linhcuem's picture
Update app.py
6954573 verified
raw
history blame
7.48 kB
import gradio as gr
import torch
# from sahi.prediction import ObjectPrediction
# from sahi.utils.cv import visualize_object_predictions, read_image
import os
import requests
import json
import cv2
from PIL import Image
from huggingface_hub import hf_hub_download
from ultralyticsplus import YOLO, render_result
# from ultralyticsplus import render_result
# import requests
# import cv2
image_path = [['test_images/2a998cfb0901db5f8210.jpg','cham_diem_yolov8', 640, 0.25, 0.45],['test_images/2ce19ce0191acb44920b.jpg','cham_diem_yolov8', 640, 0.25, 0.45],
['test_images/2daab6ea3310e14eb801.jpg','cham_diem_yolov8', 640, 0.25, 0.45], ['test_images/4a137deefb14294a7005 (1).jpg','cham_diem_yolov8', 640, 0.25, 0.45],
['test_images/7e77c596436c9132c87d.jpg','cham_diem_yolov8', 640, 0.25, 0.45], ['test_images/170f914014bac6e49fab.jpg','cham_diem_yolov8', 640, 0.25, 0.45],
['test_images/3355ec3269c8bb96e2d9.jpg','cham_diem_yolov8', 640, 0.25, 0.45], ['test_images/546306a88052520c0b43.jpg','cham_diem_yolov8', 640, 0.25, 0.45],
['test_images/33148464019ed3c08a8f.jpg','cham_diem_yolov8', 640, 0.25, 0.45], ['test_images/a17a992a1cd0ce8e97c1.jpg','cham_diem_yolov8', 640, 0.25, 0.45],
['test_images/b5db5e42d8b80ae653a9 (1).jpg','cham_diem_yolov8', 640, 0.25, 0.45],['test_images/b8ee1f5299a84bf612b9.jpg','cham_diem_yolov8', 640, 0.25, 0.45],
['test_images/b272fec7783daa63f32c.jpg','cham_diem_yolov8', 640, 0.25, 0.45],['test_images/bb202b3eaec47c9a25d5.jpg','cham_diem_yolov8', 640, 0.25, 0.45],
['test_images/bf1e22b0a44a76142f5b.jpg','cham_diem_yolov8', 640, 0.25, 0.45], ['test_images/ea5473c5f53f27617e2e.jpg','cham_diem_yolov8', 640, 0.25, 0.45],
['test_images/ee106392e56837366e79.jpg','cham_diem_yolov8', 640, 0.25, 0.45], ['test_images/f88d2214a4ee76b02fff.jpg','cham_diem_yolov8', 640, 0.25, 0.45]]
# Load YOLO model
# model = YOLO('linhcuem/cham_diem_yolov8')
model = YOLO('linhcuem/chamdiemgianhang_yolov8_ver1')
# model = YOLO('linhcuem/cham_diem_yolov8_ver20')
###################################################
def yolov8_img_inference(
image,
model_path= None,
image_size= 640,
conf_threshold= 0.25,
iou_threshold = 0.45,
):
# model = YOLO(model_path)
model.conf = conf_threshold
model.iou = iou_threshold
# model.overrides['conf'] = conf_threshold
# model.overrides['iou'] = iou_threshold
# model.overrides['agnostic_nms'] = False
# model.overrides['max_det'] = 1000
# image = read_image
results = model.predict(image, imgsz=image_size, conf=conf_threshold, iou=iou_threshold)
render = render_result(model=model, image=image, result=results[0])
# get the model names list
names = model.names
# get the 'obj' class id
# obj_id = list(names)[list(names.values()).index('lo_ytv')]
# ('hop_dln','hop_jn','hop_vtg','hop_ytv','lo_kids', 'lo_ytv','loc_dln','loc_jn','loc_kids','loc_ytv')]
# obj_id = list(names)[list(names.values()).index([0])]
# count 'car' objects in the results
# count_result = results[0].boxes.cls[0].item()
#count_result = results[0]boxes.cls[0].tolist()
object_counts = {x: 0 for x in names}
for r in results:
for c in r.boxes.cls:
c = int(c)
if c in names:
object_counts[c] += 1
elif c not in names:
object_counts[c] = 1
present_objects = object_counts.copy()
for i in object_counts:
if object_counts[i] < 1:
present_objects.pop(i)
return render, {names[k]: v for k, v in present_objects.items()}
# results = model.predict(image, imgsz=image_size, return_outputs=True)
# results = model.predict(image)
# object_prediction_list = []
# for _, image_results in enumerate(results):
# if len(image_results)!=0:
# image_predictions_in_xyxy_format = image_results['det']
# for pred in image_predictions_in_xyxy_format:
# x1, y1, x2, y2 = (
# int(pred[0]),
# int(pred[1]),
# int(pred[2]),
# int(pred[3]),
# )
# bbox = [x1, y1, x2, y2]
# score = pred[4]
# category_name = model.model.names[int(pred[5])]
# category_id = pred[5]
# object_prediction = ObjectPrediction(
# bbox=bbox,
# category_id=int(category_id),
# score=score,
# category_name=category_name,
# )
# object_prediction_list.append(object_prediction)
# image = read_image(image)
# output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
# return output_image['image']
# render = render_result(model=model, image=image, result=results[0])
def yolov8_vid_inference(video_path):
cap = cv2.VideoCapture(video_path)
while cap.isOpened():
success, frame = cap.read()
if success:
frame_copy = frame.copy()
outputs = model.predict(source=frame)
results = outputs[0].cpu().numpy()
for i, det in enumerate(results.boxes.xyxy):
cv2.rectangle(
frame_copy,
(int(det[0]), int(det[1])),
(int(det[2]), int(det[3])),
color=(0, 0, 255),
thickness=2,
lineType=cv2.LINE_AA
)
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
inputs_vid = [
gr.components.Video(type="filepath", label="Input Video"),
]
outputs_vid = [
gr.components.Image(type="numpy", label="Output Image"),
]
interface_vid = gr.Interface(
fn=yolov8_vid_inference,
inputs = inputs_vid,
outputs = outputs_vid,
title = "Detect Thiên Việt productions",
cache_examples = False,
)
inputs_image = [
# gr.inputs.Image(type="filepath", label="Input Image"),
gr.Image(type="pil"),
gr.Dropdown(["linhcuem/linhcuem/chamdiemgianhang_yolov8_ver1"],
default="linhcuem/chamdiemgianhang_yolov8_ver1", label="Model"),
gr.Slider(maximum=1280, step=32, value = 640, label="Image Size"),
gr.Slider(maximum=1.0 , step=0.05, value = 0.25, label="Confidence Threshold"),
gr.Slider(maximum=1.0, step=0.05, value = 0.45, label="IOU Threshold"),
]
# outputs_image =gr.outputs.Image(type="filepath", label="Output Image")
# count_obj = gr.Textbox(show_label=False)
title = "Detect Thiên Việt productions"
interface_image = gr.Interface(
fn=yolov8_img_inference,
inputs=[
gr.Image(type='pil'),
gr.Dropdown(["linhcuem/chamdiemgianhang_yolov8_ver1"],
default="linhcuem/chamdiemgianhang_yolov8_ver1"),
gr.Slider(maximum=1280, step=32, value=640),
gr.Slider(maximum=1.0, step=0.05, value=0.25),
gr.Slider(maximum=1.0, step=0.05, value=0.45),
],
outputs=[gr.Image(type="pil"),gr.Textbox(show_label=False)],
title=title,
examples=image_path,
cache_examples=True if image_path else False,
)
gr.TabbedInterface(
[interface_image, interface_vid],
tab_names=['Image inference', 'Video inference']
).queue().launch()
# interface_image.launch(debug=True, enable_queue=True)