Spaces:
Running
Running
File size: 9,309 Bytes
7088d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
from pytorch3d.loss.mesh_normal_consistency import mesh_normal_consistency
from pytorch3d.structures.meshes import Meshes
from pytorch3d.utils.ico_sphere import ico_sphere
IS_TORCH_1_8 = torch.__version__.startswith("1.8.")
PROBLEMATIC_CUDA = torch.version.cuda in ("11.0", "11.1")
# TODO: There are problems with cuda 11.0 and 11.1 here.
# The symptom can be
# RuntimeError: radix_sort: failed on 1st step: cudaErrorInvalidDevice: invalid device ordinal
# or something like
# operator(): block: [0,0,0], thread: [96,0,0]
# Assertion `index >= -sizes[i] && index < sizes[i] && "index out of bounds"` failed.
AVOID_LARGE_MESH_CUDA = PROBLEMATIC_CUDA and IS_TORCH_1_8
class TestMeshNormalConsistency(unittest.TestCase):
def setUp(self) -> None:
torch.manual_seed(42)
@staticmethod
def init_faces(num_verts: int = 1000):
faces = []
for f0 in range(num_verts):
for f1 in range(f0 + 1, num_verts):
f2 = torch.arange(f1 + 1, num_verts)
n = f2.shape[0]
if n == 0:
continue
faces.append(
torch.stack(
[
torch.full((n,), f0, dtype=torch.int64),
torch.full((n,), f1, dtype=torch.int64),
f2,
],
dim=1,
)
)
faces = torch.cat(faces, 0)
return faces
@staticmethod
def init_meshes(num_meshes: int = 10, num_verts: int = 1000, num_faces: int = 3000):
if AVOID_LARGE_MESH_CUDA:
device = torch.device("cpu")
else:
device = torch.device("cuda:0")
valid_faces = TestMeshNormalConsistency.init_faces(num_verts).to(device)
verts_list = []
faces_list = []
for _ in range(num_meshes):
verts = (
torch.rand((num_verts, 3), dtype=torch.float32, device=device) * 2.0
- 1.0
) # verts in the space of [-1, 1]
"""
faces = torch.stack(
[
torch.randperm(num_verts, device=device)[:3]
for _ in range(num_faces)
],
dim=0,
)
# avoids duplicate vertices in a face
"""
idx = torch.randperm(valid_faces.shape[0], device=device)[
: min(valid_faces.shape[0], num_faces)
]
faces = valid_faces[idx]
verts_list.append(verts)
faces_list.append(faces)
meshes = Meshes(verts_list, faces_list)
return meshes
@staticmethod
def mesh_normal_consistency_naive(meshes):
"""
Naive iterative implementation of mesh normal consistency.
"""
N = len(meshes)
verts_packed = meshes.verts_packed()
faces_packed = meshes.faces_packed()
edges_packed = meshes.edges_packed()
face_to_edge = meshes.faces_packed_to_edges_packed()
edges_packed_to_mesh_idx = meshes.edges_packed_to_mesh_idx()
E = edges_packed.shape[0]
loss = []
mesh_idx = []
for e in range(E):
face_idx = face_to_edge.eq(e).any(1).nonzero() # indexed to faces
v0 = verts_packed[edges_packed[e, 0]]
v1 = verts_packed[edges_packed[e, 1]]
normals = []
for f in face_idx:
v2 = -1
for j in range(3):
if (
faces_packed[f, j] != edges_packed[e, 0]
and faces_packed[f, j] != edges_packed[e, 1]
):
v2 = faces_packed[f, j]
assert v2 > -1
v2 = verts_packed[v2]
normals.append((v1 - v0).view(-1).cross((v2 - v0).view(-1)))
for i in range(len(normals) - 1):
for j in range(i + 1, len(normals)):
mesh_idx.append(edges_packed_to_mesh_idx[e])
loss.append(
(
1
- torch.cosine_similarity(
normals[i].view(1, 3), -normals[j].view(1, 3)
)
)
)
mesh_idx = torch.tensor(mesh_idx, device=meshes.device)
num = mesh_idx.bincount(minlength=N)
