Spaces:
Runtime error
Runtime error
linktimecloud
commited on
Upload folder using huggingface_hub
Browse files- .env.tpl +6 -0
- .gitignore +164 -0
- LICENSE +21 -0
- README.md +194 -7
- ask.py +618 -0
- instructions/links.txt +3 -0
- requirements.txt +9 -0
.env.tpl
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# right now we use Google search API
|
2 |
+
SEARCH_API_KEY=your-google-search-api-key
|
3 |
+
SEARCH_PROJECT_KEY=your-google-cx-key
|
4 |
+
|
5 |
+
# right now we use OpenAI API
|
6 |
+
LLM_API_KEY=your-openai-api-key
|
.gitignore
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
110 |
+
.pdm.toml
|
111 |
+
.pdm-python
|
112 |
+
.pdm-build/
|
113 |
+
|
114 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
115 |
+
__pypackages__/
|
116 |
+
|
117 |
+
# Celery stuff
|
118 |
+
celerybeat-schedule
|
119 |
+
celerybeat.pid
|
120 |
+
|
121 |
+
# SageMath parsed files
|
122 |
+
*.sage.py
|
123 |
+
|
124 |
+
# Environments
|
125 |
+
.env
|
126 |
+
.venv
|
127 |
+
env/
|
128 |
+
venv/
|
129 |
+
ENV/
|
130 |
+
env.bak/
|
131 |
+
venv.bak/
|
132 |
+
|
133 |
+
# Spyder project settings
|
134 |
+
.spyderproject
|
135 |
+
.spyproject
|
136 |
+
|
137 |
+
# Rope project settings
|
138 |
+
.ropeproject
|
139 |
+
|
140 |
+
# mkdocs documentation
|
141 |
+
/site
|
142 |
+
|
143 |
+
# mypy
|
144 |
+
.mypy_cache/
|
145 |
+
.dmypy.json
|
146 |
+
dmypy.json
|
147 |
+
|
148 |
+
# Pyre type checker
|
149 |
+
.pyre/
|
150 |
+
|
151 |
+
# pytype static type analyzer
|
152 |
+
.pytype/
|
153 |
+
|
154 |
+
# Cython debug symbols
|
155 |
+
cython_debug/
|
156 |
+
|
157 |
+
# PyCharm
|
158 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
159 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
160 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
161 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
162 |
+
#.idea/
|
163 |
+
|
164 |
+
.gradio
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2024 pengfeng
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,12 +1,199 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
|
4 |
-
colorFrom: red
|
5 |
-
colorTo: pink
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.3.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
---
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: ask.py
|
3 |
+
app_file: ask.py
|
|
|
|
|
4 |
sdk: gradio
|
5 |
sdk_version: 5.3.0
|
|
|
|
|
6 |
---
|
7 |
+
# ask.py
|
8 |
|
9 |
+
[![License](https://img.shields.io/github/license/pengfeng/ask.py)](LICENSE)
|
10 |
+
|
11 |
+
A single Python program to implement the search-extract-summarize flow, similar to AI search
|
12 |
+
engines such as Perplexity.
|
13 |
+
|
14 |
+
> [!NOTE]
|
15 |
+
> Our main goal is to illustrate the basic concepts of AI search engines with the raw constructs.
|
16 |
+
> Performance or scalability is not in the scope of this program.
|
17 |
+
|
18 |
+
## The search-extract-summarize flow
|
19 |
+
|
20 |
+
Given a query, the program will
|
21 |
+
|
22 |
+
- search Google for the top 10 web pages
|
23 |
+
- crawl and scape the pages for their text content
|
24 |
+
- chunk the text content into chunks and save them into a vectordb
|
25 |
+
- perform a vector search with the query and find the top 10 matched chunks
|
26 |
+
- use the top 10 chunks as the context to ask an LLM to generate the answer
|
27 |
+
- output the answer with the references
|
28 |
+
|
29 |
+
Of course this flow is a very simplified version of the real AI search engines, but it is a good
|
30 |
+
starting point to understand the basic concepts.
|
31 |
+
|
32 |
+
One benefit is that we can manipulate the search function and output format.
|
33 |
+
|
34 |
+
For example, we can:
|
35 |
+
|
36 |
+
- search with date-restrict to only retrieve the latest information.
|
37 |
+
- search within a target-site to only create the answer from the contents from it.
|
38 |
+
- ask LLM to use a specific language to answer the question.
|
39 |
+
- ask LLM to answer with a specific length.
|
40 |
+
- crawl a specific list of urls and answer based on those contents only.
|
41 |
+
|
42 |
+
## Quick start
|
43 |
+
|
44 |
+
```bash
|
45 |
+
|
46 |
+
pip install -r requirements.txt
|
47 |
+
|
48 |
+
# modify .env file to set the API keys or export them as environment variables as below
|
49 |
+
|
50 |
+
# right now we use Google search API
|
51 |
+
export SEARCH_API_KEY="your-google-search-api-key"
|
52 |
+
export SEARCH_PROJECT_KEY="your-google-cx-key"
|
53 |
+
|
54 |
+
# right now we use OpenAI API
|
55 |
+
export LLM_API_KEY="your-openai-api-key"
|
56 |
+
|
57 |
+
# run the program
|
58 |
+
python ask.py -q "What is an LLM agent?"
