limingcv commited on
Commit
1260c2d
1 Parent(s): 131cfbd

Delete pretrain/selfsup_detr_cluster-ids-as-pseudo-labels

Browse files
pretrain/selfsup_detr_cluster-ids-as-pseudo-labels/20221026_193523.log DELETED
The diff for this file is too large to render. See raw diff
 
pretrain/selfsup_detr_cluster-ids-as-pseudo-labels/20221026_193523.log.json DELETED
The diff for this file is too large to render. See raw diff
 
pretrain/selfsup_detr_cluster-ids-as-pseudo-labels/detr_pseudo_label.py DELETED
@@ -1,424 +0,0 @@
1
- model = dict(
2
- type='DETR',
3
- backbone=dict(
4
- type='ResNet',
5
- depth=50,
6
- num_stages=4,
7
- out_indices=(3, ),
8
- frozen_stages=4,
9
- norm_cfg=dict(type='BN', requires_grad=False),
10
- norm_eval=True,
11
- style='pytorch',
12
- init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
13
- bbox_head=dict(
14
- type='DETRHead',
15
- num_classes=256,
16
- in_channels=2048,
17
- transformer=dict(
18
- type='Transformer',
19
- encoder=dict(
20
- type='DetrTransformerEncoder',
21
- num_layers=6,
22
- transformerlayers=dict(
23
- type='BaseTransformerLayer',
24
- attn_cfgs=[
25
- dict(
26
- type='MultiheadAttention',
27
- embed_dims=256,
28
- num_heads=8,
29
- dropout=0.1)
30
- ],
31
- feedforward_channels=2048,
32
- ffn_dropout=0.1,
33
- operation_order=('self_attn', 'norm', 'ffn', 'norm'))),
34
- decoder=dict(
35
- type='DetrTransformerDecoder',
36
- return_intermediate=True,
37
- num_layers=6,
38
- transformerlayers=dict(
39
- type='DetrTransformerDecoderLayer',
40
- attn_cfgs=dict(
41
- type='MultiheadAttention',
42
- embed_dims=256,
43
- num_heads=8,
44
- dropout=0.1),
45
- feedforward_channels=2048,
46
- ffn_dropout=0.1,
47
- operation_order=('self_attn', 'norm', 'cross_attn', 'norm',
48
- 'ffn', 'norm')))),
49
- positional_encoding=dict(
50
- type='SinePositionalEncoding', num_feats=128, normalize=True),
51
- loss_cls=dict(
52
- type='CrossEntropyLoss',
53
- bg_cls_weight=0.1,
54
- use_sigmoid=False,
55
- loss_weight=1.0,
56
- class_weight=1.0),
57
- loss_bbox=dict(type='L1Loss', loss_weight=5.0),
58
- loss_iou=dict(type='GIoULoss', loss_weight=2.0)),
59
- train_cfg=dict(
60
- assigner=dict(
61
- type='HungarianAssigner',
62
- cls_cost=dict(type='ClassificationCost', weight=1.0),
63
- reg_cost=dict(type='BBoxL1Cost', weight=5.0, box_format='xywh'),
64
- iou_cost=dict(type='IoUCost', iou_mode='giou', weight=2.0))),
65
- test_cfg=dict(max_per_img=100))
66
- dataset_type = 'CocoDataset'
67
- data_root = 'data/coco/'
68
- img_norm_cfg = dict(
69
- mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
70
- train_pipeline = [
71
- dict(type='LoadImageFromFile'),
72
- dict(type='LoadAnnotations', with_bbox=True),
73
- dict(type='RandomFlip', flip_ratio=0.5),
74
- dict(
75
- type='AutoAugment',
76
- policies=[[{
77
- 'type':
78
- 'Resize',
79
- 'img_scale': [(480, 1333), (512, 1333), (544, 1333), (576, 1333),
80
- (608, 1333), (640, 1333), (672, 1333), (704, 1333),
81
- (736, 1333), (768, 1333), (800, 1333)],
82
- 'multiscale_mode':
83
