Spaces:
Running
Running
File size: 23,548 Bytes
7088d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import numpy as np
import torch
from pytorch3d.renderer.lighting import AmbientLights, DirectionalLights, PointLights
from pytorch3d.transforms import RotateAxisAngle
from .common_testing import TestCaseMixin
class TestLights(TestCaseMixin, unittest.TestCase):
def test_init_lights(self):
"""
Initialize Lights class with the default values.
"""
device = torch.device("cuda:0")
light = DirectionalLights(device=device)
keys = ["ambient_color", "diffuse_color", "specular_color", "direction"]
for k in keys:
prop = getattr(light, k)
self.assertTrue(torch.is_tensor(prop))
self.assertTrue(prop.device == device)
self.assertTrue(prop.shape == (1, 3))
light = PointLights(device=device)
keys = ["ambient_color", "diffuse_color", "specular_color", "location"]
for k in keys:
prop = getattr(light, k)
self.assertTrue(torch.is_tensor(prop))
self.assertTrue(prop.device == device)
self.assertTrue(prop.shape == (1, 3))
def test_lights_clone_to(self):
device = torch.device("cuda:0")
cpu = torch.device("cpu")
light = DirectionalLights()
new_light = light.clone().to(device)
keys = ["ambient_color", "diffuse_color", "specular_color", "direction"]
for k in keys:
prop = getattr(light, k)
new_prop = getattr(new_light, k)
self.assertTrue(prop.device == cpu)
self.assertTrue(new_prop.device == device)
self.assertSeparate(new_prop, prop)
light = PointLights()
new_light = light.clone().to(device)
keys = ["ambient_color", "diffuse_color", "specular_color", "location"]
for k in keys:
prop = getattr(light, k)
new_prop = getattr(new_light, k)
self.assertTrue(prop.device == cpu)
self.assertTrue(new_prop.device == device)
self.assertSeparate(new_prop, prop)
def test_lights_accessor(self):
d_light = DirectionalLights(ambient_color=((0.0, 0.0, 0.0), (1.0, 1.0, 1.0)))
p_light = PointLights(ambient_color=((0.0, 0.0, 0.0), (1.0, 1.0, 1.0)))
for light in [d_light, p_light]:
# Update element
color = (0.5, 0.5, 0.5)
light[1].ambient_color = color
self.assertClose(light.ambient_color[1], torch.tensor(color))
# Get item and get value
l0 = light[0]
self.assertClose(l0.ambient_color, torch.tensor((0.0, 0.0, 0.0)))
def test_initialize_lights_broadcast(self):
light = DirectionalLights(
ambient_color=torch.randn(10, 3),
diffuse_color=torch.randn(1, 3),
specular_color=torch.randn(1, 3),
)
keys = ["ambient_color", "diffuse_color", "specular_color", "direction"]
for k in keys:
prop = getattr(light, k)
self.assertTrue(prop.shape == (10, 3))
light = PointLights(
ambient_color=torch.randn(10, 3),
diffuse_color=torch.randn(1, 3),
specular_color=torch.randn(1, 3),
)
keys = ["ambient_color", "diffuse_color", "specular_color", "location"]
for k in keys:
prop = getattr(light, k)
self.assertTrue(prop.shape == (10, 3))
def test_initialize_lights_broadcast_fail(self):
"""
Batch dims have to be the same or 1.
"""
with self.assertRaises(ValueError):
DirectionalLights(
ambient_color=torch.randn(10, 3), diffuse_color=torch.randn(15, 3)
)
with self.assertRaises(ValueError):
PointLights(
ambient_color=torch.randn(10, 3), diffuse_color=torch.randn(15, 3)
)
def test_initialize_lights_dimensions_fail(self):
"""
Color should have shape (N, 3) or (1, 3)
"""
with self.assertRaises(ValueError):
DirectionalLights(ambient_color=torch.randn(10, 4))
with self.assertRaises(ValueError):
DirectionalLights(direction=torch.randn(10, 4))
with self.assertRaises(ValueError):
PointLights(ambient_color=torch.randn(10, 4))
with self.assertRaises(ValueError):
PointLights(location=torch.randn(10, 4))
def test_initialize_ambient(self):
N = 13
color = 0.8 * torch.ones((N, 3))
lights = AmbientLights(ambient_color=color)
self.assertEqual(len(lights), N)
self.assertClose(lights.ambient_color, color)
lights = AmbientLights(ambient_color=color[:1])
self.assertEqual(len(lights), 1)
self.assertClose(lights.ambient_color, color[:1])
class TestDiffuseLighting(TestCaseMixin, unittest.TestCase):
def test_diffuse_directional_lights(self):
"""
Test with a single point where:
1) the normal and light direction are 45 degrees apart.
