import gradio as gr from transformers import pipeline model_id = "bczhou/tiny-llava-v1-hf" pipe = pipeline("image-to-text", model=model_id) def generate_text(prompt, image): # Generate text description prompt = f"USER: \n{prompt}\nASSISTANT:" text_description = pipe(images=image, prompt=prompt,generate_kwargs={"max_new_tokens": 200}) # Batch for efficiency return text_description[0]['generated_text'].split("\nASSISTANT:")[-1] # Create Gradio interface inputs = [gr.Textbox(label="Input Text"), gr.Image(type="pil")] # Input for uploading an image outputs = gr.Textbox(label="Generated Text") # Output for displaying the text # Create the interface interface = gr.Interface(fn=generate_text, inputs=inputs, outputs=outputs, title="LLaVa Image-to-Text") # Launch the interface interface.launch()