Spaces:
Sleeping
Sleeping
import torch | |
from torch.nn import functional as F | |
from PIL import Image | |
import numpy as np | |
import cv2 | |
from rrdbnet_arch import RRDBNet | |
from utils_sr import * | |
class RealESRGAN: | |
def __init__(self, device, scale=4): | |
self.device = device | |
self.scale = scale | |
self.model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=scale) | |
def load_weights(self, model_path): | |
loadnet = torch.load(model_path) | |
if 'params' in loadnet: | |
self.model.load_state_dict(loadnet['params'], strict=True) | |
elif 'params_ema' in loadnet: | |
self.model.load_state_dict(loadnet['params_ema'], strict=True) | |
else: | |
self.model.load_state_dict(loadnet, strict=True) | |
self.model.eval() | |
self.model.to(self.device) | |
def predict(self, lr_image, batch_size=4, patches_size=192, | |
padding=24, pad_size=15): | |
scale = self.scale | |
device = self.device | |
lr_image = np.array(lr_image) | |
lr_image = pad_reflect(lr_image, pad_size) | |
patches, p_shape = split_image_into_overlapping_patches(lr_image, patch_size=patches_size, | |
padding_size=padding) | |
img = torch.FloatTensor(patches/255).permute((0,3,1,2)).to(device).detach() | |
with torch.no_grad(): | |
res = self.model(img[0:batch_size]) | |
for i in range(batch_size, img.shape[0], batch_size): | |
res = torch.cat((res, self.model(img[i:i+batch_size])), 0) | |
sr_image = res.permute((0,2,3,1)).clamp_(0, 1).cpu() | |
np_sr_image = sr_image.numpy() | |
padded_size_scaled = tuple(np.multiply(p_shape[0:2], scale)) + (3,) | |
scaled_image_shape = tuple(np.multiply(lr_image.shape[0:2], scale)) + (3,) | |
np_sr_image = stich_together(np_sr_image, padded_image_shape=padded_size_scaled, | |
target_shape=scaled_image_shape, padding_size=padding * scale) | |
sr_img = (np_sr_image*255).astype(np.uint8) | |
sr_img = unpad_image(sr_img, pad_size*scale) | |
sr_img = Image.fromarray(sr_img) | |
return sr_img |