2) the normal and light direction are 90 degrees apart. The output
should be zero for this case
"""
color = torch.tensor([1, 1, 1], dtype=torch.float32)
direction = torch.tensor(
[0, 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32
)
normals = torch.tensor([0, 0, 1], dtype=torch.float32)
normals = normals[None, None, :]
expected_output = torch.tensor(
[1 / np.sqrt(2), 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32
)
expected_output = expected_output.view(1, 1, 3).repeat(3, 1, 1)
light = DirectionalLights(diffuse_color=color, direction=direction)
output_light = light.diffuse(normals=normals)
self.assertClose(output_light, expected_output)
# Change light direction to be 90 degrees apart from normal direction.
direction = torch.tensor([0, 1, 0], dtype=torch.float32)
light.direction = direction
expected_output = torch.zeros_like(expected_output)
output_light = light.diffuse(normals=normals)
self.assertClose(output_light, expected_output)
def test_diffuse_point_lights(self):
"""
Test with a single point at the origin. Test two cases:
1) the point light is at (1, 0, 1) hence the light direction is 45
degrees apart from the normal direction
1) the point light is at (0, 1, 0) hence the light direction is 90
degrees apart from the normal direction. The output
should be zero for this case
"""
color = torch.tensor([1, 1, 1], dtype=torch.float32)
location = torch.tensor(
[0, 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32
)
points = torch.tensor([0, 0, 0], dtype=torch.float32)
normals = torch.tensor([0, 0, 1], dtype=torch.float32)
expected_output = torch.tensor(
[1 / np.sqrt(2), 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32
)
expected_output = expected_output.view(-1, 1, 3)
light = PointLights(diffuse_color=color[None, :], location=location[None, :])
output_light = light.diffuse(
points=points[None, None, :], normals=normals[None, None, :]
)
self.assertClose(output_light, expected_output)
# Change light direction to be 90 degrees apart from normal direction.
location = torch.tensor([0, 1, 0], dtype=torch.float32)
expected_output = torch.zeros_like(expected_output)
light = PointLights(diffuse_color=color[None, :], location=location[None, :])
output_light = light.diffuse(
points=points[None, None, :], normals=normals[None, None, :]
)
self.assertClose(output_light, expected_output)
def test_diffuse_batched(self):
"""
Test with a batch where each batch element has one point
where the normal and light direction are 45 degrees apart.
"""
batch_size = 10
color = torch.tensor([1, 1, 1], dtype=torch.float32)
direction = torch.tensor(
[0, 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32
)
normals = torch.tensor([0, 0, 1], dtype=torch.float32)
expected_out = torch.tensor(
[1 / np.sqrt(2), 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32
)
# Reshape
direction = direction.view(-1, 3).expand(batch_size, -1)
normals = normals.view(-1, 1, 3).expand(batch_size, -1, -1)
color = color.view(-1, 3).expand(batch_size, -1)
expected_out = expected_out.view(-1, 1, 3).expand(batch_size, 1, 3)
lights = DirectionalLights(diffuse_color=color, direction=direction)
output_light = lights.diffuse(normals=normals)
self.assertClose(output_light, expected_out)
def test_diffuse_batched_broadcast_inputs(self):
"""
Test with a batch where each batch element has one point
where the normal and light direction are 45 degrees apart.
The color and direction are the same for each batch element.
