File size: 68,865 Bytes
e3962e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
{"env_info": "sys.platform: linux\nPython: 3.7.3 (default, Jan 22 2021, 20:04:44) [GCC 8.3.0]\nCUDA available: True\nGPU 0,1,2,3,4,5,6,7: A100-SXM-80GB\nCUDA_HOME: /usr/local/cuda\nNVCC: Cuda compilation tools, release 11.3, V11.3.109\nGCC: x86_64-linux-gnu-gcc (Debian 8.3.0-6) 8.3.0\nPyTorch: 1.10.0\nPyTorch compiling details: PyTorch built with:\n  - GCC 7.3\n  - C++ Version: 201402\n  - Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications\n  - Intel(R) MKL-DNN v2.2.3 (Git Hash 7336ca9f055cf1bfa13efb658fe15dc9b41f0740)\n  - OpenMP 201511 (a.k.a. OpenMP 4.5)\n  - LAPACK is enabled (usually provided by MKL)\n  - NNPACK is enabled\n  - CPU capability usage: AVX512\n  - CUDA Runtime 11.3\n  - NVCC architecture flags: -gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86\n  - CuDNN 8.2\n  - Magma 2.5.2\n  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.2.0, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.10.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, \n\nTorchVision: 0.11.1+cu113\nOpenCV: 4.6.0\nMMCV: 1.6.1\nMMCV Compiler: GCC 9.3\nMMCV CUDA Compiler: 11.3\nMMDetection: 2.25.2+a7ef785", "config": "model = dict(\n    type='MaskRCNN',\n    backbone=dict(\n        type='ResNet',\n        depth=50,\n        num_stages=4,\n        out_indices=(0, 1, 2, 3),\n        frozen_stages=1,\n        norm_cfg=dict(type='SyncBN', requires_grad=True),\n        norm_eval=True,\n        style='pytorch',\n        init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),\n    neck=dict(\n        type='FPN',\n        in_channels=[256, 512, 1024, 2048],\n        out_channels=256,\n        num_outs=5,\n        norm_cfg=dict(type='SyncBN', requires_grad=True)),\n    rpn_head=dict(\n        type='RPNHead',\n        in_channels=256,\n        feat_channels=256,\n        anchor_generator=dict(\n            type='AnchorGenerator',\n            scales=[8],\n            ratios=[0.5, 1.0, 2.0],\n            strides=[4, 8, 16, 32, 64]),\n        bbox_coder=dict(\n            type='DeltaXYWHBBoxCoder',\n            target_means=[0.0, 0.0, 0.0, 0.0],\n            target_stds=[1.0, 1.0, 1.0, 1.0]),\n        loss_cls=dict(\n            type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),\n        loss_bbox=dict(type='L1Loss', loss_weight=1.0)),\n    roi_head=dict(\n        type='StandardRoIHead',\n        bbox_roi_extractor=dict(\n            type='SingleRoIExtractor',\n            roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),\n            out_channels=256,\n            featmap_strides=[4, 8, 16, 32]),\n        bbox_head=dict(\n            type='Shared4Conv1FCBBoxHead',\n            in_channels=256,\n            fc_out_channels=1024,\n            roi_feat_size=7,\n            num_classes=80,\n            bbox_coder=dict(\n                type='DeltaXYWHBBoxCoder',\n                target_means=[0.0, 0.0, 0.0, 0.0],\n                target_stds=[0.1, 0.1, 0.2, 0.2]),\n            reg_class_agnostic=False,\n            loss_cls=dict(\n                type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),\n            loss_bbox=dict(type='L1Loss', loss_weight=1.0)),\n        mask_roi_extractor=None,\n        mask_head=None),\n    train_cfg=dict(\n        rpn=dict(\n            assigner=dict(\n                type='MaxIoUAssigner',\n                pos_iou_thr=0.7,\n                neg_iou_thr=0.3,\n                min_pos_iou=0.3,\n                match_low_quality=True,\n                ignore_iof_thr=-1),\n            sampler=dict(\n                type='RandomSampler',\n                num=256,\n                pos_fraction=0.5,\n                neg_pos_ub=-1,\n                add_gt_as_proposals=False),\n            allowed_border=-1,\n            pos_weight=-1,\n            debug=False),\n        rpn_proposal=dict(\n            nms_pre=2000,\n            max_per_img=1000,\n            nms=dict(type='nms', iou_threshold=0.7),\n            min_bbox_size=0),\n        rcnn=dict(\n            assigner=dict(\n                type='MaxIoUAssigner',\n                pos_iou_thr=0.5,\n                neg_iou_thr=0.5,\n                min_pos_iou=0.5,\n                match_low_quality=True,\n                ignore_iof_thr=-1),\n            sampler=dict(\n                type='RandomSampler',\n                num=512,\n                pos_fraction=0.25,\n                neg_pos_ub=-1,\n                add_gt_as_proposals=True),\n            mask_size=28,\n            pos_weight=-1,\n            debug=False)),\n    test_cfg=dict(\n        rpn=dict(\n            nms_pre=1000,\n            max_per_img=1000,\n            nms=dict(type='nms', iou_threshold=0.7),\n            min_bbox_size=0),\n        rcnn=dict(\n            score_thr=0.05,\n            nms=dict(type='nms', iou_threshold=0.5),\n            max_per_img=100,\n            mask_thr_binary=0.5)))\ndataset_type = 'CocoDataset'\ndata_root = 'data/coco/'\nimg_norm_cfg = dict(\n    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)\ntrain_pipeline = [\n    dict(type='LoadImageFromFile'),\n    dict(type='LoadAnnotations', with_bbox=True),\n    dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),\n    dict(type='RandomFlip', flip_ratio=0.5),\n    dict(\n        type='Normalize',\n        mean=[123.675, 116.28, 103.53],\n        std=[58.395, 57.12, 57.375],\n        to_rgb=True),\n    dict(type='Pad', size_divisor=32),\n    dict(type='DefaultFormatBundle'),\n    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])\n]\ntest_pipeline = [\n    dict(type='LoadImageFromFile'),\n    dict(\n        type='MultiScaleFlipAug',\n        img_scale=(1333, 800),\n        flip=False,\n        transforms=[\n            dict(type='Resize', keep_ratio=True),\n            dict(type='RandomFlip'),\n            dict(\n                type='Normalize',\n                mean=[123.675, 116.28, 103.53],\n                std=[58.395, 57.12, 57.375],\n                to_rgb=True),\n            dict(type='Pad', size_divisor=32),\n            dict(type='ImageToTensor', keys=['img']),\n            dict(type='Collect', keys=['img'])\n        ])\n]\ndata = dict(\n    samples_per_gpu=2,\n    workers_per_gpu=2,\n    train=dict(\n        type='CocoDataset',\n        ann_file='data/coco/annotations/instances_train2017.json',\n        img_prefix='data/coco/train2017/',\n        pipeline=[\n            dict(type='LoadImageFromFile'),\n            dict(type='LoadAnnotations', with_bbox=True),\n            dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),\n            dict(type='RandomFlip', flip_ratio=0.5),\n            dict(\n                type='Normalize',\n                mean=[123.675, 116.28, 103.53],\n                std=[58.395, 57.12, 57.375],\n                to_rgb=True),\n            dict(type='Pad', size_divisor=32),\n            dict(type='DefaultFormatBundle'),\n            dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])\n        ]),\n    val=dict(\n        type='CocoDataset',\n        ann_file='data/coco/annotations/instances_val2017.json',\n        img_prefix='data/coco/val2017/',\n        pipeline=[\n            dict(type='LoadImageFromFile'),\n            dict(\n                type='MultiScaleFlipAug',\n                img_scale=(1333, 800),\n                flip=False,\n                transforms=[\n                    dict(type='Resize', keep_ratio=True),\n                    dict(type='RandomFlip'),\n                    dict(\n                        type='Normalize',\n                        mean=[123.675, 116.28, 103.53],\n                        std=[58.395, 57.12, 57.375],\n                        to_rgb=True),\n                    dict(type='Pad', size_divisor=32),\n                    dict(type='ImageToTensor', keys=['img']),\n                    dict(type='Collect', keys=['img'])\n                ])\n        ]),\n    test=dict(\n        type='CocoDataset',\n        ann_file='data/coco/annotations/instances_val2017.json',\n        img_prefix='data/coco/val2017/',\n        pipeline=[\n            dict(type='LoadImageFromFile'),\n            dict(\n                type='MultiScaleFlipAug',\n                img_scale=(1333, 800),\n                flip=False,\n                transforms=[\n                    dict(type='Resize', keep_ratio=True),\n                    dict(type='RandomFlip'),\n                    dict(\n                        