import gradio as gr import cv2 #import requests import os from ultralyticsplus import YOLO, render_result image_path = [['test_images/2a998cfb0901db5f8210.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],['test_images/2ce19ce0191acb44920b.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/2daab6ea3310e14eb801.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/4a137deefb14294a7005 (1).jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/7e77c596436c9132c87d.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/170f914014bac6e49fab.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/3355ec3269c8bb96e2d9.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/546306a88052520c0b43.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/33148464019ed3c08a8f.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/a17a992a1cd0ce8e97c1.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/b5db5e42d8b80ae653a9 (1).jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],['test_images/b8ee1f5299a84bf612b9.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/b272fec7783daa63f32c.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45],['test_images/bb202b3eaec47c9a25d5.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/bf1e22b0a44a76142f5b.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/ea5473c5f53f27617e2e.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/ee106392e56837366e79.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45], ['test_images/f88d2214a4ee76b02fff.jpg','linhcuem/chamdiem_yolov8_ver10', 640, 0.25, 0.45]] # Load YOLO model model = YOLO('linhcuem/chamdiem_yolov8_ver10') ################################################### def yolov8_img_inference( image: gr.inputs.Image = None, model_path: gr.inputs.Dropdown = None, image_size: gr.inputs.Slider = 640, conf_threshold: gr.inputs.Slider = 0.25, iou_threshold: gr.inputs.Slider = 0.45, ): model = YOLO(model_path) model.overrides['conf'] = conf_threshold model.overrides['iou']= iou_threshold model.overrides['agnostic_nms'] = False # NMS class-agnostic model.overrides['max_det'] = 1000 # image = read_image(image) results = model.predict(image) render = render_result(model=model, image=image, result=results[0]) return render inputs_image = [ gr.inputs.Image(type="filepath", label="Input Image"), gr.inputs.Dropdown(["linhcuem/chamdiem_yolov8_ver10"], default="linhcuem/chamdiem_yolov8_ver10", label="Model"), gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"), gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"), ] outputs_image =gr.outputs.Image(type="filepath", label="Output Image") interface_image = gr.Interface( fn=yolov8_img_inference, inputs=inputs_image, outputs=outputs_image, title=model_heading, description=description, examples=image_path, cache_examples=False, theme='huggingface' ) gr.TabbedInterface( [interface_image], tab_names=['Image inference'] ).queue().launch()