- 'value',
84
- 'keep_ratio':
85
- True
86
- }],
87
- [{
88
- 'type': 'Resize',
89
- 'img_scale': [(400, 1333), (500, 1333), (600, 1333)],
90
- 'multiscale_mode': 'value',
91
- 'keep_ratio': True
92
- }, {
93
- 'type': 'RandomCrop',
94
- 'crop_type': 'absolute_range',
95
- 'crop_size': (384, 600),
96
- 'allow_negative_crop': True
97
- }, {
98
- 'type':
99
- 'Resize',
100
- 'img_scale': [(480, 1333), (512, 1333), (544, 1333),
101
- (576, 1333), (608, 1333), (640, 1333),
102
- (672, 1333), (704, 1333), (736, 1333),
103
- (768, 1333), (800, 1333)],
104
- 'multiscale_mode':
105
- 'value',
106
- 'override':
107
- True,
108
- 'keep_ratio':
109
- True
110
- }]]),
111
- dict(
112
- type='Normalize',
113
- mean=[123.675, 116.28, 103.53],
114
- std=[58.395, 57.12, 57.375],
115
- to_rgb=True),
116
- dict(type='Pad', size_divisor=1),
117
- dict(type='DefaultFormatBundle'),
118
- dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
119
- ]
120
- test_pipeline = [
121
- dict(type='LoadImageFromFile'),
122
- dict(
123
- type='MultiScaleFlipAug',
124
- img_scale=(1333, 800),
125
- flip=False,
126
- transforms=[
127
- dict(type='Resize', keep_ratio=True),
128
- dict(type='RandomFlip'),
129
- dict(
130
- type='Normalize',
131
- mean=[123.675, 116.28, 103.53],
132
- std=[58.395, 57.12, 57.375],
133
- to_rgb=True),
134
- dict(type='Pad', size_divisor=32),
135
- dict(type='ImageToTensor', keys=['img']),
136
- dict(type='Collect', keys=['img'])
137
- ])
138
- ]
139
- data = dict(
140
- samples_per_gpu=2,
141
- workers_per_gpu=2,
142
- train=dict(
143
- type='CocoDataset',
144
- ann_file='train2017_ratio3size0008@0.5_cluster-id-as-class.json',
145
- img_prefix='data/coco/train2017/',
146
- pipeline=[
147
- dict(type='LoadImageFromFile'),
148
- dict(type='LoadAnnotations', with_bbox=True),
149
- dict(type='RandomFlip', flip_ratio=0.5),
150
- dict(
151
- type='AutoAugment',
152
- policies=[[{
153
- 'type':
154
- 'Resize',
155
- 'img_scale': [(480, 1333), (512, 1333), (544, 1333),
156
- (576, 1333), (608, 1333), (640, 1333),
157
- (672, 1333), (704, 1333), (736, 1333),
158
- (768, 1333), (800, 1333)],
159
- 'multiscale_mode':
160
- 'value',
161
- 'keep_ratio':
162
- True
163
- }],
164
- [{
165
- 'type': 'Resize',
166
- 'img_scale': [(400, 1333), (500, 1333),
167
- (600, 1333)],
168
- 'multiscale_mode': 'value',
169
- 'keep_ratio': True
170
- }, {
171
- 'type': 'RandomCrop',
172
- 'crop_type': 'absolute_range',
173
- 'crop_size': (384, 600),
174
- 'allow_negative_crop': True
175
- }, {
176
- 'type':
177
- 'Resize',
178
- 'img_scale': [(480, 1333), (512, 1333),
179
- (544, 1333), (576, 1333),
180
- (608, 1333), (640, 1333),
181
- (672, 1333), (704, 1333),
182
- (736, 1333), (768, 1333),
183
- (800, 1333)],
184
- 'multiscale_mode':
185
- 'value',
186
- 'override':
187
- True,
188
- 'keep_ratio':
189
- True
190
- }]]),
191
- dict(
192
- type='Normalize',
193
- mean=[123.675, 116.28, 103.53],
194
- std=[58.395, 57.12, 57.375],
195
- to_rgb=True),
196
- dict(type='Pad', size_divisor=1),