type='Normalize',\n                        mean=[123.675, 116.28, 103.53],\n                        std=[58.395, 57.12, 57.375],\n                        to_rgb=True),\n                    dict(type='Pad', size_divisor=32),\n                    dict(type='ImageToTensor', keys=['img']),\n                    dict(type='Collect', keys=['img'])\n                ])\n        ]))\nevaluation = dict(\n    interval=12000, metric='bbox', save_best='auto', gpu_collect=True)\noptimizer = dict(type='SGD', lr=0.03, momentum=0.9, weight_decay=5e-05)\noptimizer_config = dict(grad_clip=None)\nlr_config = dict(\n    policy='step',\n    warmup='linear',\n    warmup_iters=500,\n    warmup_ratio=0.001,\n    step=[9000, 11000],\n    by_epoch=False)\nrunner = dict(type='IterBasedRunner', max_iters=12000)\ncheckpoint_config = dict(interval=12000)\nlog_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])\ncustom_hooks = [\n    dict(type='NumClassCheckHook'),\n    dict(\n        type='MMDetWandbHook',\n        init_kwargs=dict(project='I2B', group='semi-coco'),\n        interval=50,\n        num_eval_images=0,\n        log_checkpoint=False)\n]\ndist_params = dict(backend='nccl')\nlog_level = 'INFO'\nload_from = 'pretrain/selfsup_mask-rcnn_mstrain-soft-teacher_sampler-4096_temp0.5/final_model.pth'\nresume_from = None\nworkflow = [('train', 1)]\nopencv_num_threads = 0\nmp_start_method = 'fork'\nauto_scale_lr = dict(enable=False, base_batch_size=16)\ncustom_imports = None\nnorm_cfg = dict(type='SyncBN', requires_grad=True)\nwork_dir = 'work_dirs/finetune_faster-rcnn_12k_coco'\nauto_resume = False\ngpu_ids = range(0, 8)\n", "seed": 42, "exp_name": "faster_rcnn_fpn_12k_semi-coco.py", "hook_msgs": {}}
{"mode": "train", "epoch": 1, "iter": 50, "lr": 0.00297, "memory": 4029, "data_time": 0.00871, "loss_rpn_cls": 0.5004, "loss_rpn_bbox": 0.10321, "loss_cls": 1.45083, "acc": 83.72046, "loss_bbox": 0.04998, "loss": 2.10442, "time": 0.13065}
{"mode": "train", "epoch": 1, "iter": 100, "lr": 0.00596, "memory": 4062, "data_time": 0.00742, "loss_rpn_cls": 0.22724, "loss_rpn_bbox": 0.0963, "loss_cls": 0.47765, "acc": 93.14209, "loss_bbox": 0.23758, "loss": 1.03878, "time": 0.12515}
{"mode": "train", "epoch": 1, "iter": 150, "lr": 0.00896, "memory": 4062, "data_time": 0.00716, "loss_rpn_cls": 0.15045, "loss_rpn_bbox": 0.08741, "loss_cls": 0.49875, "acc": 91.99438, "loss_bbox": 0.28502, "loss": 1.02164, "time": 0.14318}
{"mode": "train", "epoch": 1, "iter": 200, "lr": 0.01196, "memory": 4062, "data_time": 0.00739, "loss_rpn_cls": 0.09823, "loss_rpn_bbox": 0.08639, "loss_cls": 0.58495, "acc": 89.73608, "loss_bbox": 0.37037, "loss": 1.13995, "time": 0.12398}
{"mode": "train", "epoch": 1, "iter": 250, "lr": 0.01496, "memory": 4062, "data_time": 0.00718, "loss_rpn_cls": 0.09426, "loss_rpn_bbox": 0.08374, "loss_cls": 0.5577, "acc": 89.79077, "loss_bbox": 0.3555, "loss": 1.0912, "time": 0.12554}
{"mode": "train", "epoch": 1, "iter": 300, "lr": 0.01795, "memory": 4062, "data_time": 0.00719, "loss_rpn_cls": 0.08925, "loss_rpn_bbox": 0.08519, "loss_cls": 0.55754, "acc": 89.90454, "loss_bbox": 0.3238, "loss": 1.05578, "time": 0.12821}
{"mode": "train", "epoch": 1, "iter": 350, "lr": 0.02095, "memory": 4062, "data_time": 0.00695, "loss_rpn_cls": 0.08902, "loss_rpn_bbox": 0.08342, "loss_cls": 0.52477, "acc": 90.13989, "loss_bbox": 0.30322, "loss": 1.00043, "time": 0.12548}
{"mode": "train", "epoch": 1, "iter": 400, "lr": 0.02395, "memory": 4062, "data_time": 0.00707, "loss_rpn_cls": 0.08871, "loss_rpn_bbox": 0.08562, "loss_cls": 0.50535, "acc": 89.89819, "loss_bbox": 0.30567, "loss": 0.98535, "time": 0.12565}
{"mode": "train", "epoch": 1, "iter": 450, "lr": 0.02694, "memory": 4062, "data_time": 0.0071, "loss_rpn_cls": 0.0788, "loss_rpn_bbox": 0.07577, "loss_cls": 0.46605, "acc": 90.59253, "loss_bbox": 0.28171, "loss": 0.90233, "time": 0.12647}
{"mode": "train", "epoch": 1, "iter": 500, "lr": 0.02994, "memory": 4062, "data_time": 0.00728, "loss_rpn_cls": 0.08262, "loss_rpn_bbox": 0.08365, "loss_cls": 0.46881, "acc": 90.15234, "loss_bbox": 0.29078, "loss": 0.92586, "time": 0.12555}
{"mode": "train", "epoch": 1, "iter": 550, "lr": 0.03, "memory": 4062, "data_time": 0.00691, "loss_rpn_cls": 0.07897, "loss_rpn_bbox": 0.07984, "loss_cls": 0.47414, "acc": 89.82837, "loss_bbox": 0.29201, "loss": 0.92497, "time": 0.12599}
{"mode": "train", "epoch": 1, "iter": 600, "lr": 0.03, "memory": 4062, "data_time": 0.00735, "loss_rpn_cls": 0.08161, "loss_rpn_bbox": 0.07705, "loss_cls": 0.43686, "acc": 90.50366, "loss_bbox": 0.27477, "loss": 0.87029, "time": 0.12599}
{"mode": "train", "epoch": 1, "iter": 650, "lr": 0.03, "memory": 4062, "data_time": 0.007, "loss_rpn_cls": 0.0801, "loss_rpn_bbox": 0.08214, "loss_cls": 0.46587, "acc": 89.79932, "loss_bbox": 0.28519, "loss": 0.91331, "time": 0.12464}
{"mode": "train", "epoch": 1, "iter": 700, "lr": 0.03, "memory": 4062, "data_time": 0.00712, "loss_rpn_cls": 0.08007, "loss_rpn_bbox": 0.07933, "loss_cls": 0.42723, "acc": 90.28564, "loss_bbox": 0.28151, "loss": 0.86815, "time": 0.12475}
{"mode": "train", "epoch": 1, "iter": 750, "lr": 0.03, "memory": 4062, "data_time": 0.00714, "loss_rpn_cls": 0.07753, "loss_rpn_bbox": 0.07738, "loss_cls": 0.42494, "acc": 90.28223, "loss_bbox": 0.28204, "loss": 0.86189, "time": 0.1241}
{"mode": "train", "epoch": 1, "iter": 800, "lr": 0.03, "memory": 4062, "data_time": 0.00713, "loss_rpn_cls": 0.07466, "loss_rpn_bbox": 0.0783, "loss_cls": 0.41823, "acc": 90.23804, "loss_bbox": 0.28505, "loss": 0.85623, "time": 0.12462}
{"mode": "train", "epoch": 1, "iter": 850, "lr": 0.03, "memory": 4062, "data_time": 0.00684, "loss_rpn_cls": 0.0773, "loss_rpn_bbox": 0.07389, "loss_cls": 0.40628, "acc": 90.45337, "loss_bbox": 0.27241, "loss": 0.82988, "time": 0.12465}
{"mode": "train", "epoch": 1, "iter": 900, "lr": 0.03, "memory": 4062, "data_time": 0.0071, "loss_rpn_cls": 0.0739, "loss_rpn_bbox": 0.07948, "loss_cls": 0.40342, "acc": 90.31104, "loss_bbox": 0.27638, "loss": 0.83318, "time": 0.12678}
{"mode": "train", "epoch": 1, "iter": 950, "lr": 0.03, "memory": 4062, "data_time": 0.00672, "loss_rpn_cls": 0.07605, "loss_rpn_bbox": 0.0801, "loss_cls": 0.40499, "acc": 90.37134, "loss_bbox": 0.2765, "loss": 0.83765, "time": 0.12749}
{"mode": "train", "epoch": 1, "iter": 1000, "lr": 0.03, "memory": 4062, "data_time": 0.0075, "loss_rpn_cls": 0.0721, "loss_rpn_bbox": 0.07509, "loss_cls": 0.39642, "acc": 90.32324, "loss_bbox": 0.27627, "loss": 0.81989, "time": 0.12939}
{"mode": "train", "epoch": 1, "iter": 1050, "lr": 0.03, "memory": 4062, "data_time": 0.00713, "loss_rpn_cls": 0.07725, "loss_rpn_bbox": 0.07399, "loss_cls": 0.39299, "acc": 90.41211, "loss_bbox": 0.27577, "loss": 0.82, "time": 0.12668}
{"mode": "train", "epoch": 1, "iter": 1100, "lr": 0.03, "memory": 4062, "data_time": 0.00728, "loss_rpn_cls": 0.07213, "loss_rpn_bbox": 0.07631, "loss_cls": 0.40113, "acc": 90.19849, "loss_bbox": 0.28057, "loss": 0.83014, "time": 0.12435}
{"mode": "train", "epoch": 1, "iter": 1150, "lr": 0.03, "memory": 4062, "data_time": 0.00728, "loss_rpn_cls": 0.07204, "loss_rpn_bbox": 0.07066, "loss_cls": 0.3779, "acc": 90.53369, "loss_bbox": 0.27757, "loss": 0.79818, "time": 0.12447}
{"mode": "train", "epoch": 1, "iter": 1200, "lr": 0.03, "memory": 4062, "data_time": 0.00712, "loss_rpn_cls": 0.07314, "loss_rpn_bbox": 0.0754, "loss_cls": 0.37992, "acc": 90.42578, "loss_bbox": 0.26983, "loss": 0.79829, "time": 0.12701}
{"mode": "train", "epoch": 1, "iter": 1250, "lr": 0.03, "memory": 4062, "data_time": 0.00698, "loss_rpn_cls": 0.06889, "loss_rpn_bbox": 0.07831, "loss_cls": 0.37209, "acc": 90.4668, "loss_bbox": 0.27312, "loss": 0.79242, "time": 0.12628}
{"mode": "train", "epoch": 1, "iter": 1300, "lr": 0.03, "memory": 4062, "data_time": 0.00695, "loss_rpn_cls": 0.066, "loss_rpn_bbox": 0.07, "loss_cls": 0.37616, "acc": 90.38892, "loss_bbox": 0.27619, "loss": 0.78835, "time": 0.12492}
{"mode": "train", "epoch": 1, "iter": 1350, "lr": 0.03, "memory": 4062, "data_time": 0.00674, "loss_rpn_cls": 0.07232, "loss_rpn_bbox": 0.07786, "loss_cls": 0.3755, "acc": 90.26514, "loss_bbox": 0.28396, "loss": 0.80964, "time": 0.12501}
{"mode": "train", "epoch": 1, "iter": 1400, "lr": 0.03, "memory": 4062, "data_time": 0.00682, "loss_rpn_cls": 0.07325, "loss_rpn_bbox": 0.07771, "loss_cls": 0.3831, "acc": 90.22974, "loss_bbox": 0.28444, "loss": 0.81849, "time": 0.1243}
