Spaces:
Running
Running
import gradio as gr | |
import torch | |
# from sahi.prediction import ObjectPrediction | |
# from sahi.utils.cv import visualize_object_predictions, read_image | |
import os | |
import requests | |
import json | |
import cv2 | |
from PIL import Image | |
from huggingface_hub import hf_hub_download | |
from ultralyticsplus import YOLO, render_result | |
# from ultralyticsplus import render_result | |
# import requests | |
# import cv2 | |
image_path = [['test_images/2a998cfb0901db5f8210.jpg','cham_diem_yolov8', 640, 0.25, 0.45],['test_images/2ce19ce0191acb44920b.jpg','cham_diem_yolov8', 640, 0.25, 0.45], | |
['test_images/2daab6ea3310e14eb801.jpg','cham_diem_yolov8', 640, 0.25, 0.45], ['test_images/4a137deefb14294a7005 (1).jpg','cham_diem_yolov8', 640, 0.25, 0.45], | |
['test_images/7e77c596436c9132c87d.jpg','cham_diem_yolov8', 640, 0.25, 0.45], ['test_images/170f914014bac6e49fab.jpg','cham_diem_yolov8', 640, 0.25, 0.45], | |
['test_images/3355ec3269c8bb96e2d9.jpg','cham_diem_yolov8', 640, 0.25, 0.45], ['test_images/546306a88052520c0b43.jpg','cham_diem_yolov8', 640, 0.25, 0.45], | |
['test_images/33148464019ed3c08a8f.jpg','cham_diem_yolov8', 640, 0.25, 0.45], ['test_images/a17a992a1cd0ce8e97c1.jpg','cham_diem_yolov8', 640, 0.25, 0.45], | |
['test_images/b5db5e42d8b80ae653a9 (1).jpg','cham_diem_yolov8', 640, 0.25, 0.45],['test_images/b8ee1f5299a84bf612b9.jpg','cham_diem_yolov8', 640, 0.25, 0.45], | |
['test_images/b272fec7783daa63f32c.jpg','cham_diem_yolov8', 640, 0.25, 0.45],['test_images/bb202b3eaec47c9a25d5.jpg','cham_diem_yolov8', 640, 0.25, 0.45], | |
['test_images/bf1e22b0a44a76142f5b.jpg','cham_diem_yolov8', 640, 0.25, 0.45], ['test_images/ea5473c5f53f27617e2e.jpg','cham_diem_yolov8', 640, 0.25, 0.45], | |
['test_images/ee106392e56837366e79.jpg','cham_diem_yolov8', 640, 0.25, 0.45], ['test_images/f88d2214a4ee76b02fff.jpg','cham_diem_yolov8', 640, 0.25, 0.45]] | |
# Load YOLO model | |
# model = YOLO('linhcuem/cham_diem_yolov8') | |
model = YOLO('linhcuem/chamdiemgianhang_yolov8_300epochs') | |
# model = YOLO('linhcuem/chamdiemgianhang_yolov8_ver1') | |
# model = YOLO('linhcuem/cham_diem_yolov8_ver20') | |
################################################### | |
def yolov8_img_inference( | |
image, | |
model_path= None, | |
image_size= 640, | |
conf_threshold= 0.25, | |
iou_threshold = 0.45, | |
): | |
# model = YOLO(model_path) | |
model.conf = conf_threshold | |
model.iou = iou_threshold | |
# model.overrides['conf'] = conf_threshold | |
# model.overrides['iou'] = iou_threshold | |
# model.overrides['agnostic_nms'] = False | |
# model.overrides['max_det'] = 1000 | |
# image = read_image | |
results = model.predict(image, imgsz=image_size, conf=conf_threshold, iou=iou_threshold) | |
render = render_result(model=model, image=image, result=results[0]) | |
# get the model names list | |
names = model.names | |
# get the 'obj' class id | |
# obj_id = list(names)[list(names.values()).index('lo_ytv')] | |
# ('hop_dln','hop_jn','hop_vtg','hop_ytv','lo_kids', 'lo_ytv','loc_dln','loc_jn','loc_kids','loc_ytv')] | |
# obj_id = list(names)[list(names.values()).index([0])] | |
# count 'car' objects in the results | |
# count_result = results[0].boxes.cls[0].item() | |
#count_result = results[0]boxes.cls[0].tolist() | |
object_counts = {x: 0 for x in names} | |
for r in results: | |
for c in r.boxes.cls: | |
c = int(c) | |
if c in names: | |
object_counts[c] += 1 | |
elif c not in names: | |
object_counts[c] = 1 | |
