File size: 9,309 Bytes
7088d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.


import unittest

import torch
from pytorch3d.loss.mesh_normal_consistency import mesh_normal_consistency
from pytorch3d.structures.meshes import Meshes
from pytorch3d.utils.ico_sphere import ico_sphere


IS_TORCH_1_8 = torch.__version__.startswith("1.8.")
PROBLEMATIC_CUDA = torch.version.cuda in ("11.0", "11.1")
# TODO: There are problems with cuda 11.0 and 11.1 here.
# The symptom can be
# RuntimeError: radix_sort: failed on 1st step: cudaErrorInvalidDevice: invalid device ordinal
# or something like
# operator(): block: [0,0,0], thread: [96,0,0]
# Assertion `index >= -sizes[i] && index < sizes[i] && "index out of bounds"` failed.
AVOID_LARGE_MESH_CUDA = PROBLEMATIC_CUDA and IS_TORCH_1_8


class TestMeshNormalConsistency(unittest.TestCase):
    def setUp(self) -> None:
        torch.manual_seed(42)

    @staticmethod
    def init_faces(num_verts: int = 1000):
        faces = []
        for f0 in range(num_verts):
            for f1 in range(f0 + 1, num_verts):
                f2 = torch.arange(f1 + 1, num_verts)
                n = f2.shape[0]
                if n == 0:
                    continue
                faces.append(
                    torch.stack(
                        [
                            torch.full((n,), f0, dtype=torch.int64),
                            torch.full((n,), f1, dtype=torch.int64),
                            f2,
                        ],
                        dim=1,
                    )
                )
        faces = torch.cat(faces, 0)
        return faces

    @staticmethod
    def init_meshes(num_meshes: int = 10, num_verts: int = 1000, num_faces: int = 3000):
        if AVOID_LARGE_MESH_CUDA:
            device = torch.device("cpu")
        else:
            device = torch.device("cuda:0")
        valid_faces = TestMeshNormalConsistency.init_faces(num_verts).to(device)
        verts_list = []
        faces_list = []
        for _ in range(num_meshes):
            verts = (
                torch.rand((num_verts, 3), dtype=torch.float32, device=device) * 2.0
                - 1.0
            )  # verts in the space of [-1, 1]
            """
            faces = torch.stack(
                [
                    torch.randperm(num_verts, device=device)[:3]
                    for _ in range(num_faces)
                ],
                dim=0,
            )
            # avoids duplicate vertices in a face
            """
            idx = torch.randperm(valid_faces.shape[0], device=device)[
                : min(valid_faces.shape[0], num_faces)
            ]
            faces = valid_faces[idx]
            verts_list.append(verts)
            faces_list.append(faces)
        meshes = Meshes(verts_list, faces_list)
        return meshes

    @staticmethod
    def mesh_normal_consistency_naive(meshes):
        """
        Naive iterative implementation of mesh normal consistency.
        """
        N = len(meshes)
        verts_packed = meshes.verts_packed()
        faces_packed = meshes.faces_packed()
        edges_packed = meshes.edges_packed()
        face_to_edge = meshes.faces_packed_to_edges_packed()
        edges_packed_to_mesh_idx = meshes.edges_packed_to_mesh_idx()

        E = edges_packed.shape[0]
        loss = []
        mesh_idx = []

        for e in range(E):
            face_idx = face_to_edge.eq(e).any(1).nonzero()  # indexed to faces
            v0 = verts_packed[edges_packed[e, 0]]
            v1 = verts_packed[edges_packed[e, 1]]
            normals = []
            for f in face_idx:
                v2 = -1
                for j in range(3):
                    if (
                        faces_packed[f, j] != edges_packed[e, 0]
                        and faces_packed[f, j] != edges_packed[e, 1]
                    ):
                        v2 = faces_packed[f, j]
                assert v2 > -1
                v2 = verts_packed[v2]
                normals.append((v1 - v0).view(-1).cross((v2 - v0).view(-1)))
            for i in range(len(normals) - 1):
                for j in range(i + 1, len(normals)):
                    mesh_idx.append(edges_packed_to_mesh_idx[e])
                    loss.append(
                        (
                            1
                            - torch.cosine_similarity(
                                normals[i].view(1, 3), -normals[j].view(1, 3)
                            )
                        )
                    )

        mesh_idx = torch.tensor(mesh_idx, device=meshes.device)
        num = mesh_idx.bincount(minlength=N)
        weights = 1.0 / num[mesh_idx].float()

        loss = torch.cat(loss) * weights
        return loss.sum() / N

    def test_mesh_normal_consistency_simple(self):
        r"""
        Mesh 1:
                        v3
                        /\
                       /  \
                   e4 / f1 \ e3
                     /      \
                 v2 /___e2___\ v1
                    \        /
                     \      /
                 e1   \ f0 / e0
                       \  /
                        \/
                        v0
        """
        device = torch.device("cuda:0")
        # mesh1 shown above
        verts1 = torch.rand((4, 3), dtype=torch.float32, device=device)
        faces1 = torch.tensor([[0, 1, 2], [2, 1, 3]], dtype=torch.int64, device=device)