{"mode": "train", "epoch": 1, "iter": 1450, "lr": 0.03, "memory": 4062, "data_time": 0.00669, "loss_rpn_cls": 0.07464, "loss_rpn_bbox": 0.07715, "loss_cls": 0.37253, "acc": 90.42407, "loss_bbox": 0.27741, "loss": 0.80173, "time": 0.12416}
{"mode": "train", "epoch": 1, "iter": 1500, "lr": 0.03, "memory": 4062, "data_time": 0.00658, "loss_rpn_cls": 0.07007, "loss_rpn_bbox": 0.07278, "loss_cls": 0.37162, "acc": 90.31934, "loss_bbox": 0.27955, "loss": 0.79402, "time": 0.12608}
{"mode": "train", "epoch": 1, "iter": 1550, "lr": 0.03, "memory": 4062, "data_time": 0.00681, "loss_rpn_cls": 0.0702, "loss_rpn_bbox": 0.07832, "loss_cls": 0.36688, "acc": 90.49585, "loss_bbox": 0.27146, "loss": 0.78686, "time": 0.12784}
{"mode": "train", "epoch": 1, "iter": 1600, "lr": 0.03, "memory": 4062, "data_time": 0.00682, "loss_rpn_cls": 0.06484, "loss_rpn_bbox": 0.06892, "loss_cls": 0.36144, "acc": 90.59204, "loss_bbox": 0.27358, "loss": 0.76878, "time": 0.12424}
{"mode": "train", "epoch": 1, "iter": 1650, "lr": 0.03, "memory": 4062, "data_time": 0.00657, "loss_rpn_cls": 0.06564, "loss_rpn_bbox": 0.07224, "loss_cls": 0.34756, "acc": 91.01074, "loss_bbox": 0.25937, "loss": 0.74482, "time": 0.12565}
{"mode": "train", "epoch": 1, "iter": 1700, "lr": 0.03, "memory": 4062, "data_time": 0.00668, "loss_rpn_cls": 0.06691, "loss_rpn_bbox": 0.07381, "loss_cls": 0.35868, "acc": 90.59082, "loss_bbox": 0.27199, "loss": 0.77139, "time": 0.12504}
{"mode": "train", "epoch": 1, "iter": 1750, "lr": 0.03, "memory": 4062, "data_time": 0.00673, "loss_rpn_cls": 0.06968, "loss_rpn_bbox": 0.0748, "loss_cls": 0.37488, "acc": 90.18408, "loss_bbox": 0.29048, "loss": 0.80985, "time": 0.12586}
{"mode": "train", "epoch": 1, "iter": 1800, "lr": 0.03, "memory": 4062, "data_time": 0.00686, "loss_rpn_cls": 0.06506, "loss_rpn_bbox": 0.07304, "loss_cls": 0.33605, "acc": 91.10498, "loss_bbox": 0.25741, "loss": 0.73156, "time": 0.12818}
{"mode": "train", "epoch": 1, "iter": 1850, "lr": 0.03, "memory": 4062, "data_time": 0.00671, "loss_rpn_cls": 0.06277, "loss_rpn_bbox": 0.0736, "loss_cls": 0.37249, "acc": 90.28662, "loss_bbox": 0.27966, "loss": 0.78852, "time": 0.12526}
{"mode": "train", "epoch": 1, "iter": 1900, "lr": 0.03, "memory": 4062, "data_time": 0.00685, "loss_rpn_cls": 0.07559, "loss_rpn_bbox": 0.07904, "loss_cls": 0.35365, "acc": 90.5332, "loss_bbox": 0.27409, "loss": 0.78237, "time": 0.12688}
{"mode": "train", "epoch": 1, "iter": 1950, "lr": 0.03, "memory": 4062, "data_time": 0.00713, "loss_rpn_cls": 0.06915, "loss_rpn_bbox": 0.07222, "loss_cls": 0.34881, "acc": 90.6167, "loss_bbox": 0.27289, "loss": 0.76306, "time": 0.1266}
{"mode": "train", "epoch": 1, "iter": 2000, "lr": 0.03, "memory": 4062, "data_time": 0.00676, "loss_rpn_cls": 0.0623, "loss_rpn_bbox": 0.06677, "loss_cls": 0.3421, "acc": 90.92041, "loss_bbox": 0.26263, "loss": 0.73381, "time": 0.12749}
{"mode": "train", "epoch": 1, "iter": 2050, "lr": 0.03, "memory": 4062, "data_time": 0.00683, "loss_rpn_cls": 0.06632, "loss_rpn_bbox": 0.07268, "loss_cls": 0.36045, "acc": 90.29077, "loss_bbox": 0.2793, "loss": 0.77876, "time": 0.12997}
{"mode": "train", "epoch": 1, "iter": 2100, "lr": 0.03, "memory": 4062, "data_time": 0.00657, "loss_rpn_cls": 0.06525, "loss_rpn_bbox": 0.07256, "loss_cls": 0.34527, "acc": 90.61768, "loss_bbox": 0.27263, "loss": 0.75571, "time": 0.12826}
{"mode": "train", "epoch": 1, "iter": 2150, "lr": 0.03, "memory": 4062, "data_time": 0.00653, "loss_rpn_cls": 0.06932, "loss_rpn_bbox": 0.07361, "loss_cls": 0.34899, "acc": 90.71045, "loss_bbox": 0.27236, "loss": 0.76428, "time": 0.12686}
{"mode": "train", "epoch": 1, "iter": 2200, "lr": 0.03, "memory": 4062, "data_time": 0.00706, "loss_rpn_cls": 0.06824, "loss_rpn_bbox": 0.07525, "loss_cls": 0.34571, "acc": 90.69385, "loss_bbox": 0.27371, "loss": 0.76292, "time": 0.12951}
{"mode": "train", "epoch": 1, "iter": 2250, "lr": 0.03, "memory": 4062, "data_time": 0.0065, "loss_rpn_cls": 0.07017, "loss_rpn_bbox": 0.0747, "loss_cls": 0.37328, "acc": 90.19409, "loss_bbox": 0.28449, "loss": 0.80264, "time": 0.12735}
{"mode": "train", "epoch": 1, "iter": 2300, "lr": 0.03, "memory": 4062, "data_time": 0.00661, "loss_rpn_cls": 0.06348, "loss_rpn_bbox": 0.07449, "loss_cls": 0.34822, "acc": 90.5188, "loss_bbox": 0.27295, "loss": 0.75914, "time": 0.12709}
{"mode": "train", "epoch": 1, "iter": 2350, "lr": 0.03, "memory": 4062, "data_time": 0.00646, "loss_rpn_cls": 0.06535, "loss_rpn_bbox": 0.07423, "loss_cls": 0.35386, "acc": 90.64966, "loss_bbox": 0.26963, "loss": 0.76307, "time": 0.1259}
{"mode": "train", "epoch": 1, "iter": 2400, "lr": 0.03, "memory": 4062, "data_time": 0.00725, "loss_rpn_cls": 0.06807, "loss_rpn_bbox": 0.07117, "loss_cls": 0.3351, "acc": 91.08179, "loss_bbox": 0.25987, "loss": 0.73421, "time": 0.12522}
{"mode": "train", "epoch": 1, "iter": 2450, "lr": 0.03, "memory": 4062, "data_time": 0.00753, "loss_rpn_cls": 0.06843, "loss_rpn_bbox": 0.07083, "loss_cls": 0.33747, "acc": 90.94238, "loss_bbox": 0.26478, "loss": 0.7415, "time": 0.12707}
{"mode": "train", "epoch": 1, "iter": 2500, "lr": 0.03, "memory": 4062, "data_time": 0.00675, "loss_rpn_cls": 0.06768, "loss_rpn_bbox": 0.0766, "loss_cls": 0.33334, "acc": 90.9873, "loss_bbox": 0.25825, "loss": 0.73588, "time": 0.12546}
{"mode": "train", "epoch": 1, "iter": 2550, "lr": 0.03, "memory": 4062, "data_time": 0.00663, "loss_rpn_cls": 0.06316, "loss_rpn_bbox": 0.06771, "loss_cls": 0.33599, "acc": 90.79321, "loss_bbox": 0.27048, "loss": 0.73735, "time": 0.12494}
{"mode": "train", "epoch": 1, "iter": 2600, "lr": 0.03, "memory": 4062, "data_time": 0.00658, "loss_rpn_cls": 0.0634, "loss_rpn_bbox": 0.07433, "loss_cls": 0.32644, "acc": 91.04395, "loss_bbox": 0.26424, "loss": 0.7284, "time": 0.12708}
{"mode": "train", "epoch": 1, "iter": 2650, "lr": 0.03, "memory": 4062, "data_time": 0.00662, "loss_rpn_cls": 0.06534, "loss_rpn_bbox": 0.06786, "loss_cls": 0.35178, "acc": 90.46973, "loss_bbox": 0.26932, "loss": 0.7543, "time": 0.12585}
{"mode": "train", "epoch": 1, "iter": 2700, "lr": 0.03, "memory": 4062, "data_time": 0.00665, "loss_rpn_cls": 0.06695, "loss_rpn_bbox": 0.07492, "loss_cls": 0.34685, "acc": 90.5918, "loss_bbox": 0.26943, "loss": 0.75815, "time": 0.12618}
{"mode": "train", "epoch": 1, "iter": 2750, "lr": 0.03, "memory": 4062, "data_time": 0.00661, "loss_rpn_cls": 0.06599, "loss_rpn_bbox": 0.07533, "loss_cls": 0.34692, "acc": 90.47437, "loss_bbox": 0.27989, "loss": 0.76813, "time": 0.12456}
{"mode": "train", "epoch": 1, "iter": 2800, "lr": 0.03, "memory": 4062, "data_time": 0.00686, "loss_rpn_cls": 0.0658, "loss_rpn_bbox": 0.07292, "loss_cls": 0.35659, "acc": 90.34326, "loss_bbox": 0.28087, "loss": 0.77618, "time": 0.12765}
{"mode": "train", "epoch": 1, "iter": 2850, "lr": 0.03, "memory": 4062, "data_time": 0.00671, "loss_rpn_cls": 0.06277, "loss_rpn_bbox": 0.07358, "loss_cls": 0.34387, "acc": 90.56543, "loss_bbox": 0.27608, "loss": 0.7563, "time": 0.12432}
{"mode": "train", "epoch": 1, "iter": 2900, "lr": 0.03, "memory": 4062, "data_time": 0.00673, "loss_rpn_cls": 0.06274, "loss_rpn_bbox": 0.07267, "loss_cls": 0.3341, "acc": 90.84717, "loss_bbox": 0.27158, "loss": 0.7411, "time": 0.12481}
{"mode": "train", "epoch": 1, "iter": 2950, "lr": 0.03, "memory": 4062, "data_time": 0.00664, "loss_rpn_cls": 0.0606, "loss_rpn_bbox": 0.06713, "loss_cls": 0.32467, "acc": 91.18286, "loss_bbox": 0.26504, "loss": 0.71744, "time": 0.12532}
{"mode": "train", "epoch": 1, "iter": 3000, "lr": 0.03, "memory": 4062, "data_time": 0.00668, "loss_rpn_cls": 0.06082, "loss_rpn_bbox": 0.06731, "loss_cls": 0.33558, "acc": 90.91602, "loss_bbox": 0.26199, "loss": 0.7257, "time": 0.12504}
{"mode": "train", "epoch": 1, "iter": 3050, "lr": 0.03, "memory": 4086, "data_time": 0.00677, "loss_rpn_cls": 0.05984, "loss_rpn_bbox": 0.07053, "loss_cls": 0.327, "acc": 91.1438, "loss_bbox": 0.26296, "loss": 0.72033, "time": 0.1262}
{"mode": "train", "epoch": 1, "iter": 3100, "lr": 0.03, "memory": 4086, "data_time": 0.0067, "loss_rpn_cls": 0.06018, "loss_rpn_bbox": 0.07134, "loss_cls": 0.33664, "acc": 90.68872, "loss_bbox": 0.27123, "loss": 0.7394, "time": 0.12524}
{"mode": "train", "epoch": 1, "iter": 3150, "lr": 0.03, "memory": 4086, "data_time": 0.00683, "loss_rpn_cls": 0.06002, "loss_rpn_bbox": 0.0672, "loss_cls": 0.30375, "acc": 91.68994, "loss_bbox": 0.24682, "loss": 0.67778, "time": 0.1273}
{"mode": "train", "epoch": 1, "iter": 3200, "lr": 0.03, "memory": 4086, "data_time": 0.00661, "loss_rpn_cls": 0.06486, "loss_rpn_bbox": 0.07448, "loss_cls": 0.34244, "acc": 90.60327, "loss_bbox": 0.27034, "loss": 0.75212, "time": 0.12516}