present_objects = object_counts.copy() | |
for i in object_counts: | |
if object_counts[i] < 1: | |
present_objects.pop(i) | |
return render, {names[k]: v for k, v in present_objects.items()} | |
# results = model.predict(image, imgsz=image_size, return_outputs=True) | |
# results = model.predict(image) | |
# object_prediction_list = [] | |
# for _, image_results in enumerate(results): | |
# if len(image_results)!=0: | |
# image_predictions_in_xyxy_format = image_results['det'] | |
# for pred in image_predictions_in_xyxy_format: | |
# x1, y1, x2, y2 = ( | |
# int(pred[0]), | |
# int(pred[1]), | |
# int(pred[2]), | |
# int(pred[3]), | |
# ) | |
# bbox = [x1, y1, x2, y2] | |
# score = pred[4] | |
# category_name = model.model.names[int(pred[5])] | |
# category_id = pred[5] | |
# object_prediction = ObjectPrediction( | |
# bbox=bbox, | |
# category_id=int(category_id), | |
# score=score, | |
# category_name=category_name, | |
# ) | |
# object_prediction_list.append(object_prediction) | |
# image = read_image(image) | |
# output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list) | |
# return output_image['image'] | |
# render = render_result(model=model, image=image, result=results[0]) | |
def yolov8_vid_inference(video_path): | |
cap = cv2.VideoCapture(video_path) | |
while cap.isOpened(): | |
success, frame = cap.read() | |
if success: | |
frame_copy = frame.copy() | |
outputs = model.predict(source=frame) | |
results = outputs[0].cpu().numpy() | |
for i, det in enumerate(results.boxes.xyxy): | |
cv2.rectangle( | |
frame_copy, | |
(int(det[0]), int(det[1])), | |
(int(det[2]), int(det[3])), | |
color=(0, 0, 255), | |
thickness=2, | |
lineType=cv2.LINE_AA | |
) | |
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB) | |
inputs_vid = [ | |
gr.components.Video(type="filepath", label="Input Video"), | |
] | |
outputs_vid = [ | |
gr.components.Image(type="numpy", label="Output Image"), | |
] | |
interface_vid = gr.Interface( | |
fn=yolov8_vid_inference, | |
inputs = inputs_vid, | |
outputs = outputs_vid, | |
title = "Detect Thiên Việt productions", | |
cache_examples = False, | |
) | |
inputs_image = [ | |
# gr.inputs.Image(type="filepath", label="Input Image"), | |
gr.Image(type="pil"), | |
gr.Dropdown(["linhcuem/linhcuem/chamdiemgianhang_yolov8_ver1"], | |
default="linhcuem/chamdiemgianhang_yolov8_ver1", label="Model"), | |
gr.Slider(maximum=1280, step=32, value = 640, label="Image Size"), | |
gr.Slider(maximum=1.0 , step=0.05, value = 0.25, label="Confidence Threshold"), | |
gr.Slider(maximum=1.0, step=0.05, value = 0.45, label="IOU Threshold"), | |
] | |
# outputs_image =gr.outputs.Image(type="filepath", label="Output Image") | |
# count_obj = gr.Textbox(show_label=False) | |
title = "Detect Thiên Việt productions" | |
interface_image = gr.Interface( | |
fn=yolov8_img_inference, | |
inputs=[ | |
gr.Image(type='pil'), | |
gr.Dropdown(["linhcuem/chamdiemgianhang_yolov8_ver1"], | |
default="linhcuem/chamdiemgianhang_yolov8_ver1"), | |
gr.Slider(maximum=1280, step=32, value=640), | |
gr.Slider(maximum=1.0, step=0.05, value=0.25), | |
gr.Slider(maximum=1.0, step=0.05, value=0.45), | |
], | |
outputs=[gr.Image(type="pil"),gr.Textbox(show_label=False)], | |
title=title, | |
examples=image_path, | |
cache_examples=True if image_path else False, | |
) | |
gr.TabbedInterface( | |
[interface_image, interface_vid], | |
tab_names=['Image inference', 'Video inference'] | |
).queue().launch() | |
# interface_image.launch(debug=True, enable_queue=True) |