|
59 |
+
|
60 |
+
# we can specify more parameters to control the behavior such as date_restrict and target_site
|
61 |
+
python ask.py --help
|
62 |
+
Usage: ask.py [OPTIONS]
|
63 |
+
|
64 |
+
Search web for the query and summarize the results
|
65 |
+
|
66 |
+
Options:
|
67 |
+
-q, --query TEXT Query to search [required]
|
68 |
+
--url-list TEXT Instead of doing web search, scrape the
|
69 |
+
target URL list and answer the query based
|
70 |
+
on the content [default:
|
71 |
+
instructions/links.txt]
|
72 |
+
-d, --date-restrict INTEGER Restrict search results to a specific date
|
73 |
+
range, default is no restriction
|
74 |
+
-s, --target-site TEXT Restrict search results to a specific site,
|
75 |
+
default is no restriction
|
76 |
+
--output-language TEXT Output language for the answer
|
77 |
+
--output-length INTEGER Output length for the answer
|
78 |
+
-m, --model-name TEXT Model name to use for inference
|
79 |
+
-l, --log-level [DEBUG|INFO|WARNING|ERROR]
|
80 |
+
Set the logging level [default: INFO]
|
81 |
+
--help Show this message and exit.
|
82 |
+
```
|
83 |
+
|
84 |
+
## Libraries and APIs used
|
85 |
+
|
86 |
+
- [Google Search API](https://developers.google.com/custom-search/v1/overview)
|
87 |
+
- [OpenAI API](https://beta.openai.com/docs/api-reference/completions/create)
|
88 |
+
- [Jinja2](https://jinja.palletsprojects.com/en/3.0.x/)
|
89 |
+
- [bs4](https://www.crummy.com/software/BeautifulSoup/bs4/doc/)
|
90 |
+
- [duckdb](https://github.com/duckdb/duckdb)
|
91 |
+
|
92 |
+
## Sample output
|
93 |
+
|
94 |
+
### General Search
|
95 |
+
|
96 |
+
```
|
97 |
+
% python ask.py -q "Why do we need agentic RAG even if we have ChatGPT?"
|
98 |
+
|
99 |
+
✅ Found 10 links for query: Why do we need agentic RAG even if we have ChatGPT?
|
100 |
+
✅ Scraping the URLs ...
|
101 |
+
✅ Scraped 10 URLs ...
|
102 |
+
✅ Chunking the text ...
|
103 |
+
✅ Saving to vector DB ...
|
104 |
+
✅ Querying the vector DB ...
|
105 |
+
✅ Running inference with context ...
|
106 |
+
|
107 |
+
# Answer
|
108 |
+
|
109 |
+
Agentic RAG (Retrieval-Augmented Generation) is needed alongside ChatGPT for several reasons:
|
110 |
+
|
111 |
+
1. **Precision and Contextual Relevance**: While ChatGPT offers generative responses, it may not
|
112 |
+
reliably provide precise answers, especially when specific, accurate information is critical[5].
|
113 |
+
Agentic RAG enhances this by integrating retrieval mechanisms that improve response context and
|
114 |
+
accuracy, allowing users to access the most relevant and recent data without the need for costly
|
115 |
+
model fine-tuning[2].
|
116 |
+
|
117 |
+
2. **Customizability**: RAG allows businesses to create tailored chatbots that can securely
|
118 |
+
reference company-specific data[2]. In contrast, ChatGPT’s broader capabilities may not be
|
119 |
+
directly suited for specialized, domain-specific questions without comprehensive customization[3].
|
120 |
+
|
121 |
+
3. **Complex Query Handling**: RAG can be optimized for complex queries and can be adjusted to
|
122 |
+
work better with specific types of inputs, such as comparing and contrasting information, a task
|
123 |
+
where ChatGPT may struggle under certain circumstances[9]. This level of customization can lead to
|
124 |
+
better performance in niche applications where precise retrieval of information is crucial.
|
125 |
+
|
126 |
+
4. **Asynchronous Processing Capabilities**: Future agentic systems aim to integrate asynchronous
|
127 |
+
handling of actions, allowing for parallel processing and reducing wait times for retrieval and
|
128 |
+
computation, which is a limitation in the current form of ChatGPT[7]. This advancement would enhance
|
129 |
+
overall efficiency and responsiveness in conversations.
|
130 |
+
|
131 |
+
5. **Incorporating Retrieved Information Effectively**: Using RAG can significantly improve how
|
132 |
+
retrieved information is utilized within a conversation. By effectively managing the context and
|
133 |
+
relevance of retrieved documents, RAG helps in framing prompts that can guide ChatGPT towards
|
134 |
+
delivering more accurate responses[10].
|
135 |
+
|
136 |
+
In summary, while ChatGPT excels in generating conversational responses, agentic RAG brings
|
137 |
+
precision, customization, and efficiency that can significantly enhance the overall conversational
|
138 |
+
AI experience.
|
139 |
+
|
140 |
+
# References
|
141 |
+
|
142 |
+
[1] https://community.openai.com/t/how-to-use-rag-properly-and-what-types-of-query-it-is-good-at/658204
|
143 |
+
[2] https://www.linkedin.com/posts/brianjuliusdc_dax-powerbi-chatgpt-activity-7235953280177041408-wQqq
|
144 |
+
[3] https://community.openai.com/t/how-to-use-rag-properly-and-what-types-of-query-it-is-good-at/658204
|
145 |
+
[4] https://community.openai.com/t/prompt-engineering-for-rag/621495
|
146 |
+
[5] https://www.ben-evans.com/benedictevans/2024/6/8/building-ai-products
|
147 |
+
[6] https://community.openai.com/t/prompt-engineering-for-rag/621495
|
148 |
+
[7] https://www.linkedin.com/posts/kurtcagle_agentic-rag-personalizing-and-optimizing-activity-7198097129993613312-z7Sm
|
149 |
+
[8] https://community.openai.com/t/how-to-use-rag-properly-and-what-types-of-query-it-is-good-at/658204
|
150 |
+
[9] https://community.openai.com/t/how-to-use-rag-properly-and-what-types-of-query-it-is-good-at/658204
|
151 |
+
[10] https://community.openai.com/t/prompt-engineering-for-rag/621495
|
152 |
+
```
|
153 |
+
|
154 |
+
### Only use the latest information from a specific site
|
155 |
+
|
156 |
+
This following query will only use the information from openai.com that are updated in the previous
|
157 |
+
day. The behavior is similar to the "site:openai.com" and "date-restrict" search parameters in Google
|
158 |
+
search.