{"mode": "train", "epoch": 1, "iter": 3250, "lr": 0.03, "memory": 4086, "data_time": 0.00693, "loss_rpn_cls": 0.06416, "loss_rpn_bbox": 0.06845, "loss_cls": 0.33274, "acc": 90.86792, "loss_bbox": 0.25985, "loss": 0.72521, "time": 0.12506}
{"mode": "train", "epoch": 1, "iter": 3300, "lr": 0.03, "memory": 4086, "data_time": 0.0065, "loss_rpn_cls": 0.06129, "loss_rpn_bbox": 0.07204, "loss_cls": 0.33978, "acc": 90.77832, "loss_bbox": 0.27167, "loss": 0.74478, "time": 0.12623}
{"mode": "train", "epoch": 1, "iter": 3350, "lr": 0.03, "memory": 4086, "data_time": 0.00675, "loss_rpn_cls": 0.05902, "loss_rpn_bbox": 0.06627, "loss_cls": 0.32886, "acc": 90.90845, "loss_bbox": 0.26446, "loss": 0.71861, "time": 0.12569}
{"mode": "train", "epoch": 1, "iter": 3400, "lr": 0.03, "memory": 4086, "data_time": 0.00696, "loss_rpn_cls": 0.06027, "loss_rpn_bbox": 0.06938, "loss_cls": 0.32262, "acc": 90.98169, "loss_bbox": 0.26169, "loss": 0.71395, "time": 0.12836}
{"mode": "train", "epoch": 1, "iter": 3450, "lr": 0.03, "memory": 4086, "data_time": 0.0068, "loss_rpn_cls": 0.06474, "loss_rpn_bbox": 0.07061, "loss_cls": 0.3313, "acc": 90.86475, "loss_bbox": 0.262, "loss": 0.72865, "time": 0.12479}
{"mode": "train", "epoch": 1, "iter": 3500, "lr": 0.03, "memory": 4086, "data_time": 0.00677, "loss_rpn_cls": 0.06194, "loss_rpn_bbox": 0.0668, "loss_cls": 0.31316, "acc": 91.26514, "loss_bbox": 0.2539, "loss": 0.6958, "time": 0.1258}
{"mode": "train", "epoch": 1, "iter": 3550, "lr": 0.03, "memory": 4086, "data_time": 0.00692, "loss_rpn_cls": 0.06058, "loss_rpn_bbox": 0.06626, "loss_cls": 0.3244, "acc": 90.92236, "loss_bbox": 0.26444, "loss": 0.71566, "time": 0.12553}
{"mode": "train", "epoch": 1, "iter": 3600, "lr": 0.03, "memory": 4086, "data_time": 0.0068, "loss_rpn_cls": 0.05856, "loss_rpn_bbox": 0.06909, "loss_cls": 0.33541, "acc": 90.69849, "loss_bbox": 0.27089, "loss": 0.73394, "time": 0.12801}
{"mode": "train", "epoch": 1, "iter": 3650, "lr": 0.03, "memory": 4086, "data_time": 0.00676, "loss_rpn_cls": 0.05899, "loss_rpn_bbox": 0.07097, "loss_cls": 0.322, "acc": 90.87402, "loss_bbox": 0.27124, "loss": 0.7232, "time": 0.1242}
{"mode": "train", "epoch": 1, "iter": 3700, "lr": 0.03, "memory": 4086, "data_time": 0.00764, "loss_rpn_cls": 0.05514, "loss_rpn_bbox": 0.07033, "loss_cls": 0.33212, "acc": 90.65552, "loss_bbox": 0.27372, "loss": 0.7313, "time": 0.12782}
{"mode": "train", "epoch": 1, "iter": 3750, "lr": 0.03, "memory": 4086, "data_time": 0.00737, "loss_rpn_cls": 0.05767, "loss_rpn_bbox": 0.06985, "loss_cls": 0.33779, "acc": 90.45264, "loss_bbox": 0.28273, "loss": 0.74804, "time": 0.12553}
{"mode": "train", "epoch": 1, "iter": 3800, "lr": 0.03, "memory": 4086, "data_time": 0.00678, "loss_rpn_cls": 0.06451, "loss_rpn_bbox": 0.07105, "loss_cls": 0.32126, "acc": 91.13184, "loss_bbox": 0.26509, "loss": 0.72191, "time": 0.12514}
{"mode": "train", "epoch": 1, "iter": 3850, "lr": 0.03, "memory": 4086, "data_time": 0.00699, "loss_rpn_cls": 0.05838, "loss_rpn_bbox": 0.06936, "loss_cls": 0.32492, "acc": 90.90625, "loss_bbox": 0.26549, "loss": 0.71816, "time": 0.12444}
{"mode": "train", "epoch": 1, "iter": 3900, "lr": 0.03, "memory": 4086, "data_time": 0.00679, "loss_rpn_cls": 0.06453, "loss_rpn_bbox": 0.07083, "loss_cls": 0.32241, "acc": 91.0769, "loss_bbox": 0.25833, "loss": 0.7161, "time": 0.12471}
{"mode": "train", "epoch": 1, "iter": 3950, "lr": 0.03, "memory": 4086, "data_time": 0.00684, "loss_rpn_cls": 0.06075, "loss_rpn_bbox": 0.06807, "loss_cls": 0.31327, "acc": 91.10498, "loss_bbox": 0.25341, "loss": 0.69551, "time": 0.12402}
{"mode": "train", "epoch": 1, "iter": 4000, "lr": 0.03, "memory": 4086, "data_time": 0.0069, "loss_rpn_cls": 0.0565, "loss_rpn_bbox": 0.06347, "loss_cls": 0.3149, "acc": 91.23999, "loss_bbox": 0.25264, "loss": 0.6875, "time": 0.12845}
{"mode": "train", "epoch": 1, "iter": 4050, "lr": 0.03, "memory": 4086, "data_time": 0.00654, "loss_rpn_cls": 0.05967, "loss_rpn_bbox": 0.06791, "loss_cls": 0.33225, "acc": 90.71216, "loss_bbox": 0.2728, "loss": 0.73263, "time": 0.12427}
{"mode": "train", "epoch": 1, "iter": 4100, "lr": 0.03, "memory": 4086, "data_time": 0.00673, "loss_rpn_cls": 0.05939, "loss_rpn_bbox": 0.0678, "loss_cls": 0.31974, "acc": 90.94897, "loss_bbox": 0.26059, "loss": 0.70751, "time": 0.12367}
{"mode": "train", "epoch": 1, "iter": 4150, "lr": 0.03, "memory": 4086, "data_time": 0.00665, "loss_rpn_cls": 0.06051, "loss_rpn_bbox": 0.06896, "loss_cls": 0.33174, "acc": 90.77588, "loss_bbox": 0.26818, "loss": 0.7294, "time": 0.12599}
{"mode": "train", "epoch": 1, "iter": 4200, "lr": 0.03, "memory": 4086, "data_time": 0.00681, "loss_rpn_cls": 0.05951, "loss_rpn_bbox": 0.07003, "loss_cls": 0.32577, "acc": 90.70068, "loss_bbox": 0.26877, "loss": 0.72407, "time": 0.12467}
{"mode": "train", "epoch": 1, "iter": 4250, "lr": 0.03, "memory": 4086, "data_time": 0.00684, "loss_rpn_cls": 0.06395, "loss_rpn_bbox": 0.07107, "loss_cls": 0.32072, "acc": 90.84888, "loss_bbox": 0.26184, "loss": 0.71758, "time": 0.1255}
{"mode": "train", "epoch": 1, "iter": 4300, "lr": 0.03, "memory": 4086, "data_time": 0.00672, "loss_rpn_cls": 0.05981, "loss_rpn_bbox": 0.06813, "loss_cls": 0.32656, "acc": 90.90137, "loss_bbox": 0.26276, "loss": 0.71726, "time": 0.12582}
{"mode": "train", "epoch": 1, "iter": 4350, "lr": 0.03, "memory": 4086, "data_time": 0.00672, "loss_rpn_cls": 0.05902, "loss_rpn_bbox": 0.06686, "loss_cls": 0.32129, "acc": 90.89966, "loss_bbox": 0.26419, "loss": 0.71136, "time": 0.125}
{"mode": "train", "epoch": 1, "iter": 4400, "lr": 0.03, "memory": 4086, "data_time": 0.0068, "loss_rpn_cls": 0.06284, "loss_rpn_bbox": 0.07057, "loss_cls": 0.31236, "acc": 91.00659, "loss_bbox": 0.26386, "loss": 0.70963, "time": 0.12676}
{"mode": "train", "epoch": 1, "iter": 4450, "lr": 0.03, "memory": 4086, "data_time": 0.00682, "loss_rpn_cls": 0.05206, "loss_rpn_bbox": 0.06306, "loss_cls": 0.29791, "acc": 91.72461, "loss_bbox": 0.24329, "loss": 0.65632, "time": 0.12467}
{"mode": "train", "epoch": 1, "iter": 4500, "lr": 0.03, "memory": 4086, "data_time": 0.00684, "loss_rpn_cls": 0.05524, "loss_rpn_bbox": 0.06607, "loss_cls": 0.31353, "acc": 90.97266, "loss_bbox": 0.26227, "loss": 0.69711, "time": 0.12402}
{"mode": "train", "epoch": 1, "iter": 4550, "lr": 0.03, "memory": 4086, "data_time": 0.00672, "loss_rpn_cls": 0.0602, "loss_rpn_bbox": 0.0714, "loss_cls": 0.31561, "acc": 91.1604, "loss_bbox": 0.25896, "loss": 0.70617, "time": 0.12794}
{"mode": "train", "epoch": 1, "iter": 4600, "lr": 0.03, "memory": 4086, "data_time": 0.00666, "loss_rpn_cls": 0.05515, "loss_rpn_bbox": 0.06715, "loss_cls": 0.31143, "acc": 91.15063, "loss_bbox": 0.26057, "loss": 0.69431, "time": 0.12675}
{"mode": "train", "epoch": 1, "iter": 4650, "lr": 0.03, "memory": 4086, "data_time": 0.00689, "loss_rpn_cls": 0.06124, "loss_rpn_bbox": 0.07377, "loss_cls": 0.33795, "acc": 90.32886, "loss_bbox": 0.27581, "loss": 0.74877, "time": 0.1247}
{"mode": "train", "epoch": 1, "iter": 4700, "lr": 0.03, "memory": 4086, "data_time": 0.00681, "loss_rpn_cls": 0.05758, "loss_rpn_bbox": 0.06837, "loss_cls": 0.32755, "acc": 90.74146, "loss_bbox": 0.27247, "loss": 0.72597, "time": 0.12509}
{"mode": "train", "epoch": 1, "iter": 4750, "lr": 0.03, "memory": 4086, "data_time": 0.00685, "loss_rpn_cls": 0.05889, "loss_rpn_bbox": 0.07008, "loss_cls": 0.3201, "acc": 90.86426, "loss_bbox": 0.26974, "loss": 0.71881, "time": 0.12459}
{"mode": "train", "epoch": 1, "iter": 4800, "lr": 0.03, "memory": 4086, "data_time": 0.0072, "loss_rpn_cls": 0.05589, "loss_rpn_bbox": 0.06586, "loss_cls": 0.3244, "acc": 90.78369, "loss_bbox": 0.26997, "loss": 0.71612, "time": 0.12588}
{"mode": "train", "epoch": 1, "iter": 4850, "lr": 0.03, "memory": 4086, "data_time": 0.00669, "loss_rpn_cls": 0.06411, "loss_rpn_bbox": 0.07069, "loss_cls": 0.31662, "acc": 91.18994, "loss_bbox": 0.25545, "loss": 0.70687, "time": 0.12352}
{"mode": "train", "epoch": 1, "iter": 4900, "lr": 0.03, "memory": 4086, "data_time": 0.00706, "loss_rpn_cls": 0.05308, "loss_rpn_bbox": 0.06561, "loss_cls": 0.30892, "acc": 91.2168, "loss_bbox": 0.25947, "loss": 0.68709, "time": 0.12865}
{"mode": "train", "epoch": 1, "iter": 4950, "lr": 0.03, "memory": 4086, "data_time": 0.00671, "loss_rpn_cls": 0.054, "loss_rpn_bbox": 0.06407, "loss_cls": 0.29765, "acc": 91.23926, "loss_bbox": 0.25225, "loss": 0.66798, "time": 0.12405}
