Iter [11250/12000] lr: 1.500e-04, eta: 0:01:01, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1316, loss_bbox: 0.1796, loss: 0.3112
2022-10-03 23:41:15,974 - mmdet - INFO - Iter [11300/12000] lr: 1.500e-04, eta: 0:00:57, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1321, loss_bbox: 0.1769, loss: 0.3091
2022-10-03 23:41:20,077 - mmdet - INFO - Iter [11350/12000] lr: 1.500e-04, eta: 0:00:53, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.1374, loss_bbox: 0.1751, loss: 0.3125
2022-10-03 23:41:24,078 - mmdet - INFO - Iter [11400/12000] lr: 1.500e-04, eta: 0:00:49, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1315, loss_bbox: 0.1763, loss: 0.3078
2022-10-03 23:41:28,124 - mmdet - INFO - Iter [11450/12000] lr: 1.500e-04, eta: 0:00:45, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.1331, loss_bbox: 0.1792, loss: 0.3123
2022-10-03 23:41:32,144 - mmdet - INFO - Iter [11500/12000] lr: 1.500e-04, eta: 0:00:40, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1207, loss_bbox: 0.1679, loss: 0.2886
2022-10-03 23:41:36,142 - mmdet - INFO - Iter [11550/12000] lr: 1.500e-04, eta: 0:00:36, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1375, loss_bbox: 0.1823, loss: 0.3198
2022-10-03 23:41:40,174 - mmdet - INFO - Iter [11600/12000] lr: 1.500e-04, eta: 0:00:32, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.1275, loss_bbox: 0.1758, loss: 0.3033
2022-10-03 23:41:44,256 - mmdet - INFO - Iter [11650/12000] lr: 1.500e-04, eta: 0:00:28, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.1376, loss_bbox: 0.1794, loss: 0.3171
2022-10-03 23:41:48,314 - mmdet - INFO - Iter [11700/12000] lr: 1.500e-04, eta: 0:00:24, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.1246, loss_bbox: 0.1731, loss: 0.2976
2022-10-03 23:41:52,368 - mmdet - INFO - Iter [11750/12000] lr: 1.500e-04, eta: 0:00:20, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.1330, loss_bbox: 0.1800, loss: 0.3130
2022-10-03 23:41:56,339 - mmdet - INFO - Iter [11800/12000] lr: 1.500e-04, eta: 0:00:16, time: 0.079, data_time: 0.006, memory: 3224, loss_cls: 0.1323, loss_bbox: 0.1737, loss: 0.3060
2022-10-03 23:42:00,341 - mmdet - INFO - Iter [11850/12000] lr: 1.500e-04, eta: 0:00:12, time: 0.080, data_time: 0.006, memory: 3224, loss_cls: 0.1308, loss_bbox: 0.1803, loss: 0.3111
2022-10-03 23:42:04,373 - mmdet - INFO - Iter [11900/12000] lr: 1.500e-04, eta: 0:00:08, time: 0.081, data_time: 0.006, memory: 3224, loss_cls: 0.1270, loss_bbox: 0.1711, loss: 0.2981
2022-10-03 23:42:08,494 - mmdet - INFO - Iter [11950/12000] lr: 1.500e-04, eta: 0:00:04, time: 0.082, data_time: 0.006, memory: 3224, loss_cls: 0.1334, loss_bbox: 0.1811, loss: 0.3145
2022-10-03 23:42:12,730 - mmdet - INFO - Saving checkpoint at 12000 iterations
2022-10-03 23:42:13,292 - mmdet - INFO - Exp name: retinanet_mstrain_12k_voc0712.py
2022-10-03 23:42:13,293 - mmdet - INFO - Iter [12000/12000] lr: 1.500e-04, eta: 0:00:00, time: 0.096, data_time: 0.006, memory: 3224, loss_cls: 0.1328, loss_bbox: 0.1773, loss: 0.3101
2022-10-03 23:42:35,293 - mmdet - INFO -
+-------------+------+-------+--------+-------+
| class | gts | dets | recall | ap |
+-------------+------+-------+--------+-------+
| aeroplane | 285 | 4350 | 0.982 | 0.858 |
| bicycle | 337 | 7182 | 0.982 | 0.852 |
| bird | 459 | 6594 | 0.976 | 0.843 |
| boat | 263 | 10306 | 0.977 | 0.748 |
| bottle | 469 | 15005 | 0.949 | 0.708 |
| bus | 213 | 5621 | 0.991 | 0.854 |
| car | 1201 | 18728 | 0.989 | 0.884 |
| cat | 358 | 3995 | 0.989 | 0.890 |
| chair | 756 | 27501 | 0.963 | 0.659 |
| cow | 244 | 4390 | 0.996 | 0.835 |
| diningtable | 206 | 13269 | 0.956 | 0.696 |
| dog | 489 | 5970 | 0.990 | 0.867 |
| horse | 348 | 5822 | 0.997 | 0.858 |
| motorbike | 325 | 7104 | 0.985 | 0.842 |
| person | 4528 | 52884 | 0.988 | 0.854 |
| pottedplant | 480 | 13789 | 0.944 | 0.582 |
| sheep | 242 | 4454 | 0.988 | 0.819 |
| sofa | 239 | 8932 | 0.983 | 0.758 |
| train | 282 | 5723 | 0.986 | 0.855 |
| tvmonitor | 308 | 7857 | 0.971 | 0.820 |
+-------------+------+-------+--------+-------+
| mAP | | | | 0.804 |
+-------------+------+-------+--------+-------+
2022-10-03 23:42:35,884 - mmdet - INFO - Now best checkpoint is saved as best_mAP_iter_12000.pth.
2022-10-03 23:42:35,885 - mmdet - INFO - Best mAP is 0.8042 at 12000 iter.
2022-10-03 23:42:35,885 - mmdet - INFO - Exp name: retinanet_mstrain_12k_voc0712.py
2022-10-03 23:42:35,885 - mmdet - INFO - Iter(val) [619] mAP: 0.8042, AP50: 0.8040
|