|
159 |
+
|
160 |
+
```
|
161 |
+
% python ask.py -q "OpenAI Swarm Framework" -d 1 -s openai.com
|
162 |
+
✅ Found 10 links for query: OpenAI Swarm Framework
|
163 |
+
✅ Scraping the URLs ...
|
164 |
+
✅ Scraped 10 URLs ...
|
165 |
+
✅ Chunking the text ...
|
166 |
+
✅ Saving to vector DB ...
|
167 |
+
✅ Querying the vector DB to get context ...
|
168 |
+
✅ Running inference with context ...
|
169 |
+
|
170 |
+
# Answer
|
171 |
+
|
172 |
+
OpenAI Swarm Framework is an experimental platform designed for building, orchestrating, and
|
173 |
+
deploying multi-agent systems, enabling multiple AI agents to collaborate on complex tasks. It contrasts
|
174 |
+
with traditional single-agent models by facilitating agent interaction and coordination, thus enhancing
|
175 |
+
efficiency[5][9]. The framework provides developers with a way to orchestrate these agent systems in
|
176 |
+
a lightweight manner, leveraging Node.js for scalable applications[1][4].
|
177 |
+
|
178 |
+
One implementation of this framework is Swarm.js, which serves as a Node.js SDK, allowing users to
|
179 |
+
create and manage agents that perform tasks and hand off conversations. Swarm.js is positioned as
|
180 |
+
an educational tool, making it accessible for both beginners and experts, although it may still contain
|
181 |
+
bugs and is currently lightweight[1][3][7]. This new approach emphasizes multi-agent collaboration and is
|
182 |
+
well-suited for back-end development, requiring some programming expertise for effective implementation[9].
|
183 |
+
|
184 |
+
Overall, OpenAI Swarm facilitates a shift in how AI systems can collaborate, differing from existing
|
185 |
+
OpenAI tools by focusing on backend orchestration rather than user-interactive front-end applications[9].
|
186 |
+
|
187 |
+
# References
|
188 |
+
|
189 |
+
[1] https://community.openai.com/t/introducing-swarm-js-node-js-implementation-of-openai-swarm/977510
|
190 |
+
[2] https://community.openai.com/t/introducing-swarm-js-a-node-js-implementation-of-openai-swarm/977510
|
191 |
+
[3] https://community.openai.com/t/introducing-swarm-js-node-js-implementation-of-openai-swarm/977510
|
192 |
+
[4] https://community.openai.com/t/introducing-swarm-js-a-node-js-implementation-of-openai-swarm/977510
|
193 |
+
[5] https://community.openai.com/t/swarm-some-initial-insights/976602
|
194 |
+
[6] https://community.openai.com/t/swarm-some-initial-insights/976602
|
195 |
+
[7] https://community.openai.com/t/introducing-swarm-js-node-js-implementation-of-openai-swarm/977510
|
196 |
+
[8] https://community.openai.com/t/introducing-swarm-js-a-node-js-implementation-of-openai-swarm/977510
|
197 |
+
[9] https://community.openai.com/t/swarm-some-initial-insights/976602
|
198 |
+
[10] https://community.openai.com/t/swarm-some-initial-insights/976602
|
199 |
+
```
|
ask.py
ADDED
@@ -0,0 +1,618 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
import urllib.parse
|
5 |
+
from concurrent.futures import ThreadPoolExecutor
|
6 |
+
from functools import partial
|
7 |
+
from typing import Any, Dict, List, Optional, Tuple
|
8 |
+
|
9 |
+
import click
|
10 |
+
import duckdb
|
11 |
+
import gradio as gr
|
12 |
+
import requests
|
13 |
+
from bs4 import BeautifulSoup
|
14 |
+
from dotenv import load_dotenv
|
15 |
+
from jinja2 import BaseLoader, Environment
|
16 |
+
from openai import OpenAI
|
17 |
+
|
18 |
+
script_dir = os.path.dirname(os.path.abspath(__file__))
|
19 |
+
default_env_file = os.path.abspath(os.path.join(script_dir, ".env"))
|
20 |
+
|
21 |
+
|
22 |
+
def get_logger(log_level: str) -> logging.Logger:
|
23 |
+
logger = logging.getLogger(__name__)
|
24 |
+
logger.setLevel(log_level)
|
25 |
+
handler = logging.StreamHandler()
|
26 |
+
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
|
27 |
+
handler.setFormatter(formatter)
|
28 |
+
logger.addHandler(handler)
|
29 |
+
return logger
|
30 |
+
|
31 |
+
|
32 |
+
class Ask:
|
33 |
+
|
34 |
+
def __init__(self, logger: Optional[logging.Logger] = None):
|
35 |
+
self.read_env_variables()
|
36 |
+
|
37 |
+
if logger is not None:
|
38 |
+
self.logger = logger
|
39 |
+
else:
|
40 |
+
self.logger = get_logger("INFO")
|
41 |
+
|
42 |
+
self.table_name = "document_chunks"
|
43 |
+
self.db_con = duckdb.connect(":memory:")
|
44 |
+
|
45 |
+
self.db_con.install_extension("vss")
|
46 |
+
self.db_con.load_extension("vss")
|
47 |
+
self.db_con.install_extension("fts")