{"mode": "train", "epoch": 1, "iter": 5000, "lr": 0.03, "memory": 4086, "data_time": 0.00683, "loss_rpn_cls": 0.06301, "loss_rpn_bbox": 0.06665, "loss_cls": 0.30958, "acc": 91.23633, "loss_bbox": 0.25877, "loss": 0.69801, "time": 0.12453}
{"mode": "train", "epoch": 1, "iter": 5050, "lr": 0.03, "memory": 4086, "data_time": 0.00681, "loss_rpn_cls": 0.05499, "loss_rpn_bbox": 0.06582, "loss_cls": 0.31523, "acc": 91.06592, "loss_bbox": 0.26504, "loss": 0.70108, "time": 0.1254}
{"mode": "train", "epoch": 1, "iter": 5100, "lr": 0.03, "memory": 4086, "data_time": 0.00679, "loss_rpn_cls": 0.05897, "loss_rpn_bbox": 0.06547, "loss_cls": 0.31699, "acc": 91.11768, "loss_bbox": 0.25777, "loss": 0.69921, "time": 0.12438}
{"mode": "train", "epoch": 1, "iter": 5150, "lr": 0.03, "memory": 4086, "data_time": 0.00675, "loss_rpn_cls": 0.06034, "loss_rpn_bbox": 0.06942, "loss_cls": 0.3189, "acc": 90.89404, "loss_bbox": 0.26596, "loss": 0.71462, "time": 0.12544}
{"mode": "train", "epoch": 1, "iter": 5200, "lr": 0.03, "memory": 4086, "data_time": 0.00678, "loss_rpn_cls": 0.05973, "loss_rpn_bbox": 0.06957, "loss_cls": 0.32406, "acc": 90.79395, "loss_bbox": 0.26579, "loss": 0.71915, "time": 0.12708}
{"mode": "train", "epoch": 1, "iter": 5250, "lr": 0.03, "memory": 4086, "data_time": 0.00678, "loss_rpn_cls": 0.05546, "loss_rpn_bbox": 0.06664, "loss_cls": 0.31332, "acc": 91.00635, "loss_bbox": 0.26214, "loss": 0.69757, "time": 0.12444}
{"mode": "train", "epoch": 1, "iter": 5300, "lr": 0.03, "memory": 4086, "data_time": 0.0071, "loss_rpn_cls": 0.05586, "loss_rpn_bbox": 0.06429, "loss_cls": 0.32748, "acc": 90.77295, "loss_bbox": 0.26838, "loss": 0.71601, "time": 0.1256}
{"mode": "train", "epoch": 1, "iter": 5350, "lr": 0.03, "memory": 4086, "data_time": 0.00676, "loss_rpn_cls": 0.05693, "loss_rpn_bbox": 0.06662, "loss_cls": 0.30918, "acc": 91.23096, "loss_bbox": 0.26069, "loss": 0.69342, "time": 0.12417}
{"mode": "train", "epoch": 1, "iter": 5400, "lr": 0.03, "memory": 4086, "data_time": 0.00719, "loss_rpn_cls": 0.05448, "loss_rpn_bbox": 0.0659, "loss_cls": 0.30277, "acc": 91.43945, "loss_bbox": 0.25534, "loss": 0.6785, "time": 0.12451}
{"mode": "train", "epoch": 1, "iter": 5450, "lr": 0.03, "memory": 4086, "data_time": 0.00689, "loss_rpn_cls": 0.05703, "loss_rpn_bbox": 0.06837, "loss_cls": 0.31374, "acc": 90.83301, "loss_bbox": 0.26939, "loss": 0.70853, "time": 0.12691}
{"mode": "train", "epoch": 1, "iter": 5500, "lr": 0.03, "memory": 4086, "data_time": 0.00701, "loss_rpn_cls": 0.05763, "loss_rpn_bbox": 0.06592, "loss_cls": 0.3206, "acc": 91.04468, "loss_bbox": 0.25829, "loss": 0.70245, "time": 0.12427}
{"mode": "train", "epoch": 1, "iter": 5550, "lr": 0.03, "memory": 4086, "data_time": 0.00722, "loss_rpn_cls": 0.0521, "loss_rpn_bbox": 0.06666, "loss_cls": 0.2992, "acc": 91.23291, "loss_bbox": 0.25475, "loss": 0.67271, "time": 0.12514}
{"mode": "train", "epoch": 1, "iter": 5600, "lr": 0.03, "memory": 4086, "data_time": 0.00733, "loss_rpn_cls": 0.05802, "loss_rpn_bbox": 0.06882, "loss_cls": 0.30546, "acc": 91.05908, "loss_bbox": 0.26377, "loss": 0.69607, "time": 0.12549}
{"mode": "train", "epoch": 1, "iter": 5650, "lr": 0.03, "memory": 4086, "data_time": 0.00704, "loss_rpn_cls": 0.05426, "loss_rpn_bbox": 0.06372, "loss_cls": 0.29833, "acc": 91.49805, "loss_bbox": 0.24935, "loss": 0.66567, "time": 0.12734}
{"mode": "train", "epoch": 1, "iter": 5700, "lr": 0.03, "memory": 4086, "data_time": 0.007, "loss_rpn_cls": 0.05702, "loss_rpn_bbox": 0.06853, "loss_cls": 0.3136, "acc": 90.95996, "loss_bbox": 0.26332, "loss": 0.70247, "time": 0.12443}
{"mode": "train", "epoch": 1, "iter": 5750, "lr": 0.03, "memory": 4086, "data_time": 0.00726, "loss_rpn_cls": 0.05463, "loss_rpn_bbox": 0.06913, "loss_cls": 0.30177, "acc": 91.18311, "loss_bbox": 0.26184, "loss": 0.68737, "time": 0.12488}
{"mode": "train", "epoch": 1, "iter": 5800, "lr": 0.03, "memory": 4086, "data_time": 0.00702, "loss_rpn_cls": 0.0526, "loss_rpn_bbox": 0.06444, "loss_cls": 0.29934, "acc": 91.43555, "loss_bbox": 0.25201, "loss": 0.66839, "time": 0.12399}
{"mode": "train", "epoch": 1, "iter": 5850, "lr": 0.03, "memory": 4086, "data_time": 0.00704, "loss_rpn_cls": 0.054, "loss_rpn_bbox": 0.06436, "loss_cls": 0.30679, "acc": 91.29663, "loss_bbox": 0.25091, "loss": 0.67606, "time": 0.12381}
{"mode": "train", "epoch": 1, "iter": 5900, "lr": 0.03, "memory": 4086, "data_time": 0.00735, "loss_rpn_cls": 0.0574, "loss_rpn_bbox": 0.06763, "loss_cls": 0.30626, "acc": 91.05591, "loss_bbox": 0.26261, "loss": 0.6939, "time": 0.12495}
{"mode": "train", "epoch": 1, "iter": 5950, "lr": 0.03, "memory": 4086, "data_time": 0.00705, "loss_rpn_cls": 0.0516, "loss_rpn_bbox": 0.06723, "loss_cls": 0.30595, "acc": 91.04834, "loss_bbox": 0.26553, "loss": 0.69031, "time": 0.12318}
{"mode": "train", "epoch": 1, "iter": 6000, "lr": 0.03, "memory": 4086, "data_time": 0.00711, "loss_rpn_cls": 0.05614, "loss_rpn_bbox": 0.06779, "loss_cls": 0.30867, "acc": 91.09888, "loss_bbox": 0.26623, "loss": 0.69883, "time": 0.12418}
{"mode": "train", "epoch": 1, "iter": 6050, "lr": 0.03, "memory": 4086, "data_time": 0.00693, "loss_rpn_cls": 0.06035, "loss_rpn_bbox": 0.06927, "loss_cls": 0.2975, "acc": 91.25024, "loss_bbox": 0.25844, "loss": 0.68556, "time": 0.12539}
{"mode": "train", "epoch": 1, "iter": 6100, "lr": 0.03, "memory": 4086, "data_time": 0.00741, "loss_rpn_cls": 0.05696, "loss_rpn_bbox": 0.07035, "loss_cls": 0.3063, "acc": 91.25903, "loss_bbox": 0.2551, "loss": 0.68871, "time": 0.12444}
{"mode": "train", "epoch": 1, "iter": 6150, "lr": 0.03, "memory": 4086, "data_time": 0.0072, "loss_rpn_cls": 0.05323, "loss_rpn_bbox": 0.06459, "loss_cls": 0.29194, "acc": 91.50952, "loss_bbox": 0.25127, "loss": 0.66103, "time": 0.12424}
{"mode": "train", "epoch": 1, "iter": 6200, "lr": 0.03, "memory": 4086, "data_time": 0.00734, "loss_rpn_cls": 0.05741, "loss_rpn_bbox": 0.06553, "loss_cls": 0.31313, "acc": 90.97876, "loss_bbox": 0.26346, "loss": 0.69953, "time": 0.12475}
{"mode": "train", "epoch": 1, "iter": 6250, "lr": 0.03, "memory": 4086, "data_time": 0.00705, "loss_rpn_cls": 0.05327, "loss_rpn_bbox": 0.06672, "loss_cls": 0.32483, "acc": 90.91504, "loss_bbox": 0.25686, "loss": 0.70168, "time": 0.12341}
{"mode": "train", "epoch": 1, "iter": 6300, "lr": 0.03, "memory": 4086, "data_time": 0.00729, "loss_rpn_cls": 0.06077, "loss_rpn_bbox": 0.07124, "loss_cls": 0.31039, "acc": 91.2854, "loss_bbox": 0.25382, "loss": 0.69622, "time": 0.12352}
{"mode": "train", "epoch": 1, "iter": 6350, "lr": 0.03, "memory": 4086, "data_time": 0.00705, "loss_rpn_cls": 0.05812, "loss_rpn_bbox": 0.06941, "loss_cls": 0.31361, "acc": 91.1394, "loss_bbox": 0.26471, "loss": 0.70584, "time": 0.1239}
{"mode": "train", "epoch": 1, "iter": 6400, "lr": 0.03, "memory": 4086, "data_time": 0.00694, "loss_rpn_cls": 0.05714, "loss_rpn_bbox": 0.06459, "loss_cls": 0.29279, "acc": 91.47095, "loss_bbox": 0.24783, "loss": 0.66234, "time": 0.12627}
{"mode": "train", "epoch": 1, "iter": 6450, "lr": 0.03, "memory": 4086, "data_time": 0.00703, "loss_rpn_cls": 0.05207, "loss_rpn_bbox": 0.06472, "loss_cls": 0.29167, "acc": 91.55029, "loss_bbox": 0.24714, "loss": 0.6556, "time": 0.12438}
{"mode": "train", "epoch": 1, "iter": 6500, "lr": 0.03, "memory": 4086, "data_time": 0.0075, "loss_rpn_cls": 0.05575, "loss_rpn_bbox": 0.06662, "loss_cls": 0.3016, "acc": 91.2002, "loss_bbox": 0.25921, "loss": 0.68318, "time": 0.12905}
{"mode": "train", "epoch": 1, "iter": 6550, "lr": 0.03, "memory": 4086, "data_time": 0.0072, "loss_rpn_cls": 0.05159, "loss_rpn_bbox": 0.06532, "loss_cls": 0.29235, "acc": 91.49438, "loss_bbox": 0.25428, "loss": 0.66353, "time": 0.12488}
{"mode": "train", "epoch": 1, "iter": 6600, "lr": 0.03, "memory": 4086, "data_time": 0.00706, "loss_rpn_cls": 0.05628, "loss_rpn_bbox": 0.06974, "loss_cls": 0.3055, "acc": 91.17163, "loss_bbox": 0.25924, "loss": 0.69076, "time": 0.12446}
{"mode": "train", "epoch": 1, "iter": 6650, "lr": 0.03, "memory": 4086, "data_time": 0.00743, "loss_rpn_cls": 0.05561, "loss_rpn_bbox": 0.06405, "loss_cls": 0.29218, "acc": 91.64258, "loss_bbox": 0.24828, "loss": 0.66012, "time": 0.1257}
{"mode": "train", "epoch": 1, "iter": 6700, "lr": 0.03, "memory": 4086, "data_time": 0.00722, "loss_rpn_cls": 0.05763, "loss_rpn_bbox": 0.07094, "loss_cls": 0.31711, "acc": 90.9021, "loss_bbox": 0.26362, "loss": 0.7093, "time": 0.12644}
{"mode": "train", "epoch": 1, "iter": 6750, "lr": 0.03, "memory": 4086, "data_time": 0.00698, "loss_rpn_cls": 0.06045, "loss_rpn_bbox": 0.06863, "loss_cls": 0.30003, "acc": 91.427, "loss_bbox": 0.25431, "loss": 0.68342, "time": 0.12437}