197
- dict(type='DefaultFormatBundle'),
198
- dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
199
- ],
200
- classes=[
201
- 'cluster_1', 'cluster_2', 'cluster_3', 'cluster_4', 'cluster_5',
202
- 'cluster_6', 'cluster_7', 'cluster_8', 'cluster_9', 'cluster_10',
203
- 'cluster_11', 'cluster_12', 'cluster_13', 'cluster_14',
204
- 'cluster_15', 'cluster_16', 'cluster_17', 'cluster_18',
205
- 'cluster_19', 'cluster_20', 'cluster_21', 'cluster_22',
206
- 'cluster_23', 'cluster_24', 'cluster_25', 'cluster_26',
207
- 'cluster_27', 'cluster_28', 'cluster_29', 'cluster_30',
208
- 'cluster_31', 'cluster_32', 'cluster_33', 'cluster_34',
209
- 'cluster_35', 'cluster_36', 'cluster_37', 'cluster_38',
210
- 'cluster_39', 'cluster_40', 'cluster_41', 'cluster_42',
211
- 'cluster_43', 'cluster_44', 'cluster_45', 'cluster_46',
212
- 'cluster_47', 'cluster_48', 'cluster_49', 'cluster_50',
213
- 'cluster_51', 'cluster_52', 'cluster_53', 'cluster_54',
214
- 'cluster_55', 'cluster_56', 'cluster_57', 'cluster_58',
215
- 'cluster_59', 'cluster_60', 'cluster_61', 'cluster_62',
216
- 'cluster_63', 'cluster_64', 'cluster_65', 'cluster_66',
217
- 'cluster_67', 'cluster_68', 'cluster_69', 'cluster_70',
218
- 'cluster_71', 'cluster_72', 'cluster_73', 'cluster_74',
219
- 'cluster_75', 'cluster_76', 'cluster_77', 'cluster_78',
220
- 'cluster_79', 'cluster_80', 'cluster_81', 'cluster_82',
221
- 'cluster_83', 'cluster_84', 'cluster_85', 'cluster_86',
222
- 'cluster_87', 'cluster_88', 'cluster_89', 'cluster_90',
223
- 'cluster_91', 'cluster_92', 'cluster_93', 'cluster_94',
224
- 'cluster_95', 'cluster_96', 'cluster_97', 'cluster_98',
225
- 'cluster_99', 'cluster_100', 'cluster_101', 'cluster_102',
226
- 'cluster_103', 'cluster_104', 'cluster_105', 'cluster_106',
227
- 'cluster_107', 'cluster_108', 'cluster_109', 'cluster_110',
228
- 'cluster_111', 'cluster_112', 'cluster_113', 'cluster_114',
229
- 'cluster_115', 'cluster_116', 'cluster_117', 'cluster_118',
230
- 'cluster_119', 'cluster_120', 'cluster_121', 'cluster_122',
231
- 'cluster_123', 'cluster_124', 'cluster_125', 'cluster_126',
232
- 'cluster_127', 'cluster_128', 'cluster_129', 'cluster_130',
233
- 'cluster_131', 'cluster_132', 'cluster_133', 'cluster_134',
234
- 'cluster_135', 'cluster_136', 'cluster_137', 'cluster_138',
235
- 'cluster_139', 'cluster_140', 'cluster_141', 'cluster_142',
236
- 'cluster_143', 'cluster_144', 'cluster_145', 'cluster_146',
237
- 'cluster_147', 'cluster_148', 'cluster_149', 'cluster_150',
238
- 'cluster_151', 'cluster_152', 'cluster_153', 'cluster_154',
239
- 'cluster_155', 'cluster_156', 'cluster_157', 'cluster_158',
240
- 'cluster_159', 'cluster_160', 'cluster_161', 'cluster_162',
241
- 'cluster_163', 'cluster_164', 'cluster_165', 'cluster_166',
242
- 'cluster_167', 'cluster_168', 'cluster_169', 'cluster_170',
243
- 'cluster_171', 'cluster_172', 'cluster_173', 'cluster_174',
244
- 'cluster_175', 'cluster_176', 'cluster_177', 'cluster_178',
245
- 'cluster_179', 'cluster_180', 'cluster_181', 'cluster_182',