|
48 |
+
self.db_con.load_extension("fts")
|
49 |
+
self.db_con.sql("CREATE SEQUENCE seq_docid START 1000")
|
50 |
+
|
51 |
+
self.db_con.execute(
|
52 |
+
f"""
|
53 |
+
CREATE TABLE {self.table_name} (
|
54 |
+
doc_id INTEGER PRIMARY KEY DEFAULT nextval('seq_docid'),
|
55 |
+
url TEXT,
|
56 |
+
chunk TEXT,
|
57 |
+
vec FLOAT[{self.embedding_dimensions}]
|
58 |
+
);
|
59 |
+
"""
|
60 |
+
)
|
61 |
+
|
62 |
+
self.session = requests.Session()
|
63 |
+
user_agent: str = (
|
64 |
+
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) "
|
65 |
+
"AppleWebKit/537.36 (KHTML, like Gecko) "
|
66 |
+
"Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0"
|
67 |
+
)
|
68 |
+
self.session.headers.update({"User-Agent": user_agent})
|
69 |
+
|
70 |
+
def read_env_variables(self) -> None:
|
71 |
+
err_msg = ""
|
72 |
+
|
73 |
+
self.search_api_key = os.environ.get("SEARCH_API_KEY")
|
74 |
+
if self.search_api_key is None:
|
75 |
+
err_msg += "SEARCH_API_KEY env variable not set.\n"
|
76 |
+
self.search_project_id = os.environ.get("SEARCH_PROJECT_KEY")
|
77 |
+
if self.search_project_id is None:
|
78 |
+
err_msg += "SEARCH_PROJECT_KEY env variable not set.\n"
|
79 |
+
self.llm_api_key = os.environ.get("LLM_API_KEY")
|
80 |
+
if self.llm_api_key is None:
|
81 |
+
err_msg += "LLM_API_KEY env variable not set.\n"
|
82 |
+
|
83 |
+
if err_msg != "":
|
84 |
+
raise Exception(f"\n{err_msg}\n")
|
85 |
+
|
86 |
+
self.llm_base_url = os.environ.get("LLM_BASE_URL")
|
87 |
+
if self.llm_base_url is None:
|
88 |
+
self.llm_base_url = "https://api.openai.com/v1"
|
89 |
+
|
90 |
+
self.embedding_model = os.environ.get("EMBEDDING_MODEL")
|
91 |
+
self.embedding_dimensions = os.environ.get("EMBEDDING_DIMENSIONS")
|
92 |
+
|
93 |
+
if self.embedding_model is None or self.embedding_dimensions is None:
|
94 |
+
self.embedding_model = "text-embedding-3-small"
|
95 |
+
self.embedding_dimensions = 1536
|
96 |
+
|
97 |
+
def search_web(self, query: str, date_restrict: int, target_site: str) -> List[str]:
|
98 |
+
escaped_query = urllib.parse.quote(query)
|
99 |
+
url_base = (
|
100 |
+
f"https://www.googleapis.com/customsearch/v1?key={self.search_api_key}"
|
101 |
+
f"&cx={self.search_project_id}&q={escaped_query}"
|
102 |
+
)
|
103 |
+
url_paras = f"&safe=active"
|
104 |
+
if date_restrict is not None and date_restrict > 0:
|
105 |
+
url_paras += f"&dateRestrict={date_restrict}"
|
106 |
+
if target_site is not None and target_site != "":
|
107 |
+
url_paras += f"&siteSearch={target_site}&siteSearchFilter=i"
|
108 |
+
url = f"{url_base}{url_paras}"
|
109 |
+
|
110 |
+
self.logger.debug(f"Searching for query: {query}")
|
111 |
+
|
112 |
+
resp = requests.get(url)
|
113 |
+
|
114 |
+
if resp is None:
|
115 |
+
raise Exception("No response from search API")
|
116 |
+
|
117 |
+
search_results_dict = json.loads(resp.text)
|
118 |
+
if "error" in search_results_dict:
|
119 |
+
raise Exception(
|
120 |
+
f"Error in search API response: {search_results_dict['error']}"
|
121 |
+
)
|
122 |
+
|
123 |
+
if "searchInformation" not in search_results_dict:
|
124 |
+
raise Exception(
|
125 |
+
f"No search information in search API response: {resp.text}"
|
126 |
+
)
|
127 |
+
|
128 |
+
total_results = search_results_dict["searchInformation"].get("totalResults", 0)
|
129 |
+
if total_results == 0:
|
130 |
+
self.logger.warning(f"No results found for query: {query}")
|
131 |
+
return []
|
132 |
+
|
133 |
+
results = search_results_dict.get("items", [])
|
134 |
+
if results is None or len(results) == 0:
|
135 |
+
self.logger.warning(f"No result items in the response for query: {query}")
|
136 |
+
return []
|
137 |
+
|
138 |
+
found_links = []
|
139 |
+
for result in results:
|
140 |
+
link = result.get("link", None)
|
141 |
+
if link is None or link == "":
|
142 |
+
self.logger.warning(f"Search result link missing: {result}")
|
143 |
+
continue
|
144 |
+
found_links.append(link)
|
145 |
+
return found_links
|
146 |
+
|
147 |
+
def _scape_url(self, url: str) -> Tuple[str, str]:
|
148 |
+
try:
|
149 |
+
response = self.session.get(url, timeout=10)
|
150 |
+
soup = BeautifulSoup(response.content, "lxml", from_encoding="utf-8")
|
151 |
+
|
152 |
+
body_tag = soup.body
|
153 |
+
if body_tag:
|
154 |
+
body_text = body_tag.get_text()
|
155 |
+
body_text = " ".join(body_text.split()).strip()
|
156 |
+
self.logger.debug(f"Scraped {url}: {body_text}...")