{"mode": "train", "epoch": 1, "iter": 6800, "lr": 0.03, "memory": 4086, "data_time": 0.00721, "loss_rpn_cls": 0.05398, "loss_rpn_bbox": 0.0677, "loss_cls": 0.30299, "acc": 91.10669, "loss_bbox": 0.26109, "loss": 0.68575, "time": 0.12416}
{"mode": "train", "epoch": 1, "iter": 6850, "lr": 0.03, "memory": 4086, "data_time": 0.00735, "loss_rpn_cls": 0.05411, "loss_rpn_bbox": 0.06493, "loss_cls": 0.31158, "acc": 91.03589, "loss_bbox": 0.2567, "loss": 0.68732, "time": 0.12388}
{"mode": "train", "epoch": 1, "iter": 6900, "lr": 0.03, "memory": 4086, "data_time": 0.00753, "loss_rpn_cls": 0.05278, "loss_rpn_bbox": 0.06708, "loss_cls": 0.30723, "acc": 91.15137, "loss_bbox": 0.25395, "loss": 0.68103, "time": 0.12898}
{"mode": "train", "epoch": 1, "iter": 6950, "lr": 0.03, "memory": 4086, "data_time": 0.00729, "loss_rpn_cls": 0.05577, "loss_rpn_bbox": 0.06376, "loss_cls": 0.319, "acc": 90.76709, "loss_bbox": 0.26778, "loss": 0.70631, "time": 0.1265}
{"mode": "train", "epoch": 1, "iter": 7000, "lr": 0.03, "memory": 4086, "data_time": 0.0074, "loss_rpn_cls": 0.05219, "loss_rpn_bbox": 0.06553, "loss_cls": 0.28613, "acc": 91.64966, "loss_bbox": 0.2539, "loss": 0.65774, "time": 0.12727}
{"mode": "train", "epoch": 1, "iter": 7050, "lr": 0.03, "memory": 4086, "data_time": 0.00711, "loss_rpn_cls": 0.05148, "loss_rpn_bbox": 0.06432, "loss_cls": 0.30067, "acc": 91.22412, "loss_bbox": 0.2549, "loss": 0.67136, "time": 0.12655}
{"mode": "train", "epoch": 1, "iter": 7100, "lr": 0.03, "memory": 4086, "data_time": 0.00694, "loss_rpn_cls": 0.04948, "loss_rpn_bbox": 0.06396, "loss_cls": 0.29618, "acc": 91.22046, "loss_bbox": 0.25754, "loss": 0.66716, "time": 0.12469}
{"mode": "train", "epoch": 1, "iter": 7150, "lr": 0.03, "memory": 4086, "data_time": 0.00726, "loss_rpn_cls": 0.05911, "loss_rpn_bbox": 0.07119, "loss_cls": 0.30194, "acc": 90.98804, "loss_bbox": 0.26571, "loss": 0.69795, "time": 0.12482}
{"mode": "train", "epoch": 1, "iter": 7200, "lr": 0.03, "memory": 4086, "data_time": 0.00742, "loss_rpn_cls": 0.05974, "loss_rpn_bbox": 0.06453, "loss_cls": 0.29391, "acc": 91.45825, "loss_bbox": 0.24681, "loss": 0.665, "time": 0.12715}
{"mode": "train", "epoch": 1, "iter": 7250, "lr": 0.03, "memory": 4086, "data_time": 0.00709, "loss_rpn_cls": 0.05218, "loss_rpn_bbox": 0.06274, "loss_cls": 0.30156, "acc": 91.25415, "loss_bbox": 0.25534, "loss": 0.67182, "time": 0.12886}
{"mode": "train", "epoch": 1, "iter": 7300, "lr": 0.03, "memory": 4086, "data_time": 0.00728, "loss_rpn_cls": 0.05002, "loss_rpn_bbox": 0.06541, "loss_cls": 0.29537, "acc": 91.43311, "loss_bbox": 0.25007, "loss": 0.66087, "time": 0.1262}
{"mode": "train", "epoch": 1, "iter": 7350, "lr": 0.03, "memory": 4086, "data_time": 0.0073, "loss_rpn_cls": 0.0562, "loss_rpn_bbox": 0.068, "loss_cls": 0.30547, "acc": 91.0459, "loss_bbox": 0.26852, "loss": 0.69819, "time": 0.12397}
{"mode": "train", "epoch": 1, "iter": 7400, "lr": 0.03, "memory": 4086, "data_time": 0.00691, "loss_rpn_cls": 0.05016, "loss_rpn_bbox": 0.07082, "loss_cls": 0.29821, "acc": 91.23169, "loss_bbox": 0.26462, "loss": 0.68382, "time": 0.12748}
{"mode": "train", "epoch": 1, "iter": 7450, "lr": 0.03, "memory": 4086, "data_time": 0.00698, "loss_rpn_cls": 0.05409, "loss_rpn_bbox": 0.0665, "loss_cls": 0.29602, "acc": 91.30591, "loss_bbox": 0.25652, "loss": 0.67314, "time": 0.12465}
{"mode": "train", "epoch": 1, "iter": 7500, "lr": 0.03, "memory": 4086, "data_time": 0.00705, "loss_rpn_cls": 0.05285, "loss_rpn_bbox": 0.06778, "loss_cls": 0.30454, "acc": 91.0625, "loss_bbox": 0.26398, "loss": 0.68915, "time": 0.12766}
{"mode": "train", "epoch": 1, "iter": 7550, "lr": 0.03, "memory": 4086, "data_time": 0.00749, "loss_rpn_cls": 0.05033, "loss_rpn_bbox": 0.06422, "loss_cls": 0.29043, "acc": 91.5271, "loss_bbox": 0.25179, "loss": 0.65677, "time": 0.12649}
{"mode": "train", "epoch": 1, "iter": 7600, "lr": 0.03, "memory": 4086, "data_time": 0.00713, "loss_rpn_cls": 0.05192, "loss_rpn_bbox": 0.06336, "loss_cls": 0.28757, "acc": 91.46924, "loss_bbox": 0.25509, "loss": 0.65794, "time": 0.12386}
{"mode": "train", "epoch": 1, "iter": 7650, "lr": 0.03, "memory": 4086, "data_time": 0.007, "loss_rpn_cls": 0.05101, "loss_rpn_bbox": 0.0657, "loss_cls": 0.29967, "acc": 91.16357, "loss_bbox": 0.26283, "loss": 0.67921, "time": 0.12374}
{"mode": "train", "epoch": 1, "iter": 7700, "lr": 0.03, "memory": 4086, "data_time": 0.00713, "loss_rpn_cls": 0.05242, "loss_rpn_bbox": 0.06822, "loss_cls": 0.29025, "acc": 91.38428, "loss_bbox": 0.25342, "loss": 0.6643, "time": 0.12493}
{"mode": "train", "epoch": 1, "iter": 7750, "lr": 0.03, "memory": 4086, "data_time": 0.00688, "loss_rpn_cls": 0.04998, "loss_rpn_bbox": 0.06341, "loss_cls": 0.28874, "acc": 91.53809, "loss_bbox": 0.2476, "loss": 0.64973, "time": 0.12379}
{"mode": "train", "epoch": 1, "iter": 7800, "lr": 0.03, "memory": 4086, "data_time": 0.00711, "loss_rpn_cls": 0.0515, "loss_rpn_bbox": 0.06637, "loss_cls": 0.2977, "acc": 91.21411, "loss_bbox": 0.26154, "loss": 0.6771, "time": 0.12575}
{"mode": "train", "epoch": 1, "iter": 7850, "lr": 0.03, "memory": 4086, "data_time": 0.00712, "loss_rpn_cls": 0.05081, "loss_rpn_bbox": 0.06234, "loss_cls": 0.29554, "acc": 91.4021, "loss_bbox": 0.25698, "loss": 0.66566, "time": 0.12674}
{"mode": "train", "epoch": 1, "iter": 7900, "lr": 0.03, "memory": 4086, "data_time": 0.00721, "loss_rpn_cls": 0.05303, "loss_rpn_bbox": 0.06708, "loss_cls": 0.30271, "acc": 91.13965, "loss_bbox": 0.26025, "loss": 0.68307, "time": 0.12584}
{"mode": "train", "epoch": 1, "iter": 7950, "lr": 0.03, "memory": 4086, "data_time": 0.00713, "loss_rpn_cls": 0.04923, "loss_rpn_bbox": 0.06471, "loss_cls": 0.28492, "acc": 91.65161, "loss_bbox": 0.24506, "loss": 0.64392, "time": 0.12424}
{"mode": "train", "epoch": 1, "iter": 8000, "lr": 0.03, "memory": 4086, "data_time": 0.00712, "loss_rpn_cls": 0.05166, "loss_rpn_bbox": 0.06261, "loss_cls": 0.29626, "acc": 91.24658, "loss_bbox": 0.25961, "loss": 0.67014, "time": 0.12461}
{"mode": "train", "epoch": 1, "iter": 8050, "lr": 0.03, "memory": 4086, "data_time": 0.00701, "loss_rpn_cls": 0.05662, "loss_rpn_bbox": 0.066, "loss_cls": 0.29961, "acc": 91.15576, "loss_bbox": 0.25284, "loss": 0.67507, "time": 0.12548}
{"mode": "train", "epoch": 1, "iter": 8100, "lr": 0.03, "memory": 4086, "data_time": 0.00704, "loss_rpn_cls": 0.05146, "loss_rpn_bbox": 0.06862, "loss_cls": 0.29882, "acc": 91.17456, "loss_bbox": 0.26026, "loss": 0.67917, "time": 0.12467}
{"mode": "train", "epoch": 1, "iter": 8150, "lr": 0.03, "memory": 4086, "data_time": 0.00747, "loss_rpn_cls": 0.05433, "loss_rpn_bbox": 0.06557, "loss_cls": 0.29066, "acc": 91.4248, "loss_bbox": 0.25489, "loss": 0.66545, "time": 0.12433}
{"mode": "train", "epoch": 1, "iter": 8200, "lr": 0.03, "memory": 4086, "data_time": 0.00759, "loss_rpn_cls": 0.0522, "loss_rpn_bbox": 0.06436, "loss_cls": 0.29238, "acc": 91.44165, "loss_bbox": 0.24878, "loss": 0.65773, "time": 0.12512}
{"mode": "train", "epoch": 1, "iter": 8250, "lr": 0.03, "memory": 4086, "data_time": 0.00726, "loss_rpn_cls": 0.05659, "loss_rpn_bbox": 0.06603, "loss_cls": 0.30945, "acc": 90.74707, "loss_bbox": 0.27209, "loss": 0.70415, "time": 0.12498}
{"mode": "train", "epoch": 1, "iter": 8300, "lr": 0.03, "memory": 4086, "data_time": 0.00723, "loss_rpn_cls": 0.05078, "loss_rpn_bbox": 0.06786, "loss_cls": 0.29402, "acc": 91.30103, "loss_bbox": 0.25823, "loss": 0.67089, "time": 0.12899}
{"mode": "train", "epoch": 1, "iter": 8350, "lr": 0.03, "memory": 4086, "data_time": 0.00699, "loss_rpn_cls": 0.05091, "loss_rpn_bbox": 0.06773, "loss_cls": 0.29637, "acc": 91.20801, "loss_bbox": 0.26066, "loss": 0.67567, "time": 0.12419}
{"mode": "train", "epoch": 1, "iter": 8400, "lr": 0.03, "memory": 4086, "data_time": 0.00756, "loss_rpn_cls": 0.05131, "loss_rpn_bbox": 0.06437, "loss_cls": 0.29236, "acc": 91.31982, "loss_bbox": 0.25511, "loss": 0.66316, "time": 0.12434}
{"mode": "train", "epoch": 1, "iter": 8450, "lr": 0.03, "memory": 4086, "data_time": 0.00721, "loss_rpn_cls": 0.05055, "loss_rpn_bbox": 0.06587, "loss_cls": 0.28216, "acc": 91.47266, "loss_bbox": 0.25718, "loss": 0.65576, "time": 0.12562}
{"mode": "train", "epoch": 1, "iter": 8500, "lr": 0.03, "memory": 4086, "data_time": 0.0073, "loss_rpn_cls": 0.04981, "loss_rpn_bbox": 0.066, "loss_cls": 0.29244, "acc": 91.44678, "loss_bbox": 0.25482, "loss": 0.66308, "time": 0.12425}
{"mode": "train", "epoch": 1, "iter": 8550, "lr": 0.03, "memory": 4086, "data_time": 0.00749, "loss_rpn_cls": 0.04878, "loss_rpn_bbox": 0.06117, "loss_cls": 0.28808, "acc": 91.56714, "loss_bbox": 0.24849, "loss": 0.64652, "time": 0.12578}