246
- 'cluster_183', 'cluster_184', 'cluster_185', 'cluster_186',
247
- 'cluster_187', 'cluster_188', 'cluster_189', 'cluster_190',
248
- 'cluster_191', 'cluster_192', 'cluster_193', 'cluster_194',
249
- 'cluster_195', 'cluster_196', 'cluster_197', 'cluster_198',
250
- 'cluster_199', 'cluster_200', 'cluster_201', 'cluster_202',
251
- 'cluster_203', 'cluster_204', 'cluster_205', 'cluster_206',
252
- 'cluster_207', 'cluster_208', 'cluster_209', 'cluster_210',
253
- 'cluster_211', 'cluster_212', 'cluster_213', 'cluster_214',
254
- 'cluster_215', 'cluster_216', 'cluster_217', 'cluster_218',
255
- 'cluster_219', 'cluster_220', 'cluster_221', 'cluster_222',
256
- 'cluster_223', 'cluster_224', 'cluster_225', 'cluster_226',
257
- 'cluster_227', 'cluster_228', 'cluster_229', 'cluster_230',
258
- 'cluster_231', 'cluster_232', 'cluster_233', 'cluster_234',
259
- 'cluster_235', 'cluster_236', 'cluster_237', 'cluster_238',
260
- 'cluster_239', 'cluster_240', 'cluster_241', 'cluster_242',
261
- 'cluster_243', 'cluster_244', 'cluster_245', 'cluster_246',
262
- 'cluster_247', 'cluster_248', 'cluster_249', 'cluster_250',
263
- 'cluster_251', 'cluster_252', 'cluster_253', 'cluster_254',
264
- 'cluster_255', 'cluster_256'
265
- ]),
266
- val=dict(
267
- type='CocoDataset',
268
- ann_file='data/coco/annotations/instances_val2017.json',
269
- img_prefix='data/coco/val2017/',
270
- pipeline=[
271
- dict(type='LoadImageFromFile'),
272
- dict(
273
- type='MultiScaleFlipAug',
274
- img_scale=(1333, 800),
275
- flip=False,
276
- transforms=[
277
- dict(type='Resize', keep_ratio=True),
278
- dict(type='RandomFlip'),
279
- dict(
280
- type='Normalize',
281
- mean=[123.675, 116.28, 103.53],
282
- std=[58.395, 57.12, 57.375],
283
- to_rgb=True),
284
- dict(type='Pad', size_divisor=32),
285
- dict(type='ImageToTensor', keys=['img']),
286
- dict(type='Collect', keys=['img'])
287
- ])
288
- ]),
289
- test=dict(
290
- type='CocoDataset',
291
- ann_file='data/coco/annotations/instances_val2017.json',
292
- img_prefix='data/coco/val2017/',
293
- pipeline=[
294
- dict(type='LoadImageFromFile'),
295
- dict(
296
- type='MultiScaleFlipAug',
297
- img_scale=(1333, 800),
298
- flip=False,
299
- transforms=[
300
- dict(type='Resize', keep_ratio=True),
301
- dict(type='RandomFlip'),
302
- dict(
303
- type='Normalize',
304
- mean=[123.675, 116.28, 103.53],
305
- std=[58.395, 57.12, 57.375],
306
- to_rgb=True),
307
- dict(type='Pad', size_divisor=32),
308
- dict(type='ImageToTensor', keys=['img']),
309
- dict(type='Collect', keys=['img'])
310
- ])
311
- ]))
312
- evaluation = dict(
313
- interval=65535, metric='bbox', save_best='auto', gpu_collect=True)
314
- checkpoint_config = dict(interval=1)
315
- log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
316
- custom_hooks = [
317
- dict(type='NumClassCheckHook'),
318
- dict(
319
- type='MMDetWandbHook',
320
- init_kwargs=dict(project='I2B', group='finetune'),
321
- interval=50,
322
- num_eval_images=0,
323
- log_checkpoint=False)
324