|
157 |
+
if len(body_text) > 100:
|
158 |
+
return url, body_text
|
159 |
+
else:
|
160 |
+
self.logger.warning(
|
161 |
+
f"Body text too short for url: {url}, length: {len(body_text)}"
|
162 |
+
)
|
163 |
+
return url, ""
|
164 |
+
else:
|
165 |
+
self.logger.warning(f"No body tag found in the response for url: {url}")
|
166 |
+
return url, ""
|
167 |
+
except Exception as e:
|
168 |
+
self.logger.error(f"Scraping error {url}: {e}")
|
169 |
+
return url, ""
|
170 |
+
|
171 |
+
def scrape_urls(self, urls: List[str]) -> Dict[str, str]:
|
172 |
+
# the key is the url and the value is the body text
|
173 |
+
scrape_results: Dict[str, str] = {}
|
174 |
+
|
175 |
+
partial_scrape = partial(self._scape_url)
|
176 |
+
with ThreadPoolExecutor(max_workers=10) as executor:
|
177 |
+
results = executor.map(partial_scrape, urls)
|
178 |
+
|
179 |
+
for url, body_text in results:
|
180 |
+
if body_text != "":
|
181 |
+
scrape_results[url] = body_text
|
182 |
+
|
183 |
+
return scrape_results
|
184 |
+
|
185 |
+
def chunk_results(
|
186 |
+
self, scrape_results: Dict[str, str], size: int, overlap: int
|
187 |
+
) -> Dict[str, List[str]]:
|
188 |
+
chunking_results: Dict[str, List[str]] = {}
|
189 |
+
for url, text in scrape_results.items():
|
190 |
+
chunks = []
|
191 |
+
for pos in range(0, len(text), size - overlap):
|
192 |
+
chunks.append(text[pos : pos + size])
|
193 |
+
chunking_results[url] = chunks
|
194 |
+
return chunking_results
|
195 |
+
|
196 |
+
def get_embedding(self, client: OpenAI, texts: List[str]) -> List[List[float]]:
|
197 |
+
if len(texts) == 0:
|
198 |
+
return []
|
199 |
+
|
200 |
+
response = client.embeddings.create(input=texts, model=self.embedding_model)
|
201 |
+
embeddings = []
|
202 |
+
for i in range(len(response.data)):
|
203 |
+
embeddings.append(response.data[i].embedding)
|
204 |
+
return embeddings
|
205 |
+
|
206 |
+
def batch_get_embedding(
|
207 |
+
self, client: OpenAI, chunk_batch: Tuple[str, List[str]]
|
208 |
+
) -> Tuple[Tuple[str, List[str]], List[List[float]]]:
|
209 |
+
"""
|
210 |
+
Return the chunk_batch as well as the embeddings for each chunk so that
|
211 |
+
we can aggregate them and save them to the database together.
|
212 |
+
|
213 |
+
Args:
|
214 |
+
- client: OpenAI client
|
215 |
+
- chunk_batch: Tuple of URL and list of chunks scraped from the URL
|
216 |
+
|
217 |
+
Returns:
|
218 |
+
- Tuple of chunk_bach and list of result embeddings
|
219 |
+
"""
|
220 |
+
texts = chunk_batch[1]
|
221 |
+
embeddings = self.get_embedding(client, texts)
|
222 |
+
return chunk_batch, embeddings
|
223 |
+
|
224 |
+
def save_to_db(self, chunking_results: Dict[str, List[str]]) -> None:
|
225 |
+
client = self._get_api_client()
|
226 |
+
embed_batch_size = 50
|
227 |
+
query_batch_size = 100
|
228 |
+
insert_data = []
|
229 |
+
|
230 |
+
batches: List[Tuple[str, List[str]]] = []
|
231 |
+
for url, list_chunks in chunking_results.items():
|
232 |
+
for i in range(0, len(list_chunks), embed_batch_size):
|
233 |
+
list_chunks = list_chunks[i : i + embed_batch_size]
|
234 |
+
batches.append((url, list_chunks))
|
235 |
+
|
236 |
+
self.logger.info(f"Embedding {len(batches)} batches of chunks ...")
|
237 |
+
partial_get_embedding = partial(self.batch_get_embedding, client)
|
238 |
+
with ThreadPoolExecutor(max_workers=10) as executor:
|
239 |
+
all_embeddings = executor.map(partial_get_embedding, batches)
|
240 |
+
self.logger.info(f"✅ Finished embedding.")
