linhcuem's picture
Update app.py
d79d5f3 verified
raw
history blame
6.66 kB
import gradio as gr
import torch
# from sahi.prediction import ObjectPrediction
# from sahi.utils.cv import visualize_object_predictions, read_image
import os
import requests
import json
import cv2
from PIL import Image
# from huggingface_hub import hf_hub_download
from ultralyticsplus import YOLO, render_result
from ultralyticsplus.hf_utils import download_from_hub
# from ultralyticsplus import render_result
# import requests
# import cv2
image_path = [['test_images/2a998cfb0901db5f8210.jpg','cham_diem_yolov8', 640, 0.25, 0.45],['test_images/2ce19ce0191acb44920b.jpg','cham_diem_yolov8', 640, 0.25, 0.45],
['test_images/2daab6ea3310e14eb801.jpg','cham_diem_yolov8', 640, 0.25, 0.45], ['test_images/4a137deefb14294a7005 (1).jpg','cham_diem_yolov8', 640, 0.25, 0.45],
['test_images/7e77c596436c9132c87d.jpg','cham_diem_yolov8', 640, 0.25, 0.45], ['test_images/170f914014bac6e49fab.jpg','cham_diem_yolov8', 640, 0.25, 0.45],
['test_images/3355ec3269c8bb96e2d9.jpg','cham_diem_yolov8', 640, 0.25, 0.45], ['test_images/546306a88052520c0b43.jpg','cham_diem_yolov8', 640, 0.25, 0.45],
['test_images/33148464019ed3c08a8f.jpg','cham_diem_yolov8', 640, 0.25, 0.45], ['test_images/a17a992a1cd0ce8e97c1.jpg','cham_diem_yolov8', 640, 0.25, 0.45],
['test_images/b5db5e42d8b80ae653a9 (1).jpg','cham_diem_yolov8', 640, 0.25, 0.45],['test_images/b8ee1f5299a84bf612b9.jpg','cham_diem_yolov8', 640, 0.25, 0.45],
['test_images/b272fec7783daa63f32c.jpg','cham_diem_yolov8', 640, 0.25, 0.45],['test_images/bb202b3eaec47c9a25d5.jpg','cham_diem_yolov8', 640, 0.25, 0.45],
['test_images/bf1e22b0a44a76142f5b.jpg','cham_diem_yolov8', 640, 0.25, 0.45], ['test_images/ea5473c5f53f27617e2e.jpg','cham_diem_yolov8', 640, 0.25, 0.45],
['test_images/ee106392e56837366e79.jpg','cham_diem_yolov8', 640, 0.25, 0.45], ['test_images/f88d2214a4ee76b02fff.jpg','cham_diem_yolov8', 640, 0.25, 0.45]]
# Load YOLO model
# model = YOLO('linhcuem/cham_diem_yolov8')
# model = YOLO('linhcuem/chamdiemgianhang_yolov8_300epochs')
model = YOLO('linhcuem/chamdiemgianhang_yolov8_ver21')
# model = YOLO('linhcuem/cham_diem_yolov8_ver20')
# model_ids = ['linhcuem/checker_TB_yolov8_ver1', 'linhcuem/cham_diem_yolov8', 'linhcuem/chamdiemgianhang_yolov8_300epochs', 'linhcuem/cham_diem_yolov8_ver20', 'linhcuem/chamdiemgianhang_yolov8_ver21']
# model = YOLO(model_path)
# current_model_id = model_ids[-1]
# model = YOLO(current_model_id)
# model = YOLO(model_path)
# model_path = download_from_hub("linhcuem/checker_TB_yolov8_ver1", "linhcuem/chamdiemgianhang_yolov8_ver21")
###################################################
def yolov8_img_inference(
image: gr.inputs.Image = None,
model_path: gr.inputs.Dropdown = None,
image_size: gr.inputs.Slider = 640,
conf_threshold: gr.inputs.Slider = 0.25,
iou_threshold: gr.inputs.Slider = 0.45,
):
# model = YOLO(model_path)
model.conf = conf_threshold
model.iou = iou_threshold
results = model.predict(image, imgsz=image_size, conf=conf_threshold, iou=iou_threshold)
render = render_result(model=model, image=image, result=results[0])
# get the model names list
names = model.names
object_counts = {x: 0 for x in names}
for r in results:
for c in r.boxes.cls:
c = int(c)
if c in names:
object_counts[c] += 1
elif c not in names:
object_counts[c] = 1
present_objects = object_counts.copy()
for i in object_counts:
if object_counts[i] < 1:
present_objects.pop(i)
return render, {names[k]: v for k, v in present_objects.items()}
def yolov8_vid_inference(video_path):
cap = cv2.VideoCapture(video_path)
while cap.isOpened():
success, frame = cap.read()
if success:
frame_copy = frame.copy()
outputs = model.predict(source=frame)
results = outputs[0].cpu().numpy()
for i, det in enumerate(results.boxes.xyxy):
cv2.rectangle(
frame_copy,
(int(det[0]), int(det[1])),
(int(det[2]), int(det[3])),
color=(0, 0, 255),
thickness=2,
lineType=cv2.LINE_AA
)
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
inputs_vid = [
gr.components.Video(type="filepath", label="Input Video"),
]
outputs_vid = [
gr.components.Image(type="numpy", label="Output Image"),
]
interface_vid = gr.Interface(
fn=yolov8_vid_inference,
inputs = inputs_vid,
outputs = outputs_vid,
title = "Detect Thiên Việt productions",
cache_examples = False,
)
inputs = [
gr.inputs.Image(type="filepath", label="Input Image"),
gr.inputs.Dropdown(["linhcuem/checker_TB_yolov8_ver1", "linhcuem/chamdiemgianhang_yolov8_ver21"],
default="linhcuem/checker_TB_yolov8_ver1", label="Model"),
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
]
outputs =gr.outputs.Image(type="filepath", label="Output Image")
# count_obj = gr.Textbox(show_label=False)
title = "Detect Thiên Việt productions"
interface_image = gr.Interface(
fn=yolov8_img_inference,
inputs=[
gr.Image(type='pil'),
gr.Dropdown([ "linhcuem/chamdiemgianhang_yolov8_ver21"],
default="linhcuem/chamdiemgianhang_yolov8_ver21", label="Model"),
gr.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
gr.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
gr.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
],
outputs=[gr.Image(type="pil"),gr.Textbox(show_label=False)],
title=title,
examples=image_path,
cache_examples=True if image_path else False,
)
gr.TabbedInterface(
[interface_image, interface_vid],
tab_names=['Image inference', 'Video inference']
).queue().launch()
# demo_app = gr.Interface(
# fn=yolov8_img_inference,
# inputs=inputs,
# outputs=outputs,
# title=title,
# examples=image_path,
# cache_examples=True,
# theme='huggingface',
# )
# demo_app.launch(debug=True, enable_queue=True)
# interface_image.launch(debug=True, enable_queue=True)