        # mesh2 is a cuboid with 8 verts, 12 faces and 18 edges
        verts2 = torch.tensor(
            [
                [0, 0, 0],
                [0, 0, 1],
                [0, 1, 0],
                [0, 1, 1],
                [1, 0, 0],
                [1, 0, 1],
                [1, 1, 0],
                [1, 1, 1],
            ],
            dtype=torch.float32,
            device=device,
        )
        faces2 = torch.tensor(
            [
                [0, 1, 2],
                [1, 3, 2],  # left face: 0, 1
                [2, 3, 6],
                [3, 7, 6],  # bottom face: 2, 3
                [0, 2, 6],
                [0, 6, 4],  # front face: 4, 5
                [0, 5, 1],
                [0, 4, 5],  # up face: 6, 7
                [6, 7, 5],
                [6, 5, 4],  # right face: 8, 9
                [1, 7, 3],
                [1, 5, 7],  # back face: 10, 11
            ],
            dtype=torch.int64,
            device=device,
        )

        # mesh3 is like mesh1 but with another face added to e2
        verts3 = torch.rand((5, 3), dtype=torch.float32, device=device)
        faces3 = torch.tensor(
            [[0, 1, 2], [2, 1, 3], [2, 1, 4]], dtype=torch.int64, device=device
        )

        meshes = Meshes(verts=[verts1, verts2, verts3], faces=[faces1, faces2, faces3])

        # mesh1: normal consistency computation
        n0 = (verts1[1] - verts1[2]).cross(verts1[3] - verts1[2])
        n1 = (verts1[1] - verts1[2]).cross(verts1[0] - verts1[2])
        loss1 = 1.0 - torch.cosine_similarity(n0.view(1, 3), -(n1.view(1, 3)))

        # mesh2: normal consistency computation
        # In the cube mesh, 6 edges are shared with coplanar faces (loss=0),
        # 12 edges are shared by perpendicular faces (loss=1)
        loss2 = 12.0 / 18

        # mesh3
        n0 = (verts3[1] - verts3[2]).cross(verts3[3] - verts3[2])
        n1 = (verts3[1] - verts3[2]).cross(verts3[0] - verts3[2])
        n2 = (verts3[1] - verts3[2]).cross(verts3[4] - verts3[2])
        loss3 = (
            3.0
            - torch.cosine_similarity(n0.view(1, 3), -(n1.view(1, 3)))
            - torch.cosine_similarity(n0.view(1, 3), -(n2.view(1, 3)))
            - torch.cosine_similarity(n1.view(1, 3), -(n2.view(1, 3)))
        )
        loss3 /= 3.0

        loss = (loss1 + loss2 + loss3) / 3.0

        out = mesh_normal_consistency(meshes)

        self.assertTrue(torch.allclose(out, loss))

    def test_mesh_normal_consistency(self):
        """
        Test Mesh Normal Consistency for random meshes.
        """
        meshes = TestMeshNormalConsistency.init_meshes(5, 100, 300)

        out1 = mesh_normal_consistency(meshes)
        out2 = TestMeshNormalConsistency.mesh_normal_consistency_naive(meshes)

        self.assertTrue(torch.allclose(out1, out2))

    def test_no_intersection(self):
        """
        Test Mesh Normal Consistency for a mesh known to have no
        intersecting faces.
        """
        verts = torch.rand(1, 6, 3)
        faces = torch.arange(6).reshape(1, 2, 3)
        meshes = Meshes(verts=verts, faces=faces)
        out = mesh_normal_consistency(meshes)
        self.assertEqual(out.item(), 0)

    @staticmethod
    def mesh_normal_consistency_with_ico(
        num_meshes: int, level: int = 3, device: str = "cpu"
    ):
        device = torch.device(device)
        mesh = ico_sphere(level, device)
        verts, faces = mesh.get_mesh_verts_faces(0)
        verts_list = [verts.clone() for _ in range(num_meshes)]
        faces_list = [faces.clone() for _ in range(num_meshes)]
        meshes = Meshes(verts_list, faces_list)
        torch.cuda.synchronize()

        def loss():
            mesh_normal_consistency(meshes)
            torch.cuda.synchronize()

        return loss