|
241 |
+
|
242 |
+
for chunk_batch, embeddings in all_embeddings:
|
243 |
+
url = chunk_batch[0]
|
244 |
+
list_chunks = chunk_batch[1]
|
245 |
+
insert_data.extend(
|
246 |
+
[
|
247 |
+
(url.replace("'", " "), chunk.replace("'", " "), embedding)
|
248 |
+
for chunk, embedding in zip(list_chunks, embeddings)
|
249 |
+
]
|
250 |
+
)
|
251 |
+
|
252 |
+
for i in range(0, len(insert_data), query_batch_size):
|
253 |
+
# insert the batch into DuckDB
|
254 |
+
value_str = ", ".join(
|
255 |
+
[
|
256 |
+
f"('{url}', '{chunk}', {embedding})"
|
257 |
+
for url, chunk, embedding in insert_data[i : i + embed_batch_size]
|
258 |
+
]
|
259 |
+
)
|
260 |
+
query = f"""
|
261 |
+
INSERT INTO {self.table_name} (url, chunk, vec) VALUES {value_str};
|
262 |
+
"""
|
263 |
+
self.db_con.execute(query)
|
264 |
+
|
265 |
+
self.db_con.execute(
|
266 |
+
f"""
|
267 |
+
CREATE INDEX cos_idx ON {self.table_name} USING HNSW (vec)
|
268 |
+
WITH (metric = 'cosine');
|
269 |
+
"""
|
270 |
+
)
|
271 |
+
self.logger.info(f"✅ Created the vector index ...")
|
272 |
+
self.db_con.execute(
|
273 |
+
f"""
|
274 |
+
PRAGMA create_fts_index(
|
275 |
+
{self.table_name}, 'doc_id', 'chunk'
|
276 |
+
);
|
277 |
+
"""
|
278 |
+
)
|
279 |
+
self.logger.info(f"✅ Created the full text search index ...")
|
280 |
+
|
281 |
+
def vector_search(self, query: str) -> List[Dict[str, Any]]:
|
282 |
+
client = self._get_api_client()
|
283 |
+
embeddings = self.get_embedding(client, [query])[0]
|
284 |
+
|
285 |
+
query_result: duckdb.DuckDBPyRelation = self.db_con.sql(
|
286 |
+
f"""
|
287 |
+
SELECT * FROM {self.table_name}
|
288 |
+
ORDER BY array_distance(vec, {embeddings}::FLOAT[{self.embedding_dimensions}])
|
289 |
+
LIMIT 10;
|
290 |
+
"""
|
291 |
+
)
|
292 |
+
|
293 |
+
self.logger.debug(query_result)
|
294 |
+
|
295 |
+
matched_chunks = []
|
296 |
+
for record in query_result.fetchall():
|
297 |
+
result_record = {
|
298 |
+
"url": record[1],
|
299 |
+
"chunk": record[2],
|
300 |
+
}
|
301 |
+
matched_chunks.append(result_record)
|
302 |
+
|
303 |
+
return matched_chunks
|
304 |
+
|
305 |
+
def _get_api_client(self) -> OpenAI:
|
306 |
+
return OpenAI(api_key=self.llm_api_key, base_url=self.llm_base_url)
|
307 |
+
|
308 |
+
def _render_template(self, template_str: str, variables: Dict[str, Any]) -> str:
|
309 |
+
env = Environment(loader=BaseLoader(), autoescape=False)
|
310 |
+
template = env.from_string(template_str)
|
311 |
+
return template.render(variables)
|
312 |
+
|
313 |
+
def run_inference(
|
314 |
+
self,
|
315 |
+
query: str,
|
316 |
+
model_name: str,
|
317 |
+
matched_chunks: List[Dict[str, Any]],
|
318 |
+
output_language: str,
|
319 |
+
output_length: int,
|
320 |
+
) -> str:
|
321 |
+
system_prompt = (
|
322 |
+
"You are an expert summarizing the answers based on the provided contents."
|
323 |
+
)
|
324 |
+
user_promt_template = """
|
325 |
+
Given the context as a sequence of references with a reference id in the
|
326 |
+
format of a leading [x], please answer the following question using {{ language }}:
|
327 |
+
|
328 |
+
{{ query }}
|
329 |
+
|
330 |
+
In the answer, use format [1], [2], ..., [n] in line where the reference is used.
|
331 |
+
For example, "According to the research from Google[3], ...".
|
332 |
+
|
333 |
+
Please create the answer strictly related to the context. If the context has no
|
334 |
+
information about the query, please write "No related information found in the context."
|
335 |
+
using {{ language }}.
|
336 |
+
|
337 |
+
{{ length_instructions }}
|
338 |
+
|
339 |
+
Here is the context:
|
340 |
+
{{ context }}
|
341 |
+
"""
|
342 |
+
context = ""
|
343 |
+
for i, chunk in enumerate(matched_chunks):
|
344 |
+
context += f"[{i+1}] {chunk['chunk']}\n"
|
345 |
+
|
346 |
+
if output_length is None or output_length == 0:
|
347 |
+
length_instructions = ""
|
348 |
+
else:
|
349 |
+
length_instructions = (
|
350 |
+
f"Please provide the answer in { output_length } words."