- ]
325
- dist_params = dict(backend='nccl')
326
- log_level = 'INFO'
327
- load_from = None
328
- resume_from = None
329
- workflow = [('train', 1)]
330
- opencv_num_threads = 0
331
- mp_start_method = 'fork'
332
- auto_scale_lr = dict(enable=True, base_batch_size=64)
333
- custom_imports = dict(
334
- imports=[
335
- 'mmselfsup.datasets.pipelines',
336
- 'selfsup.core.hook.momentum_update_hook',
337
- 'selfsup.datasets.pipelines.selfsup_pipelines',
338
- 'selfsup.datasets.pipelines.rand_aug',
339
- 'selfsup.datasets.single_view_coco',
340
- 'selfsup.datasets.multi_view_coco',
341
- 'selfsup.models.losses.contrastive_loss',
342
- 'selfsup.models.dense_heads.fcos_head',
343
- 'selfsup.models.dense_heads.retina_head',
344
- 'selfsup.models.dense_heads.detr_head',
345
- 'selfsup.models.dense_heads.deformable_detr_head',
346
- 'selfsup.models.roi_heads.bbox_heads.convfc_bbox_head',
347
- 'selfsup.models.roi_heads.standard_roi_head',
348
- 'selfsup.models.detectors.selfsup_detector',
349
- 'selfsup.models.detectors.selfsup_fcos',
350
- 'selfsup.models.detectors.selfsup_detr',
351
- 'selfsup.models.detectors.selfsup_deformable_detr',
352
- 'selfsup.models.detectors.selfsup_retinanet',
353
- 'selfsup.models.detectors.selfsup_mask_rcnn',
354
- 'selfsup.core.bbox.assigners.hungarian_assigner',
355
- 'selfsup.core.bbox.assigners.pseudo_hungarian_assigner',
356
- 'selfsup.core.bbox.match_costs.match_cost'
357
- ],
358
- allow_failed_imports=False)
359
- classes = [
360
- 'cluster_1', 'cluster_2', 'cluster_3', 'cluster_4', 'cluster_5',
361
- 'cluster_6', 'cluster_7', 'cluster_8', 'cluster_9', 'cluster_10',
362
- 'cluster_11', 'cluster_12', 'cluster_13', 'cluster_14', 'cluster_15',
363
- 'cluster_16', 'cluster_17', 'cluster_18', 'cluster_19', 'cluster_20',
364
- 'cluster_21', 'cluster_22', 'cluster_23', 'cluster_24', 'cluster_25',
365
- 'cluster_26', 'cluster_27', 'cluster_28', 'cluster_29', 'cluster_30',
366
- 'cluster_31', 'cluster_32', 'cluster_33', 'cluster_34', 'cluster_35',
367
- 'cluster_36', 'cluster_37', 'cluster_38', 'cluster_39', 'cluster_40',
368
- 'cluster_41', 'cluster_42', 'cluster_43', 'cluster_44', 'cluster_45',
369
- 'cluster_46', 'cluster_47', 'cluster_48', 'cluster_49', 'cluster_50',
370
- 'cluster_51', 'cluster_52', 'cluster_53', 'cluster_54', 'cluster_55',
371
- 'cluster_56', 'cluster_57', 'cluster_58', 'cluster_59', 'cluster_60',
372
- 'cluster_61', 'cluster_62', 'cluster_63', 'cluster_64', 'cluster_65',
373
- 'cluster_66', 'cluster_67', 'cluster_68', 'cluster_69', 'cluster_70',
374
- 'cluster_71', 'cluster_72', 'cluster_73', 'cluster_74', 'cluster_75',
375
- 'cluster_76', 'cluster_77', 'cluster_78', 'cluster_79', 'cluster_80',
376
- 'cluster_81', 'cluster_82', 'cluster_83', 'cluster_84', 'cluster_85',
377
- 'cluster_86', 'cluster_87', 'cluster_88', 'cluster_89', 'cluster_90',
378
- 'cluster_91', 'cluster_92', 'cluster_93', 'cluster_94', 'cluster_95',
379
- 'cluster_96', 'cluster_97', 'cluster_98', 'cluster_99', 'cluster_100',
380