"""
batch_size = 10
color = torch.tensor([1, 1, 1], dtype=torch.float32)
direction = torch.tensor(
[0, 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32
)
normals = torch.tensor([0, 0, 1], dtype=torch.float32)
expected_out = torch.tensor(
[1 / np.sqrt(2), 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32
)
# Reshape
normals = normals.view(-1, 1, 3).expand(batch_size, -1, -1)
expected_out = expected_out.view(-1, 1, 3).expand(batch_size, 1, 3)
# Don't expand the direction or color. Broadcasting should happen
# in the diffuse function.
direction = direction.view(1, 3)
color = color.view(1, 3)
lights = DirectionalLights(diffuse_color=color, direction=direction)
output_light = lights.diffuse(normals=normals)
self.assertClose(output_light, expected_out)
def test_diffuse_batched_arbitrary_input_dims(self):
"""
Test with a batch of inputs where shape of the input is mimicking the
shape in a shading function i.e. an interpolated normal per pixel for
top K faces per pixel.
"""
N, H, W, K = 16, 256, 256, 100
device = torch.device("cuda:0")
color = torch.tensor([1, 1, 1], dtype=torch.float32, device=device)
direction = torch.tensor(
[0, 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32, device=device
)
normals = torch.tensor([0, 0, 1], dtype=torch.float32, device=device)
normals = normals.view(1, 1, 1, 1, 3).expand(N, H, W, K, -1)
direction = direction.view(1, 3)
color = color.view(1, 3)
expected_output = torch.tensor(
[1 / np.sqrt(2), 1 / np.sqrt(2), 1 / np.sqrt(2)],
dtype=torch.float32,
device=device,
)
expected_output = expected_output.view(1, 1, 1, 1, 3)
expected_output = expected_output.expand(N, H, W, K, -1)
lights = DirectionalLights(diffuse_color=color, direction=direction)
output_light = lights.diffuse(normals=normals)
self.assertClose(output_light, expected_output)
def test_diffuse_batched_packed(self):
"""
Test with a batch of 2 meshes each of which has faces on a single plane.
The normal and light direction are 45 degrees apart for the first mesh
and 90 degrees apart for the second mesh.
The points and normals are in the packed format i.e. no batch dimension.
"""
verts_packed = torch.rand((10, 3)) # points aren't used
faces_per_mesh = [6, 4]
mesh_to_vert_idx = [0] * faces_per_mesh[0] + [1] * faces_per_mesh[1]
mesh_to_vert_idx = torch.tensor(mesh_to_vert_idx, dtype=torch.int64)
color = torch.tensor([[1, 1, 1], [1, 1, 1]], dtype=torch.float32)
direction = torch.tensor(
[
[0, 1 / np.sqrt(2), 1 / np.sqrt(2)],
[0, 1, 0], # 90 degrees to normal so zero diffuse light
],
dtype=torch.float32,
)
normals = torch.tensor([[0, 0, 1], [0, 0, 1]], dtype=torch.float32)
expected_output = torch.zeros_like(verts_packed, dtype=torch.float32)
expected_output[:6, :] += 1 / np.sqrt(2)
expected_output[6:, :] = 0.0
lights = DirectionalLights(
diffuse_color=color[mesh_to_vert_idx, :],
direction=direction[mesh_to_vert_idx, :],
)
output_light = lights.diffuse(normals=normals[mesh_to_vert_idx, :])
self.assertClose(output_light, expected_output)
class TestSpecularLighting(TestCaseMixin, unittest.TestCase):
def test_specular_directional_lights(self):
"""
Specular highlights depend on the camera position as well as the light
position/direction.
Test with a single point where:
1) the normal and light direction are -45 degrees apart and the normal
and camera position are +45 degrees apart. The reflected light ray
will be perfectly aligned with the camera so the output is 1.0.
2) the normal and light direction are -45 degrees apart and the
camera position is behind the point. The output should be zero for
this case.