{"mode": "train", "epoch": 1, "iter": 8600, "lr": 0.03, "memory": 4086, "data_time": 0.00702, "loss_rpn_cls": 0.05736, "loss_rpn_bbox": 0.06929, "loss_cls": 0.29938, "acc": 91.07104, "loss_bbox": 0.26086, "loss": 0.68689, "time": 0.12832}
{"mode": "train", "epoch": 1, "iter": 8650, "lr": 0.03, "memory": 4086, "data_time": 0.00718, "loss_rpn_cls": 0.04809, "loss_rpn_bbox": 0.0616, "loss_cls": 0.27834, "acc": 91.60693, "loss_bbox": 0.25044, "loss": 0.63847, "time": 0.13081}
{"mode": "train", "epoch": 1, "iter": 8700, "lr": 0.03, "memory": 4086, "data_time": 0.007, "loss_rpn_cls": 0.05469, "loss_rpn_bbox": 0.06533, "loss_cls": 0.29184, "acc": 91.40259, "loss_bbox": 0.25511, "loss": 0.66697, "time": 0.12419}
{"mode": "train", "epoch": 1, "iter": 8750, "lr": 0.03, "memory": 4086, "data_time": 0.00712, "loss_rpn_cls": 0.04925, "loss_rpn_bbox": 0.06205, "loss_cls": 0.27592, "acc": 91.70605, "loss_bbox": 0.24502, "loss": 0.63224, "time": 0.12392}
{"mode": "train", "epoch": 1, "iter": 8800, "lr": 0.03, "memory": 4086, "data_time": 0.00705, "loss_rpn_cls": 0.04938, "loss_rpn_bbox": 0.06078, "loss_cls": 0.28338, "acc": 91.60449, "loss_bbox": 0.25166, "loss": 0.6452, "time": 0.12441}
{"mode": "train", "epoch": 1, "iter": 8850, "lr": 0.03, "memory": 4086, "data_time": 0.00708, "loss_rpn_cls": 0.05475, "loss_rpn_bbox": 0.06588, "loss_cls": 0.29866, "acc": 90.98779, "loss_bbox": 0.26622, "loss": 0.68552, "time": 0.12648}
{"mode": "train", "epoch": 1, "iter": 8900, "lr": 0.03, "memory": 4086, "data_time": 0.00726, "loss_rpn_cls": 0.0507, "loss_rpn_bbox": 0.06706, "loss_cls": 0.29759, "acc": 91.03589, "loss_bbox": 0.26102, "loss": 0.67638, "time": 0.12505}
{"mode": "train", "epoch": 1, "iter": 8950, "lr": 0.03, "memory": 4086, "data_time": 0.00727, "loss_rpn_cls": 0.04829, "loss_rpn_bbox": 0.06423, "loss_cls": 0.27861, "acc": 91.68579, "loss_bbox": 0.24878, "loss": 0.63991, "time": 0.12522}
{"mode": "train", "epoch": 1, "iter": 9000, "lr": 0.03, "memory": 4086, "data_time": 0.00737, "loss_rpn_cls": 0.05292, "loss_rpn_bbox": 0.06854, "loss_cls": 0.29321, "acc": 91.15771, "loss_bbox": 0.26263, "loss": 0.6773, "time": 0.12712}
{"mode": "train", "epoch": 1, "iter": 9050, "lr": 0.003, "memory": 4086, "data_time": 0.00756, "loss_rpn_cls": 0.04731, "loss_rpn_bbox": 0.06405, "loss_cls": 0.28391, "acc": 91.323, "loss_bbox": 0.2576, "loss": 0.65287, "time": 0.12506}
{"mode": "train", "epoch": 1, "iter": 9100, "lr": 0.003, "memory": 4086, "data_time": 0.0076, "loss_rpn_cls": 0.04624, "loss_rpn_bbox": 0.06, "loss_cls": 0.26564, "acc": 91.74878, "loss_bbox": 0.24754, "loss": 0.61942, "time": 0.12505}
{"mode": "train", "epoch": 1, "iter": 9150, "lr": 0.003, "memory": 4086, "data_time": 0.00752, "loss_rpn_cls": 0.04861, "loss_rpn_bbox": 0.06437, "loss_cls": 0.27286, "acc": 91.65454, "loss_bbox": 0.24795, "loss": 0.63379, "time": 0.12774}
{"mode": "train", "epoch": 1, "iter": 9200, "lr": 0.003, "memory": 4086, "data_time": 0.0075, "loss_rpn_cls": 0.04643, "loss_rpn_bbox": 0.06202, "loss_cls": 0.26017, "acc": 91.80078, "loss_bbox": 0.25287, "loss": 0.62149, "time": 0.12628}
{"mode": "train", "epoch": 1, "iter": 9250, "lr": 0.003, "memory": 4086, "data_time": 0.00774, "loss_rpn_cls": 0.04382, "loss_rpn_bbox": 0.05886, "loss_cls": 0.26827, "acc": 91.53662, "loss_bbox": 0.2531, "loss": 0.62405, "time": 0.12839}
{"mode": "train", "epoch": 1, "iter": 9300, "lr": 0.003, "memory": 4086, "data_time": 0.00773, "loss_rpn_cls": 0.04594, "loss_rpn_bbox": 0.06403, "loss_cls": 0.27312, "acc": 91.44824, "loss_bbox": 0.25831, "loss": 0.6414, "time": 0.12747}
{"mode": "train", "epoch": 1, "iter": 9350, "lr": 0.003, "memory": 4086, "data_time": 0.00807, "loss_rpn_cls": 0.04335, "loss_rpn_bbox": 0.05946, "loss_cls": 0.26772, "acc": 91.72974, "loss_bbox": 0.24967, "loss": 0.62021, "time": 0.12638}
{"mode": "train", "epoch": 1, "iter": 9400, "lr": 0.003, "memory": 4086, "data_time": 0.00807, "loss_rpn_cls": 0.04561, "loss_rpn_bbox": 0.06281, "loss_cls": 0.25674, "acc": 91.91724, "loss_bbox": 0.24643, "loss": 0.61159, "time": 0.12755}
{"mode": "train", "epoch": 1, "iter": 9450, "lr": 0.003, "memory": 4086, "data_time": 0.00781, "loss_rpn_cls": 0.04217, "loss_rpn_bbox": 0.06191, "loss_cls": 0.26106, "acc": 91.84937, "loss_bbox": 0.24931, "loss": 0.61445, "time": 0.12531}
{"mode": "train", "epoch": 1, "iter": 9500, "lr": 0.003, "memory": 4086, "data_time": 0.00768, "loss_rpn_cls": 0.04587, "loss_rpn_bbox": 0.06398, "loss_cls": 0.27613, "acc": 91.44409, "loss_bbox": 0.25608, "loss": 0.64205, "time": 0.12542}
{"mode": "train", "epoch": 1, "iter": 9550, "lr": 0.003, "memory": 4086, "data_time": 0.00717, "loss_rpn_cls": 0.04567, "loss_rpn_bbox": 0.06044, "loss_cls": 0.26172, "acc": 91.67749, "loss_bbox": 0.25451, "loss": 0.62235, "time": 0.12693}
{"mode": "train", "epoch": 1, "iter": 9600, "lr": 0.003, "memory": 4086, "data_time": 0.00713, "loss_rpn_cls": 0.04253, "loss_rpn_bbox": 0.05444, "loss_cls": 0.25444, "acc": 92.1001, "loss_bbox": 0.23776, "loss": 0.58917, "time": 0.12527}
{"mode": "train", "epoch": 1, "iter": 9650, "lr": 0.003, "memory": 4086, "data_time": 0.00749, "loss_rpn_cls": 0.04348, "loss_rpn_bbox": 0.05794, "loss_cls": 0.25661, "acc": 91.87427, "loss_bbox": 0.24369, "loss": 0.60173, "time": 0.12347}
{"mode": "train", "epoch": 1, "iter": 9700, "lr": 0.003, "memory": 4086, "data_time": 0.00721, "loss_rpn_cls": 0.04301, "loss_rpn_bbox": 0.06072, "loss_cls": 0.25332, "acc": 91.98608, "loss_bbox": 0.24438, "loss": 0.60144, "time": 0.12496}
{"mode": "train", "epoch": 1, "iter": 9750, "lr": 0.003, "memory": 4086, "data_time": 0.0076, "loss_rpn_cls": 0.04384, "loss_rpn_bbox": 0.06023, "loss_cls": 0.25452, "acc": 91.91211, "loss_bbox": 0.24349, "loss": 0.60208, "time": 0.12441}
{"mode": "train", "epoch": 1, "iter": 9800, "lr": 0.003, "memory": 4086, "data_time": 0.00773, "loss_rpn_cls": 0.04337, "loss_rpn_bbox": 0.06105, "loss_cls": 0.26257, "acc": 91.63794, "loss_bbox": 0.25024, "loss": 0.61723, "time": 0.12435}
{"mode": "train", "epoch": 1, "iter": 9850, "lr": 0.003, "memory": 4086, "data_time": 0.00758, "loss_rpn_cls": 0.03933, "loss_rpn_bbox": 0.05864, "loss_cls": 0.2424, "acc": 92.30713, "loss_bbox": 0.22981, "loss": 0.57018, "time": 0.12391}
{"mode": "train", "epoch": 1, "iter": 9900, "lr": 0.003, "memory": 4086, "data_time": 0.00749, "loss_rpn_cls": 0.04283, "loss_rpn_bbox": 0.05851, "loss_cls": 0.25776, "acc": 91.78491, "loss_bbox": 0.24656, "loss": 0.60565, "time": 0.12793}
{"mode": "train", "epoch": 1, "iter": 9950, "lr": 0.003, "memory": 4086, "data_time": 0.0076, "loss_rpn_cls": 0.04, "loss_rpn_bbox": 0.05756, "loss_cls": 0.23983, "acc": 92.43457, "loss_bbox": 0.23398, "loss": 0.57136, "time": 0.12608}
{"mode": "train", "epoch": 1, "iter": 10000, "lr": 0.003, "memory": 4086, "data_time": 0.00738, "loss_rpn_cls": 0.04284, "loss_rpn_bbox": 0.05963, "loss_cls": 0.25938, "acc": 91.85962, "loss_bbox": 0.24545, "loss": 0.6073, "time": 0.12469}
{"mode": "train", "epoch": 1, "iter": 10050, "lr": 0.003, "memory": 4086, "data_time": 0.00738, "loss_rpn_cls": 0.04326, "loss_rpn_bbox": 0.05799, "loss_cls": 0.26143, "acc": 91.84985, "loss_bbox": 0.25236, "loss": 0.61504, "time": 0.12699}
{"mode": "train", "epoch": 1, "iter": 10100, "lr": 0.003, "memory": 4086, "data_time": 0.00722, "loss_rpn_cls": 0.04335, "loss_rpn_bbox": 0.05897, "loss_cls": 0.25024, "acc": 92.00537, "loss_bbox": 0.23829, "loss": 0.59085, "time": 0.13002}
{"mode": "train", "epoch": 1, "iter": 10150, "lr": 0.003, "memory": 4086, "data_time": 0.00748, "loss_rpn_cls": 0.03917, "loss_rpn_bbox": 0.05565, "loss_cls": 0.2491, "acc": 92.04248, "loss_bbox": 0.24292, "loss": 0.58684, "time": 0.12516}
{"mode": "train", "epoch": 1, "iter": 10200, "lr": 0.003, "memory": 4086, "data_time": 0.0072, "loss_rpn_cls": 0.04008, "loss_rpn_bbox": 0.05838, "loss_cls": 0.25286, "acc": 92.01294, "loss_bbox": 0.24283, "loss": 0.59415, "time": 0.12445}
{"mode": "train", "epoch": 1, "iter": 10250, "lr": 0.003, "memory": 4086, "data_time": 0.00713, "loss_rpn_cls": 0.04256, "loss_rpn_bbox": 0.05995, "loss_cls": 0.26333, "acc": 91.76855, "loss_bbox": 0.25115, "loss": 0.61699, "time": 0.13022}
{"mode": "train", "epoch": 1, "iter": 10300, "lr": 0.003, "memory": 4086, "data_time": 0.00737, "loss_rpn_cls": 0.04139, "loss_rpn_bbox": 0.0583, "loss_cls": 0.25534, "acc": 91.83276, "loss_bbox": 0.24235, "loss": 0.59738, "time": 0.12616}
