import json import gradio as gr import yolov5 from PIL import Image from huggingface_hub import hf_hub_download app_title = "Detect defects in bird nest jar" models_ids = ['linhcuem/defects_nest_jar_yolov5'] current_model_id = models_ids model = yolov5.load(current_model_id) examples = [['test_images/16823291638707408-a2A2448-23gmBAS_40174045.jpg', 0.25, 'linhcuem/defects_nest_jar_yolov5'], ['test_images/16823292102253310-a2A2448-23gmBAS_40174046.jpg', 0.25, 'linhcuem/defects_nest_jar_yolov5'], ['test_images/16823291808953550-a2A2448-23gmBAS_40174048.jpg', 0.25, 'linhcuem/defects_nest_jar_yolov5'], ['test_images/16823291801532480-a2A2448-23gmBAS_40174048.jpg', 0.25, 'linhcuem/defects_nest_jar_yolov5']] def predict(image, threshold=0.3, model_id=None): #update model if required global current_model_id global model if model_id != current_model_id: model = yolov5.load(model_id) current_model_id = model_id # get model input size config_path = hf_hub_download(repo_id=model_id, filename="config.json") with open(config_path, "r") as f: config = json.load(f) input_size = config["input_size"] #perform inference model.conf = threshold results = model(image, size=input_size) numpy_image = results.render()[0] output_image = Image.fromarray(numpy_image) return output_image gr.Interface( title=app_title, description="Do anh Dat", fn=predict, inputs=[ gr.Image(type="pil"), gr.Slider(maximum=1, step=0.01, value=0.25), gr.Dropdown(models_ids, value=models_ids[-1]), ], outputs=gr.Image(type="pil"), examples=examples, cache_examples=True if examples else Fale, ).launch(enable_queue=True)