linhcuem's picture
Update app.py
d3b866b
raw
history blame
1.74 kB
import json
import gradio as gr
import yolov5
from PIL import Image
from huggingface_hub import hf_hub_download
app_title = "Detect defects in bird nest jar"
models_ids = ['linhcuem/defects_nest_jar_yolov5']
current_model_id = models_ids
model = yolov5.load(current_model_id)
examples = [['test_images/16823291638707408-a2A2448-23gmBAS_40174045.jpg', 0.25, 'linhcuem/defects_nest_jar_yolov5'], ['test_images/16823292102253310-a2A2448-23gmBAS_40174046.jpg', 0.25, 'linhcuem/defects_nest_jar_yolov5'], ['test_images/16823291808953550-a2A2448-23gmBAS_40174048.jpg', 0.25, 'linhcuem/defects_nest_jar_yolov5'], ['test_images/16823291801532480-a2A2448-23gmBAS_40174048.jpg', 0.25, 'linhcuem/defects_nest_jar_yolov5']]
def predict(image, threshold=0.3, model_id=None):
#update model if required
global current_model_id
global model
if model_id != current_model_id:
model = yolov5.load(model_id)
current_model_id = model_id
# get model input size
config_path = hf_hub_download(repo_id=model_id, filename="config.json")
with open(config_path, "r") as f:
config = json.load(f)
input_size = config["input_size"]
#perform inference
model.conf = threshold
results = model(image, size=input_size)
numpy_image = results.render()[0]
output_image = Image.fromarray(numpy_image)
return output_image
gr.Interface(
title=app_title,
description="DO ANH DAT",
fn=predict,
inputs=[
gr.Image(type="pil"),
gr.Slider(maximum=1, step=0.01, value=0.25),
gr.Dropdown(models_ids, value=models_ids[-1]),
],
outputs=gr.Image(type="pil"),
examples=examples,
cache_examples=True if examples else Fale,
).launch(enable_queue=True)