Spaces:
Running
Running
File size: 7,712 Bytes
7088d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
from pytorch3d.ops.interp_face_attrs import (
interpolate_face_attributes,
interpolate_face_attributes_python,
)
from pytorch3d.renderer.mesh import TexturesVertex
from pytorch3d.renderer.mesh.rasterizer import Fragments
from pytorch3d.structures import Meshes
from .common_testing import get_random_cuda_device, TestCaseMixin
class TestInterpolateFaceAttributes(TestCaseMixin, unittest.TestCase):
def _test_interp_face_attrs(self, interp_fun, device):
pix_to_face = [0, 2, -1, 0, 1, -1]
barycentric_coords = [
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0],
[0.5, 0.5, 0.0],
[0.8, 0.0, 0.2],
[0.25, 0.5, 0.25],
]
face_attrs = [
[[1, 2], [3, 4], [5, 6]],
[[7, 8], [9, 10], [11, 12]],
[[13, 14], [15, 16], [17, 18]],
]
pix_attrs = [
[1, 2],
[15, 16],
[0, 0],
[2, 3],
[0.8 * 7 + 0.2 * 11, 0.8 * 8 + 0.2 * 12],
[0, 0],
]
N, H, W, K, D = 1, 2, 1, 3, 2
pix_to_face = torch.tensor(pix_to_face, dtype=torch.int64, device=device)
pix_to_face = pix_to_face.view(N, H, W, K)
barycentric_coords = torch.tensor(
barycentric_coords, dtype=torch.float32, device=device
)
barycentric_coords = barycentric_coords.view(N, H, W, K, 3)
face_attrs = torch.tensor(face_attrs, dtype=torch.float32, device=device)
pix_attrs = torch.tensor(pix_attrs, dtype=torch.float32, device=device)
pix_attrs = pix_attrs.view(N, H, W, K, D)
args = (pix_to_face, barycentric_coords, face_attrs)
pix_attrs_actual = interp_fun(*args)
self.assertClose(pix_attrs_actual, pix_attrs)
def test_python(self):
device = torch.device("cuda:0")
self._test_interp_face_attrs(interpolate_face_attributes_python, device)
def test_cuda(self):
device = torch.device("cuda:0")
self._test_interp_face_attrs(interpolate_face_attributes, device)
def test_python_vs_cuda(self):
N, H, W, K = 2, 32, 32, 5
F = 1000
D = 3
device = get_random_cuda_device()
torch.manual_seed(598)
pix_to_face = torch.randint(-F, F, (N, H, W, K), device=device)
barycentric_coords = torch.randn(
N, H, W, K, 3, device=device, requires_grad=True
)
face_attrs = torch.randn(F, 3, D, device=device, requires_grad=True)
grad_pix_attrs = torch.randn(N, H, W, K, D, device=device)
args = (pix_to_face, barycentric_coords, face_attrs)
# Run the python version
pix_attrs_py = interpolate_face_attributes_python(*args)
pix_attrs_py.backward(gradient=grad_pix_attrs)
grad_bary_py = barycentric_coords.grad.clone()
grad_face_attrs_py = face_attrs.grad.clone()
# Clear gradients
barycentric_coords.grad.zero_()
face_attrs.grad.zero_()
# Run the CUDA version
pix_attrs_cu = interpolate_face_attributes(*args)
pix_attrs_cu.backward(gradient=grad_pix_attrs)
grad_bary_cu = barycentric_coords.grad.clone()
grad_face_attrs_cu = face_attrs.grad.clone()
# Check they are the same
self.assertClose(pix_attrs_py, pix_attrs_cu, rtol=2e-3)
self.assertClose(grad_bary_py, grad_bary_cu, rtol=1e-4)
self.assertClose(grad_face_attrs_py, grad_face_attrs_cu, rtol=1e-3)
def test_interpolate_attributes(self):
verts = torch.randn((4, 3), dtype=torch.float32)
faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
vert_tex = torch.tensor(
[[0, 1, 0], [0, 1, 1], [1, 1, 0], [1, 1, 1]], dtype=torch.float32
)
tex = TexturesVertex(verts_features=vert_tex[None, :])
mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
barycentric_coords = torch.tensor(
[[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
).view(1, 1, 1, 2, -1)
expected_vals = torch.tensor(
[[0.5, 1.0, 0.3], [0.3, 1.0, 0.9]], dtype=torch.float32
).view(1, 1, 1, 2, -1)
fragments = Fragments(
pix_to_face=pix_to_face,
bary_coords=barycentric_coords,
zbuf=torch.ones_like(pix_to_face),
dists=torch.ones_like(pix_to_face),
)
verts_features_packed = mesh.textures.verts_features_packed()
faces_verts_features = verts_features_packed[mesh.faces_packed()]
texels = interpolate_face_attributes(
fragments.pix_to_face, fragments.bary_coords, faces_verts_features
)
self.assertTrue(torch.allclose(texels, expected_vals[None, :]))
def test_interpolate_attributes_grad(self):
verts = torch.randn((4, 3), dtype=torch.float32)
faces = torch.tensor([[2, 1, 0], [3, 1, 0]], dtype=torch.int64)
vert_tex = torch.tensor(
[[0, 1, 0], [0, 1, 1], [1, 1, 0], [1, 1, 1]],
dtype=torch.float32,
requires_grad=True,
)
tex = TexturesVertex(verts_features=vert_tex[None, :])
mesh = Meshes(verts=[verts], faces=[faces], textures=tex)
pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
barycentric_coords = torch.tensor(
[[0.5, 0.3, 0.2], [0.3, 0.6, 0.1]], dtype=torch.float32
).view(1, 1, 1, 2, -1)
fragments = Fragments(
pix_to_face=pix_to_face,
bary_coords=barycentric_coords,
zbuf=torch.ones_like(pix_to_face),
dists=torch.ones_like(pix_to_face),
)
grad_vert_tex = torch.tensor(
[[0.3, 0.3, 0.3], [0.9, 0.9, 0.9], [0.5, 0.5, 0.5], [0.3, 0.3, 0.3]],
dtype=torch.float32,
)
verts_features_packed = mesh.textures.verts_features_packed()
faces_verts_features = verts_features_packed[mesh.faces_packed()]
texels = interpolate_face_attributes(
fragments.pix_to_face, fragments.bary_coords, faces_verts_features
)
texels.sum().backward()
self.assertTrue(hasattr(vert_tex, "grad"))
self.assertTrue(torch.allclose(vert_tex.grad, grad_vert_tex[None, :]))
def test_interpolate_face_attributes_fail(self):
# 1. A face can only have 3 verts
# i.e. face_attributes must have shape (F, 3, D)
face_attributes = torch.ones(1, 4, 3)
pix_to_face = torch.ones((1, 1, 1, 1))
fragments = Fragments(
pix_to_face=pix_to_face,
bary_coords=pix_to_face[..., None].expand(-1, -1, -1, -1, 3),
zbuf=pix_to_face,
dists=pix_to_face,
)
with self.assertRaises(ValueError):
interpolate_face_attributes(
fragments.pix_to_face, fragments.bary_coords, face_attributes
)
# 2. pix_to_face must have shape (N, H, W, K)
pix_to_face = torch.ones((1, 1, 1, 1, 3))
fragments = Fragments(
pix_to_face=pix_to_face,
bary_coords=pix_to_face,
zbuf=pix_to_face,
dists=pix_to_face,
)
with self.assertRaises(ValueError):
interpolate_face_attributes(
fragments.pix_to_face, fragments.bary_coords, face_attributes
)
|