"""
color = torch.tensor([1, 0, 1], dtype=torch.float32)
direction = torch.tensor(
[-1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
)
camera_position = torch.tensor(
[+1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
)
points = torch.tensor([0, 0, 0], dtype=torch.float32)
normals = torch.tensor([0, 1, 0], dtype=torch.float32)
expected_output = torch.tensor([1.0, 0.0, 1.0], dtype=torch.float32)
expected_output = expected_output.view(1, 1, 3).repeat(3, 1, 1)
lights = DirectionalLights(specular_color=color, direction=direction)
output_light = lights.specular(
points=points[None, None, :],
normals=normals[None, None, :],
camera_position=camera_position[None, :],
shininess=torch.tensor(10),
)
self.assertClose(output_light, expected_output)
# Change camera position to be behind the point.
camera_position = torch.tensor(
[+1 / np.sqrt(2), -1 / np.sqrt(2), 0], dtype=torch.float32
)
expected_output = torch.zeros_like(expected_output)
output_light = lights.specular(
points=points[None, None, :],
normals=normals[None, None, :],
camera_position=camera_position[None, :],
shininess=torch.tensor(10),
)
self.assertClose(output_light, expected_output)
def test_specular_point_lights(self):
"""
Replace directional lights with point lights and check the output
is the same.
Test an additional case where the angle between the light reflection
direction and the view direction is 30 degrees.
"""
color = torch.tensor([1, 0, 1], dtype=torch.float32)
location = torch.tensor([-1, 1, 0], dtype=torch.float32)
camera_position = torch.tensor(
[+1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
)
points = torch.tensor([0, 0, 0], dtype=torch.float32)
normals = torch.tensor([0, 1, 0], dtype=torch.float32)
expected_output = torch.tensor([1.0, 0.0, 1.0], dtype=torch.float32)
expected_output = expected_output.view(-1, 1, 3)
lights = PointLights(specular_color=color[None, :], location=location[None, :])
output_light = lights.specular(
points=points[None, None, :],
normals=normals[None, None, :],
camera_position=camera_position[None, :],
shininess=torch.tensor(10),
)
self.assertClose(output_light, expected_output)
# Change camera position to be behind the point
camera_position = torch.tensor(
[+1 / np.sqrt(2), -1 / np.sqrt(2), 0], dtype=torch.float32
)
expected_output = torch.zeros_like(expected_output)
output_light = lights.specular(
points=points[None, None, :],
normals=normals[None, None, :],
camera_position=camera_position[None, :],
shininess=torch.tensor(10),
)
self.assertClose(output_light, expected_output)
# Change camera direction to be 30 degrees from the reflection direction
camera_position = torch.tensor(
[+1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
)
rotate_30 = RotateAxisAngle(-30, axis="z")
camera_position = rotate_30.transform_points(camera_position[None, :])
expected_output = torch.tensor(
[np.cos(30.0 * np.pi / 180), 0.0, np.cos(30.0 * np.pi / 180)],
dtype=torch.float32,
)
expected_output = expected_output.view(-1, 1, 3)
output_light = lights.specular(
points=points[None, None, :],
normals=normals[None, None, :],
camera_position=camera_position[None, :],
shininess=torch.tensor(10),
)
self.assertClose(output_light, expected_output**10)
def test_specular_batched(self):
batch_size = 10
color = torch.tensor([1, 0, 1], dtype=torch.float32)
direction = torch.tensor(
[-1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
)
camera_position = torch.tensor(
[+1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
)
points = torch.tensor([0, 0, 0], dtype=torch.float32)
normals = torch.tensor([0, 1, 0], dtype=torch.float32)
expected_out = torch.tensor([1.0, 0.0, 1.0], dtype=torch.float32)
# Reshape
direction = direction.view(1, 3).expand(batch_size, -1)
camera_position = camera_position.view(1, 3).expand(batch_size, -1)
normals = normals.view(1, 1, 3).expand(batch_size, -1, -1)
points = points.view(1, 1, 3).expand(batch_size, -1, -1)
color = color.view(1, 3).expand(batch_size, -1)
expected_out = expected_out.view(1, 1, 3).expand(batch_size, 1, 3)
lights = DirectionalLights(specular_color=color, direction=direction)
output_light = lights.specular(
points=points,
normals=normals,
camera_position=camera_position,
shininess=torch.tensor(10),
)
self.assertClose(output_light, expected_out)
def test_specular_batched_broadcast_inputs(self):
batch_size = 10
color = torch.tensor([1, 0, 1], dtype=torch.float32)
direction = torch.tensor(
[-1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
)
camera_position = torch.tensor(
[+1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
)
points = torch.tensor([0, 0, 0], dtype=torch.float32)
normals = torch.tensor([0, 1, 0], dtype=torch.float32)
expected_out = torch.tensor([1.0, 0.0, 1.0], dtype=torch.float32)
# Reshape
normals = normals.view(1, 1, 3).expand(batch_size, -1, -1)
points = points.view(1, 1, 3).expand(batch_size, -1, -1)
expected_out = expected_out.view(1, 1, 3).expand(batch_size, 1, 3)