- 'cluster_101', 'cluster_102', 'cluster_103', 'cluster_104', 'cluster_105',
381
- 'cluster_106', 'cluster_107', 'cluster_108', 'cluster_109', 'cluster_110',
382
- 'cluster_111', 'cluster_112', 'cluster_113', 'cluster_114', 'cluster_115',
383
- 'cluster_116', 'cluster_117', 'cluster_118', 'cluster_119', 'cluster_120',
384
- 'cluster_121', 'cluster_122', 'cluster_123', 'cluster_124', 'cluster_125',
385
- 'cluster_126', 'cluster_127', 'cluster_128', 'cluster_129', 'cluster_130',
386
- 'cluster_131', 'cluster_132', 'cluster_133', 'cluster_134', 'cluster_135',
387
- 'cluster_136', 'cluster_137', 'cluster_138', 'cluster_139', 'cluster_140',
388
- 'cluster_141', 'cluster_142', 'cluster_143', 'cluster_144', 'cluster_145',
389
- 'cluster_146', 'cluster_147', 'cluster_148', 'cluster_149', 'cluster_150',
390
- 'cluster_151', 'cluster_152', 'cluster_153', 'cluster_154', 'cluster_155',
391
- 'cluster_156', 'cluster_157', 'cluster_158', 'cluster_159', 'cluster_160',
392
- 'cluster_161', 'cluster_162', 'cluster_163', 'cluster_164', 'cluster_165',
393
- 'cluster_166', 'cluster_167', 'cluster_168', 'cluster_169', 'cluster_170',
394
- 'cluster_171', 'cluster_172', 'cluster_173', 'cluster_174', 'cluster_175',
395
- 'cluster_176', 'cluster_177', 'cluster_178', 'cluster_179', 'cluster_180',
396
- 'cluster_181', 'cluster_182', 'cluster_183', 'cluster_184', 'cluster_185',
397
- 'cluster_186', 'cluster_187', 'cluster_188', 'cluster_189', 'cluster_190',
398
- 'cluster_191', 'cluster_192', 'cluster_193', 'cluster_194', 'cluster_195',
399
- 'cluster_196', 'cluster_197', 'cluster_198', 'cluster_199', 'cluster_200',
400
- 'cluster_201', 'cluster_202', 'cluster_203', 'cluster_204', 'cluster_205',
401
- 'cluster_206', 'cluster_207', 'cluster_208', 'cluster_209', 'cluster_210',
402
- 'cluster_211', 'cluster_212', 'cluster_213', 'cluster_214', 'cluster_215',
403
- 'cluster_216', 'cluster_217', 'cluster_218', 'cluster_219', 'cluster_220',
404
- 'cluster_221', 'cluster_222', 'cluster_223', 'cluster_224', 'cluster_225',
405
- 'cluster_226', 'cluster_227', 'cluster_228', 'cluster_229', 'cluster_230',
406
- 'cluster_231', 'cluster_232', 'cluster_233', 'cluster_234', 'cluster_235',
407
- 'cluster_236', 'cluster_237', 'cluster_238', 'cluster_239', 'cluster_240',
408
- 'cluster_241', 'cluster_242', 'cluster_243', 'cluster_244', 'cluster_245',
409
- 'cluster_246', 'cluster_247', 'cluster_248', 'cluster_249', 'cluster_250',
410
- 'cluster_251', 'cluster_252', 'cluster_253', 'cluster_254', 'cluster_255',
411
- 'cluster_256'
412
- ]
413
- optimizer = dict(
414
- type='AdamW',
415
- lr=0.0002,
416
- weight_decay=0.0001,
417
- paramwise_cfg=dict(
418
- custom_keys=dict(backbone=dict(lr_mult=0, decay_mult=0))))
419
- optimizer_config = dict(grad_clip=dict(max_norm=0.1, norm_type=2))
420
- lr_config = dict(policy='step', step=[40])
421
- runner = dict(type='EpochBasedRunner', max_epochs=50)
422
- work_dir = 'work_dirs/selfsup_detr_cluster-ids-as-pseudo-labels'
423
- auto_resume = False
424
- gpu_ids = range(0, 32)