|
351 |
+
)
|
352 |
+
|
353 |
+
user_prompt = self._render_template(
|
354 |
+
user_promt_template,
|
355 |
+
{
|
356 |
+
"query": query,
|
357 |
+
"context": context,
|
358 |
+
"language": output_language,
|
359 |
+
"length_instructions": length_instructions,
|
360 |
+
},
|
361 |
+
)
|
362 |
+
|
363 |
+
self.logger.debug(f"Running inference with model: {model_name}")
|
364 |
+
self.logger.debug(f"Final user prompt: {user_prompt}")
|
365 |
+
|
366 |
+
api_client = self._get_api_client()
|
367 |
+
completion = api_client.chat.completions.create(
|
368 |
+
model=model_name,
|
369 |
+
messages=[
|
370 |
+
{
|
371 |
+
"role": "system",
|
372 |
+
"content": system_prompt,
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"role": "user",
|
376 |
+
"content": user_prompt,
|
377 |
+
},
|
378 |
+
],
|
379 |
+
)
|
380 |
+
if completion is None:
|
381 |
+
raise Exception("No completion from the API")
|
382 |
+
|
383 |
+
response_str = completion.choices[0].message.content
|
384 |
+
return response_str
|
385 |
+
|
386 |
+
|
387 |
+
def _read_url_list(url_list_file: str) -> str:
|
388 |
+
if url_list_file is None:
|
389 |
+
return None
|
390 |
+
|
391 |
+
with open(url_list_file, "r") as f:
|
392 |
+
links = f.readlines()
|
393 |
+
links = [
|
394 |
+
link.strip()
|
395 |
+
for link in links
|
396 |
+
if link.strip() != "" and not link.startswith("#")
|
397 |
+
]
|
398 |
+
return "\n".join(links)
|
399 |
+
|
400 |
+
|
401 |
+
def _run_query(
|
402 |
+
query: str,
|
403 |
+
date_restrict: int,
|
404 |
+
target_site: str,
|
405 |
+
output_language: str,
|
406 |
+
output_length: int,
|
407 |
+
url_list_str: str,
|
408 |
+
model_name: str,
|
409 |
+
log_level: str,
|
410 |
+
) -> str:
|
411 |
+
logger = get_logger(log_level)
|
412 |
+
|
413 |
+
load_dotenv(dotenv_path=default_env_file, override=False)
|
414 |
+
|
415 |
+
ask = Ask(logger=logger)
|
416 |
+
|
417 |
+
if url_list_str is None or url_list_str.strip() == "":
|
418 |
+
logger.info("Searching the web ...")
|
419 |
+
links = ask.search_web(query, date_restrict, target_site)
|
420 |
+
logger.info(f"✅ Found {len(links)} links for query: {query}")
|
421 |
+
for i, link in enumerate(links):
|
422 |
+
logger.debug(f"{i+1}. {link}")
|
423 |
+
else:
|
424 |
+
links = url_list_str.split("\n")
|
425 |
+
|
426 |
+
logger.info("Scraping the URLs ...")
|
427 |
+
scrape_results = ask.scrape_urls(links)
|
428 |
+
logger.info(f"✅ Scraped {len(scrape_results)} URLs.")
|
429 |
+
|
430 |
+
logger.info("Chunking the text ...")
|
431 |
+
chunking_results = ask.chunk_results(scrape_results, 1000, 100)
|
432 |
+
total_chunks = 0
|
433 |
+
for url, chunks in chunking_results.items():
|
434 |
+
logger.debug(f"URL: {url}")
|
435 |
+
total_chunks += len(chunks)
|
436 |
+
for i, chunk in enumerate(chunks):
|
437 |
+
logger.debug(f"Chunk {i+1}: {chunk}")
|
438 |
+
logger.info(f"✅ Generated {total_chunks} chunks ...")
|
439 |
+
|
440 |
+
logger.info(f"Saving {total_chunks} chunks to DB ...")
|
441 |
+
ask.save_to_db(chunking_results)
|
442 |
+
logger.info(f"✅ Successfully embedded and saved chunks to DB.")
|
443 |
+
|
444 |
+
logger.info("Querying the vector DB to get context ...")
|
445 |
+
matched_chunks = ask.vector_search(query)
|
446 |
+
for i, result in enumerate(matched_chunks):
|
447 |
+
logger.debug(f"{i+1}. {result}")
|
448 |
+
logger.info(f"✅ Got {len(matched_chunks)} matched chunks.")
|
449 |
+
|
450 |
+
logger.info("Running inference with context ...")
|
451 |
+
answer = ask.run_inference(
|
452 |
+
query=query,
|
453 |
+
model_name=model_name,
|
454 |
+
matched_chunks=matched_chunks,
|
455 |
+
output_language=output_language,
|
456 |
+
output_length=output_length,
|
457 |
+
)
|
458 |
+
logger.info("✅ Finished inference API call.")
|
459 |
+
logger.info("generateing output ...")
|
460 |
+
|
461 |
+
answer = f"# Answer\n\n{answer}\n"
|
462 |
+
references = "\n".join(
|
463 |
+
[f"[{i+1}] {result['url']}" for i, result in enumerate(matched_chunks)]
|
464 |
+
)
|
465 |
+
return f"{answer}\n\n# References\n\n{references}"
|
466 |
+
|
467 |
+
|
468 |
+
def launch_gradio(
|
469 |
+
query: str,
|
470 |
+
date_restrict: int,
|
471 |
+
target_site: str,
|
472 |
+
output_language: str,
|
473 |
+
output_length: int,
|
474 |
+
url_list_str: str,
|
475 |
+
model_name: str,
|
476 |
+
log_level: str,
|
477 |
+
) -> None:
|
478 |
+
iface = gr.Interface(
|
479 |
+
fn=_run_query,
|
480 |
+
inputs=[
|
481 |
+
gr.Textbox(label="Query", value=query),
|
482 |
+
gr.Number(
|
483 |
+
label="Date Restrict (Optional) [0 or empty means no date limit.]",
|
484 |
+
value=date_restrict,
|
485 |
+
),
|
486 |
+
gr.Textbox(
|
487 |
+
label="Target Sites (Optional) [Empty means seach the whole web.]",
|
488 |
+
value=target_site,