# Don't expand the direction, color or camera_position.
# These should be broadcasted in the specular function
direction = direction.view(1, 3)
camera_position = camera_position.view(1, 3)
color = color.view(1, 3)
lights = DirectionalLights(specular_color=color, direction=direction)
output_light = lights.specular(
points=points,
normals=normals,
camera_position=camera_position,
shininess=torch.tensor(10),
)
self.assertClose(output_light, expected_out)
def test_specular_batched_arbitrary_input_dims(self):
"""
Test with a batch of inputs where shape of the input is mimicking the
shape expected after rasterization i.e. a normal per pixel for
top K faces per pixel.
"""
device = torch.device("cuda:0")
N, H, W, K = 8, 128, 128, 100
color = torch.tensor([1, 0, 1], dtype=torch.float32, device=device)
direction = torch.tensor(
[-1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
)
camera_position = torch.tensor(
[+1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32
)
points = torch.tensor([0, 0, 0], dtype=torch.float32, device=device)
normals = torch.tensor([0, 1, 0], dtype=torch.float32, device=device)
points = points.view(1, 1, 1, 1, 3).expand(N, H, W, K, 3)
normals = normals.view(1, 1, 1, 1, 3).expand(N, H, W, K, 3)
direction = direction.view(1, 3)
color = color.view(1, 3)
camera_position = camera_position.view(1, 3)
expected_output = torch.tensor(
[1.0, 0.0, 1.0], dtype=torch.float32, device=device
)
expected_output = expected_output.view(-1, 1, 1, 1, 3)
expected_output = expected_output.expand(N, H, W, K, -1)
lights = DirectionalLights(specular_color=color, direction=direction)
output_light = lights.specular(
points=points,
normals=normals,
camera_position=camera_position,
shininess=10.0,
)
self.assertClose(output_light, expected_output)
def test_specular_batched_packed(self):
"""
Test with a batch of 2 meshes each of which has faces on a single plane.
The points and normals are in the packed format i.e. no batch dimension.
"""
faces_per_mesh = [6, 4]
mesh_to_vert_idx = [0] * faces_per_mesh[0] + [1] * faces_per_mesh[1]
mesh_to_vert_idx = torch.tensor(mesh_to_vert_idx, dtype=torch.int64)
color = torch.tensor([[1, 1, 1], [1, 0, 1]], dtype=torch.float32)
direction = torch.tensor(
[[-1 / np.sqrt(2), 1 / np.sqrt(2), 0], [-1, 1, 0]], dtype=torch.float32
)
camera_position = torch.tensor(
[
[+1 / np.sqrt(2), 1 / np.sqrt(2), 0],
[+1 / np.sqrt(2), -1 / np.sqrt(2), 0],
],
dtype=torch.float32,
)
points = torch.tensor([[0, 0, 0]], dtype=torch.float32)
normals = torch.tensor([[0, 1, 0], [0, 1, 0]], dtype=torch.float32)
expected_output = torch.zeros((10, 3), dtype=torch.float32)
expected_output[:6, :] += 1.0
lights = DirectionalLights(
specular_color=color[mesh_to_vert_idx, :],
direction=direction[mesh_to_vert_idx, :],
)
output_light = lights.specular(
points=points.view(-1, 3).expand(10, -1),
normals=normals.view(-1, 3)[mesh_to_vert_idx, :],
camera_position=camera_position[mesh_to_vert_idx, :],
shininess=10.0,
)
self.assertClose(output_light, expected_output)
|