doevent commited on
Commit
e88aecd
1 Parent(s): e4f78ee

Delete realesrgan.py

Browse files
Files changed (1) hide show
  1. realesrgan.py +0 -56
realesrgan.py DELETED
@@ -1,56 +0,0 @@
1
- import torch
2
- from torch.nn import functional as F
3
- from PIL import Image
4
- import numpy as np
5
- import cv2
6
-
7
- from rrdbnet_arch import RRDBNet
8
- from utils_sr import *
9
-
10
-
11
- class RealESRGAN:
12
- def __init__(self, device, scale=4):
13
- self.device = device
14
- self.scale = scale
15
- self.model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=scale)
16
-
17
- def load_weights(self, model_path):
18
- loadnet = torch.load(model_path)
19
- if 'params' in loadnet:
20
- self.model.load_state_dict(loadnet['params'], strict=True)
21
- elif 'params_ema' in loadnet:
22
- self.model.load_state_dict(loadnet['params_ema'], strict=True)
23
- else:
24
- self.model.load_state_dict(loadnet, strict=True)
25
- self.model.eval()
26
- self.model.to(self.device)
27
-
28
- @torch.cuda.amp.autocast()
29
- def predict(self, lr_image, batch_size=4, patches_size=192,
30
- padding=24, pad_size=15):
31
- scale = self.scale
32
- device = self.device
33
- lr_image = np.array(lr_image)
34
- lr_image = pad_reflect(lr_image, pad_size)
35
-
36
- patches, p_shape = split_image_into_overlapping_patches(lr_image, patch_size=patches_size,
37
- padding_size=padding)
38
- img = torch.FloatTensor(patches/255).permute((0,3,1,2)).to(device).detach()
39
-
40
- with torch.no_grad():
41
- res = self.model(img[0:batch_size])
42
- for i in range(batch_size, img.shape[0], batch_size):
43
- res = torch.cat((res, self.model(img[i:i+batch_size])), 0)
44
-
45
- sr_image = res.permute((0,2,3,1)).clamp_(0, 1).cpu()
46
- np_sr_image = sr_image.numpy()
47
-
48
- padded_size_scaled = tuple(np.multiply(p_shape[0:2], scale)) + (3,)
49
- scaled_image_shape = tuple(np.multiply(lr_image.shape[0:2], scale)) + (3,)
50
- np_sr_image = stich_together(np_sr_image, padded_image_shape=padded_size_scaled,
51
- target_shape=scaled_image_shape, padding_size=padding * scale)
52
- sr_img = (np_sr_image*255).astype(np.uint8)
53
- sr_img = unpad_image(sr_img, pad_size*scale)
54
- sr_img = Image.fromarray(sr_img)
55
-
56
- return sr_img