|
489 |
+
),
|
490 |
+
gr.Textbox(
|
491 |
+
label="Output Language (Optional) [Default is English.]",
|
492 |
+
value=output_language,
|
493 |
+
),
|
494 |
+
gr.Number(
|
495 |
+
label="Output Length in words (Optional) [Default is automatically decided by LLM.]",
|
496 |
+
value=output_length,
|
497 |
+
),
|
498 |
+
gr.Textbox(
|
499 |
+
label="URL List (Optional) [When specified, scrape the urls instead of searching the web.]",
|
500 |
+
lines=5,
|
501 |
+
max_lines=20,
|
502 |
+
value=url_list_str,
|
503 |
+
),
|
504 |
+
],
|
505 |
+
additional_inputs=[
|
506 |
+
gr.Textbox(label="Model Name", value=model_name),
|
507 |
+
gr.Textbox(label="Log Level", value=log_level),
|
508 |
+
],
|
509 |
+
outputs="text",
|
510 |
+
show_progress=True,
|
511 |
+
flagging_options=[("Report Error", None)],
|
512 |
+
title="Ask.py - Web Search-Extract-Summarize",
|
513 |
+
description="Search the web with the query and summarize the results. Source code: https://github.com/pengfeng/ask.py",
|
514 |
+
)
|
515 |
+
|
516 |
+
iface.launch()
|
517 |
+
|
518 |
+
|
519 |
+
@click.command(help="Search web for the query and summarize the results")
|
520 |
+
@click.option(
|
521 |
+
"--web-ui",
|
522 |
+
is_flag=True,
|
523 |
+
help="Launch the web interface",
|
524 |
+
)
|
525 |
+
@click.option("--query", "-q", required=False, help="Query to search")
|
526 |
+
@click.option(
|
527 |
+
"--date-restrict",
|
528 |
+
"-d",
|
529 |
+
type=int,
|
530 |
+
required=False,
|
531 |
+
default=None,
|
532 |
+
help="Restrict search results to a specific date range, default is no restriction",
|
533 |
+
)
|
534 |
+
@click.option(
|
535 |
+
"--target-site",
|
536 |
+
"-s",
|
537 |
+
required=False,
|
538 |
+
default=None,
|
539 |
+
help="Restrict search results to a specific site, default is no restriction",
|
540 |
+
)
|
541 |
+
@click.option(
|
542 |
+
"--output-language",
|
543 |
+
required=False,
|
544 |
+
default="English",
|
545 |
+
help="Output language for the answer",
|
546 |
+
)
|
547 |
+
@click.option(
|
548 |
+
"--output-length",
|
549 |
+
type=int,
|
550 |
+
required=False,
|
551 |
+
default=None,
|
552 |
+
help="Output length for the answer",
|
553 |
+
)
|
554 |
+
@click.option(
|
555 |
+
"--url-list-file",
|
556 |
+
type=str,
|
557 |
+
required=False,
|
558 |
+
default=None,
|
559 |
+
show_default=True,
|
560 |
+
help="Instead of doing web search, scrape the target URL list and answer the query based on the content",
|
561 |
+
)
|
562 |
+
@click.option(
|
563 |
+
"--model-name",
|
564 |
+
"-m",
|
565 |
+
required=False,
|
566 |
+
default="gpt-4o-mini",
|
567 |
+
help="Model name to use for inference",
|
568 |
+
)
|
569 |
+
@click.option(
|
570 |
+
"-l",
|
571 |
+
"--log-level",
|
572 |
+
"log_level",
|
573 |
+
default="INFO",
|
574 |
+
type=click.Choice(["DEBUG", "INFO", "WARNING", "ERROR"], case_sensitive=False),
|
575 |
+
help="Set the logging level",
|
576 |
+
show_default=True,
|
577 |
+
)
|
578 |
+
def search_extract_summarize(
|
579 |
+
web_ui: bool,
|
580 |
+
query: str,
|
581 |
+
date_restrict: int,
|
582 |
+
target_site: str,
|
583 |
+
output_language: str,
|
584 |
+
output_length: int,
|
585 |
+
url_list_file: str,
|
586 |
+
model_name: str,
|
587 |
+
log_level: str,
|
588 |
+
):
|
589 |
+
if web_ui:
|
590 |
+
launch_gradio(
|
591 |
+
query=query,
|
592 |
+
date_restrict=date_restrict,
|
593 |
+
target_site=target_site,
|
594 |
+
output_language=output_language,
|
595 |
+
output_length=output_length,
|
596 |
+
url_list_str=_read_url_list(url_list_file),
|
597 |
+
model_name=model_name,
|
598 |
+
log_level=log_level,
|
599 |
+
)
|
600 |
+
else:
|
601 |
+
if query is None:
|
602 |
+
raise Exception("Query is required for the command line mode")
|
603 |
+
|
604 |
+
result = _run_query(
|
605 |
+
query=query,
|
606 |
+
date_restrict=date_restrict,
|
607 |
+
target_site=target_site,
|
608 |
+
output_language=output_language,
|
609 |
+
output_length=output_length,
|
610 |
+
url_list_str=_read_url_list(url_list_file),
|
611 |
+
model_name=model_name,
|
612 |
+
log_level=log_level,
|
613 |
+
)
|
614 |
+
click.echo(result)
|
615 |
+
|
616 |
+
|
617 |
+
if __name__ == "__main__":
|
618 |
+
search_extract_summarize()
|
instructions/links.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# we will crawl these pages and answer the question based on their contents
|
2 |
+
https://en.wikipedia.org/wiki/Large_language_model
|
3 |
+
https://en.wikipedia.org/wiki/Retrieval-augmented_generation
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
click==8.1.7
|
2 |
+
requests==2.31.0
|
3 |
+
openai==1.40.2
|
4 |
+
jinja2==3.1.3
|
5 |
+
bs4==0.0.2
|
6 |
+
lxml==4.8.0
|
7 |
+
python-dotenv==1.0.1
|
8 |
+
duckdb==1.1.2
|
9 |
+
gradio==5.3.0
|