weights = 1.0 / num[mesh_idx].float()
loss = torch.cat(loss) * weights
return loss.sum() / N
def test_mesh_normal_consistency_simple(self):
r"""
Mesh 1:
v3
/\
/ \
e4 / f1 \ e3
/ \
v2 /___e2___\ v1
\ /
\ /
e1 \ f0 / e0
\ /
\/
v0
"""
device = torch.device("cuda:0")
# mesh1 shown above
verts1 = torch.rand((4, 3), dtype=torch.float32, device=device)
faces1 = torch.tensor([[0, 1, 2], [2, 1, 3]], dtype=torch.int64, device=device)
# mesh2 is a cuboid with 8 verts, 12 faces and 18 edges
verts2 = torch.tensor(
[
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
],
dtype=torch.float32,
device=device,
)
faces2 = torch.tensor(
[
[0, 1, 2],
[1, 3, 2], # left face: 0, 1
[2, 3, 6],
[3, 7, 6], # bottom face: 2, 3
[0, 2, 6],
[0, 6, 4], # front face: 4, 5
[0, 5, 1],
[0, 4, 5], # up face: 6, 7
[6, 7, 5],
[6, 5, 4], # right face: 8, 9
[1, 7, 3],
[1, 5, 7], # back face: 10, 11
],
dtype=torch.int64,
device=device,
)
# mesh3 is like mesh1 but with another face added to e2
verts3 = torch.rand((5, 3), dtype=torch.float32, device=device)
faces3 = torch.tensor(
[[0, 1, 2], [2, 1, 3], [2, 1, 4]], dtype=torch.int64, device=device
)
meshes = Meshes(verts=[verts1, verts2, verts3], faces=[faces1, faces2, faces3])
# mesh1: normal consistency computation
n0 = (verts1[1] - verts1[2]).cross(verts1[3] - verts1[2])
n1 = (verts1[1] - verts1[2]).cross(verts1[0] - verts1[2])
loss1 = 1.0 - torch.cosine_similarity(n0.view(1, 3), -(n1.view(1, 3)))
# mesh2: normal consistency computation
# In the cube mesh, 6 edges are shared with coplanar faces (loss=0),
# 12 edges are shared by perpendicular faces (loss=1)
loss2 = 12.0 / 18
# mesh3
n0 = (verts3[1] - verts3[2]).cross(verts3[3] - verts3[2])
n1 = (verts3[1] - verts3[2]).cross(verts3[0] - verts3[2])
n2 = (verts3[1] - verts3[2]).cross(verts3[4] - verts3[2])
loss3 = (
3.0
- torch.cosine_similarity(n0.view(1, 3), -(n1.view(1, 3)))
- torch.cosine_similarity(n0.view(1, 3), -(n2.view(1, 3)))
- torch.cosine_similarity(n1.view(1, 3), -(n2.view(1, 3)))
)
loss3 /= 3.0
loss = (loss1 + loss2 + loss3) / 3.0
out = mesh_normal_consistency(meshes)
self.assertTrue(torch.allclose(out, loss))
def test_mesh_normal_consistency(self):
"""
Test Mesh Normal Consistency for random meshes.
"""
meshes = TestMeshNormalConsistency.init_meshes(5, 100, 300)
out1 = mesh_normal_consistency(meshes)
out2 = TestMeshNormalConsistency.mesh_normal_consistency_naive(meshes)
self.assertTrue(torch.allclose(out1, out2))
def test_no_intersection(self):
"""
Test Mesh Normal Consistency for a mesh known to have no
intersecting faces.
"""
verts = torch.rand(1, 6, 3)
faces = torch.arange(6).reshape(1, 2, 3)
meshes = Meshes(verts=verts, faces=faces)
out = mesh_normal_consistency(meshes)
self.assertEqual(out.item(), 0)
@staticmethod
def mesh_normal_consistency_with_ico(
num_meshes: int, level: int = 3, device: str = "cpu"
):
device = torch.device(device)
mesh = ico_sphere(level, device)
verts, faces = mesh.get_mesh_verts_faces(0)
verts_list = [verts.clone() for _ in range(num_meshes)]
faces_list = [faces.clone() for _ in range(num_meshes)]
meshes = Meshes(verts_list, faces_list)
torch.cuda.synchronize()
def loss():
mesh_normal_consistency(meshes)
torch.cuda.synchronize()
return loss
|