{"mode": "train", "epoch": 1, "iter": 10350, "lr": 0.003, "memory": 4086, "data_time": 0.00725, "loss_rpn_cls": 0.04302, "loss_rpn_bbox": 0.05732, "loss_cls": 0.2641, "acc": 91.73877, "loss_bbox": 0.24714, "loss": 0.61158, "time": 0.12374}
{"mode": "train", "epoch": 1, "iter": 10400, "lr": 0.003, "memory": 4086, "data_time": 0.0074, "loss_rpn_cls": 0.0402, "loss_rpn_bbox": 0.05458, "loss_cls": 0.25281, "acc": 91.9519, "loss_bbox": 0.24233, "loss": 0.58992, "time": 0.12512}
{"mode": "train", "epoch": 1, "iter": 10450, "lr": 0.003, "memory": 4086, "data_time": 0.00722, "loss_rpn_cls": 0.04237, "loss_rpn_bbox": 0.05826, "loss_cls": 0.2505, "acc": 92.03052, "loss_bbox": 0.24151, "loss": 0.59265, "time": 0.12463}
{"mode": "train", "epoch": 1, "iter": 10500, "lr": 0.003, "memory": 4086, "data_time": 0.00708, "loss_rpn_cls": 0.03979, "loss_rpn_bbox": 0.0561, "loss_cls": 0.24844, "acc": 92.1521, "loss_bbox": 0.2408, "loss": 0.58513, "time": 0.12643}
{"mode": "train", "epoch": 1, "iter": 10550, "lr": 0.003, "memory": 4086, "data_time": 0.00685, "loss_rpn_cls": 0.04416, "loss_rpn_bbox": 0.05909, "loss_cls": 0.25061, "acc": 92.17847, "loss_bbox": 0.23852, "loss": 0.59239, "time": 0.12637}
{"mode": "train", "epoch": 1, "iter": 10600, "lr": 0.003, "memory": 4086, "data_time": 0.00738, "loss_rpn_cls": 0.04234, "loss_rpn_bbox": 0.05808, "loss_cls": 0.24569, "acc": 92.22144, "loss_bbox": 0.23841, "loss": 0.58452, "time": 0.12628}
{"mode": "train", "epoch": 1, "iter": 10650, "lr": 0.003, "memory": 4086, "data_time": 0.00733, "loss_rpn_cls": 0.04445, "loss_rpn_bbox": 0.06213, "loss_cls": 0.25859, "acc": 91.87695, "loss_bbox": 0.24249, "loss": 0.60767, "time": 0.12613}
{"mode": "train", "epoch": 1, "iter": 10700, "lr": 0.003, "memory": 4086, "data_time": 0.00706, "loss_rpn_cls": 0.04298, "loss_rpn_bbox": 0.06013, "loss_cls": 0.25484, "acc": 91.93164, "loss_bbox": 0.24705, "loss": 0.605, "time": 0.125}
{"mode": "train", "epoch": 1, "iter": 10750, "lr": 0.003, "memory": 4086, "data_time": 0.00713, "loss_rpn_cls": 0.04448, "loss_rpn_bbox": 0.06122, "loss_cls": 0.27062, "acc": 91.48975, "loss_bbox": 0.25864, "loss": 0.63496, "time": 0.12556}
{"mode": "train", "epoch": 1, "iter": 10800, "lr": 0.003, "memory": 4086, "data_time": 0.00713, "loss_rpn_cls": 0.0418, "loss_rpn_bbox": 0.05812, "loss_cls": 0.25141, "acc": 91.92725, "loss_bbox": 0.25018, "loss": 0.60151, "time": 0.12644}
{"mode": "train", "epoch": 1, "iter": 10850, "lr": 0.003, "memory": 4086, "data_time": 0.00707, "loss_rpn_cls": 0.03736, "loss_rpn_bbox": 0.05273, "loss_cls": 0.24332, "acc": 92.39819, "loss_bbox": 0.22895, "loss": 0.56237, "time": 0.12403}
{"mode": "train", "epoch": 1, "iter": 10900, "lr": 0.003, "memory": 4086, "data_time": 0.00739, "loss_rpn_cls": 0.03984, "loss_rpn_bbox": 0.05928, "loss_cls": 0.2516, "acc": 92.02686, "loss_bbox": 0.23986, "loss": 0.59058, "time": 0.12513}
{"mode": "train", "epoch": 1, "iter": 10950, "lr": 0.003, "memory": 4086, "data_time": 0.00759, "loss_rpn_cls": 0.03981, "loss_rpn_bbox": 0.06248, "loss_cls": 0.25731, "acc": 91.75781, "loss_bbox": 0.25326, "loss": 0.61287, "time": 0.12644}
{"mode": "train", "epoch": 1, "iter": 11000, "lr": 0.003, "memory": 4086, "data_time": 0.00782, "loss_rpn_cls": 0.04215, "loss_rpn_bbox": 0.05917, "loss_cls": 0.24897, "acc": 91.95361, "loss_bbox": 0.24399, "loss": 0.59428, "time": 0.12597}
{"mode": "train", "epoch": 1, "iter": 11050, "lr": 0.0003, "memory": 4086, "data_time": 0.00779, "loss_rpn_cls": 0.04095, "loss_rpn_bbox": 0.05971, "loss_cls": 0.26036, "acc": 91.73682, "loss_bbox": 0.25067, "loss": 0.61168, "time": 0.12637}
{"mode": "train", "epoch": 1, "iter": 11100, "lr": 0.0003, "memory": 4086, "data_time": 0.00789, "loss_rpn_cls": 0.04053, "loss_rpn_bbox": 0.05824, "loss_cls": 0.25094, "acc": 91.97681, "loss_bbox": 0.24273, "loss": 0.59245, "time": 0.12598}
{"mode": "train", "epoch": 1, "iter": 11150, "lr": 0.0003, "memory": 4086, "data_time": 0.00764, "loss_rpn_cls": 0.04148, "loss_rpn_bbox": 0.05709, "loss_cls": 0.23714, "acc": 92.38574, "loss_bbox": 0.22856, "loss": 0.56427, "time": 0.12483}
{"mode": "train", "epoch": 1, "iter": 11200, "lr": 0.0003, "memory": 4086, "data_time": 0.00766, "loss_rpn_cls": 0.04074, "loss_rpn_bbox": 0.05867, "loss_cls": 0.24298, "acc": 92.23975, "loss_bbox": 0.23597, "loss": 0.57835, "time": 0.128}
{"mode": "train", "epoch": 1, "iter": 11250, "lr": 0.0003, "memory": 4086, "data_time": 0.00794, "loss_rpn_cls": 0.04008, "loss_rpn_bbox": 0.05704, "loss_cls": 0.24908, "acc": 92.0874, "loss_bbox": 0.24255, "loss": 0.58875, "time": 0.12495}
{"mode": "train", "epoch": 1, "iter": 11300, "lr": 0.0003, "memory": 4086, "data_time": 0.00752, "loss_rpn_cls": 0.04036, "loss_rpn_bbox": 0.05512, "loss_cls": 0.24726, "acc": 92.22876, "loss_bbox": 0.23788, "loss": 0.58062, "time": 0.12783}
{"mode": "train", "epoch": 1, "iter": 11350, "lr": 0.0003, "memory": 4086, "data_time": 0.00722, "loss_rpn_cls": 0.04193, "loss_rpn_bbox": 0.05825, "loss_cls": 0.25594, "acc": 91.97485, "loss_bbox": 0.24435, "loss": 0.60047, "time": 0.12561}
{"mode": "train", "epoch": 1, "iter": 11400, "lr": 0.0003, "memory": 4086, "data_time": 0.00706, "loss_rpn_cls": 0.0426, "loss_rpn_bbox": 0.06118, "loss_cls": 0.26107, "acc": 91.83228, "loss_bbox": 0.2458, "loss": 0.61064, "time": 0.12497}
{"mode": "train", "epoch": 1, "iter": 11450, "lr": 0.0003, "memory": 4086, "data_time": 0.00698, "loss_rpn_cls": 0.0397, "loss_rpn_bbox": 0.05726, "loss_cls": 0.25467, "acc": 91.85107, "loss_bbox": 0.24942, "loss": 0.60105, "time": 0.12513}
{"mode": "train", "epoch": 1, "iter": 11500, "lr": 0.0003, "memory": 4086, "data_time": 0.00706, "loss_rpn_cls": 0.04038, "loss_rpn_bbox": 0.05906, "loss_cls": 0.25317, "acc": 91.86792, "loss_bbox": 0.25307, "loss": 0.60569, "time": 0.12637}
{"mode": "train", "epoch": 1, "iter": 11550, "lr": 0.0003, "memory": 4086, "data_time": 0.007, "loss_rpn_cls": 0.03953, "loss_rpn_bbox": 0.05689, "loss_cls": 0.24935, "acc": 92.18823, "loss_bbox": 0.24071, "loss": 0.58648, "time": 0.1269}
{"mode": "train", "epoch": 1, "iter": 11600, "lr": 0.0003, "memory": 4086, "data_time": 0.00686, "loss_rpn_cls": 0.04277, "loss_rpn_bbox": 0.05851, "loss_cls": 0.24777, "acc": 92.02466, "loss_bbox": 0.24709, "loss": 0.59615, "time": 0.12472}
{"mode": "train", "epoch": 1, "iter": 11650, "lr": 0.0003, "memory": 4086, "data_time": 0.00686, "loss_rpn_cls": 0.04217, "loss_rpn_bbox": 0.05947, "loss_cls": 0.25302, "acc": 91.94556, "loss_bbox": 0.24634, "loss": 0.601, "time": 0.12587}
{"mode": "train", "epoch": 1, "iter": 11700, "lr": 0.0003, "memory": 4086, "data_time": 0.00684, "loss_rpn_cls": 0.04237, "loss_rpn_bbox": 0.05937, "loss_cls": 0.25698, "acc": 91.80957, "loss_bbox": 0.24823, "loss": 0.60696, "time": 0.12459}
{"mode": "train", "epoch": 1, "iter": 11750, "lr": 0.0003, "memory": 4086, "data_time": 0.00688, "loss_rpn_cls": 0.0435, "loss_rpn_bbox": 0.06226, "loss_cls": 0.25516, "acc": 91.76685, "loss_bbox": 0.25191, "loss": 0.61283, "time": 0.12718}
{"mode": "train", "epoch": 1, "iter": 11800, "lr": 0.0003, "memory": 4086, "data_time": 0.00688, "loss_rpn_cls": 0.04439, "loss_rpn_bbox": 0.05969, "loss_cls": 0.24676, "acc": 92.08594, "loss_bbox": 0.24233, "loss": 0.59316, "time": 0.12543}
{"mode": "train", "epoch": 1, "iter": 11850, "lr": 0.0003, "memory": 4086, "data_time": 0.00696, "loss_rpn_cls": 0.04321, "loss_rpn_bbox": 0.05657, "loss_cls": 0.25807, "acc": 91.79932, "loss_bbox": 0.24744, "loss": 0.60529, "time": 0.1244}
{"mode": "train", "epoch": 1, "iter": 11900, "lr": 0.0003, "memory": 4086, "data_time": 0.00679, "loss_rpn_cls": 0.04002, "loss_rpn_bbox": 0.05604, "loss_cls": 0.25288, "acc": 91.80713, "loss_bbox": 0.24632, "loss": 0.59526, "time": 0.1242}
{"mode": "train", "epoch": 1, "iter": 11950, "lr": 0.0003, "memory": 4086, "data_time": 0.00669, "loss_rpn_cls": 0.03918, "loss_rpn_bbox": 0.05533, "loss_cls": 0.25328, "acc": 91.90625, "loss_bbox": 0.24626, "loss": 0.59404, "time": 0.1232}
{"mode": "train", "epoch": 1, "iter": 12000, "lr": 0.0003, "memory": 4086, "data_time": 0.00689, "loss_rpn_cls": 0.04113, "loss_rpn_bbox": 0.05834, "loss_cls": 0.25107, "acc": 92.00781, "loss_bbox": 0.24318, "loss": 0.59372, "time": 0.13826}
{"mode": "val", "epoch": 1, "iter": 625, "lr": 0.0003, "bbox_mAP": 0.306, "bbox_mAP_50": 0.49, "bbox_mAP_75": 0.327, "bbox_mAP_s": 0.169, "bbox_mAP_m": 0.336, "bbox_mAP_l": 0.395, "bbox_mAP_copypaste": "0.306 0.490 0.327 0.169 0.336 0.395"}