Spaces:
Running
Running
File size: 35,740 Bytes
7088d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import numpy as np
import torch
from pytorch3d import _C
from pytorch3d.loss import point_mesh_edge_distance, point_mesh_face_distance
from pytorch3d.structures import Meshes, packed_to_list, Pointclouds
from .common_testing import get_random_cuda_device, TestCaseMixin
class TestPointMeshDistance(TestCaseMixin, unittest.TestCase):
def setUp(self) -> None:
np.random.seed(42)
torch.manual_seed(42)
@staticmethod
def eps():
return 1e-8
@staticmethod
def min_triangle_area():
return 5e-3
@staticmethod
def init_meshes_clouds(
batch_size: int = 10,
num_verts: int = 1000,
num_faces: int = 3000,
num_points: int = 3000,
device: str = "cuda:0",
):
device = torch.device(device)
nump = torch.randint(low=1, high=num_points, size=(batch_size,))
numv = torch.randint(low=3, high=num_verts, size=(batch_size,))
numf = torch.randint(low=1, high=num_faces, size=(batch_size,))
verts_list = []
faces_list = []
points_list = []
for i in range(batch_size):
# Randomly choose vertices
verts = torch.rand((numv[i], 3), dtype=torch.float32, device=device)
verts.requires_grad_(True)
# Randomly choose faces. Our tests below compare argmin indices
# over faces and edges. Argmin is sensitive even to small numeral variations
# thus we make sure that faces are valid
# i.e. a face f = (i0, i1, i2) s.t. i0 != i1 != i2,
# otherwise argmin due to numeral sensitivities cannot be resolved
faces, allf = [], 0
validf = numv[i].item() - numv[i].item() % 3
while allf < numf[i]:
ff = torch.randperm(numv[i], device=device)[:validf].view(-1, 3)
faces.append(ff)
allf += ff.shape[0]
faces = torch.cat(faces, 0)
if faces.shape[0] > numf[i]:
faces = faces[: numf[i]]
verts_list.append(verts)
faces_list.append(faces)
# Randomly choose points
points = torch.rand((nump[i], 3), dtype=torch.float32, device=device)
points.requires_grad_(True)
points_list.append(points)
meshes = Meshes(verts_list, faces_list)
pcls = Pointclouds(points_list)
return meshes, pcls
@staticmethod
def _point_to_bary(point: torch.Tensor, tri: torch.Tensor) -> torch.Tensor:
"""
Computes the barycentric coordinates of point wrt triangle (tri)
Note that point needs to live in the space spanned by tri = (a, b, c),
i.e. by taking the projection of an arbitrary point on the space spanned by tri
Args:
point: FloatTensor of shape (3)
tri: FloatTensor of shape (3, 3)
Returns:
bary: FloatTensor of shape (3)
"""
assert point.dim() == 1 and point.shape[0] == 3
assert tri.dim() == 2 and tri.shape[0] == 3 and tri.shape[1] == 3
a, b, c = tri.unbind(0)
v0 = b - a
v1 = c - a
v2 = point - a
d00 = v0.dot(v0)
d01 = v0.dot(v1)
d11 = v1.dot(v1)
d20 = v2.dot(v0)
d21 = v2.dot(v1)
denom = d00 * d11 - d01 * d01 + TestPointMeshDistance.eps()
s2 = (d11 * d20 - d01 * d21) / denom
s3 = (d00 * d21 - d01 * d20) / denom
s1 = 1.0 - s2 - s3
bary = torch.tensor([s1, s2, s3])
return bary
@staticmethod
def _is_inside_triangle(point: torch.Tensor, tri: torch.Tensor) -> torch.Tensor:
"""
Computes whether point is inside triangle tri
Note that point needs to live in the space spanned by tri = (a, b, c)
i.e. by taking the projection of an arbitrary point on the space spanned by tri
Args:
point: FloatTensor of shape (3)
tri: FloatTensor of shape (3, 3)
Returns:
inside: BoolTensor of shape (1)
"""
v0 = tri[1] - tri[0]
v1 = tri[2] - tri[0]
area = torch.cross(v0, v1).norm() / 2.0
# check if triangle is a line or a point. In that case, return False
if area < 5e-3:
return False
bary = TestPointMeshDistance._point_to_bary(point, tri)
inside = ((bary >= 0.0) * (bary <= 1.0)).all()
return inside
@staticmethod
def _point_to_edge_distance(
point: torch.Tensor, edge: torch.Tensor
) -> torch.Tensor:
"""
Computes the squared euclidean distance of points to edges
Args:
point: FloatTensor of shape (3)
edge: FloatTensor of shape (2, 3)
Returns:
dist: FloatTensor of shape (1)
If a, b are the start and end points of the segments, we
parametrize a point p as
x(t) = a + t * (b - a)
To find t which describes p we minimize (x(t) - p) ^ 2
Note that p does not need to live in the space spanned by (a, b)
"""
s0, s1 = edge.unbind(0)
s01 = s1 - s0
norm_s01 = s01.dot(s01)
same_edge = norm_s01 < TestPointMeshDistance.eps()
if same_edge:
dist = 0.5 * (point - s0).dot(point - s0) + 0.5 * (point - s1).dot(
point - s1
)
return dist
t = s01.dot(point - s0) / norm_s01
t = torch.clamp(t, min=0.0, max=1.0)
x = s0 + t * s01
dist = (x - point).dot(x - point)
return dist
@staticmethod
def _point_to_tri_distance(point: torch.Tensor, tri: torch.Tensor) -> torch.Tensor:
"""
Computes the squared euclidean distance of points to edges
Args:
point: FloatTensor of shape (3)
tri: FloatTensor of shape (3, 3)
Returns:
dist: FloatTensor of shape (1)
"""
a, b, c = tri.unbind(0)
cross = torch.cross(b - a, c - a)
norm = cross.norm()
normal = torch.nn.functional.normalize(cross, dim=0)
# p0 is the projection of p onto the plane spanned by (a, b, c)
# p0 = p + tt * normal, s.t. (p0 - a) is orthogonal to normal
# => tt = dot(a - p, n)
tt = normal.dot(a) - normal.dot(point)
p0 = point + tt * normal
dist_p = tt * tt
# Compute the distance of p to all edge segments
e01_dist = TestPointMeshDistance._point_to_edge_distance(point, tri[[0, 1]])
e02_dist = TestPointMeshDistance._point_to_edge_distance(point, tri[[0, 2]])
e12_dist = TestPointMeshDistance._point_to_edge_distance(point, tri[[1, 2]])
with torch.no_grad():
inside_tri = TestPointMeshDistance._is_inside_triangle(p0, tri)
if inside_tri and (norm > TestPointMeshDistance.eps()):
return dist_p
else:
if e01_dist.le(e02_dist) and e01_dist.le(e12_dist):
return e01_dist
elif e02_dist.le(e01_dist) and e02_dist.le(e12_dist):
return e02_dist
else:
return e12_dist
def test_point_edge_array_distance(self):
"""
Test CUDA implementation for PointEdgeArrayDistanceForward
& PointEdgeArrayDistanceBackward
"""
P, E = 16, 32
device = get_random_cuda_device()
points = torch.rand((P, 3), dtype=torch.float32, device=device)
edges = torch.rand((E, 2, 3), dtype=torch.float32, device=device)
# randomly make some edge points equal
same = torch.rand((E,), dtype=torch.float32, device=device) > 0.5
edges[same, 1] = edges[same, 0].clone().detach()
points_cpu = points.clone().cpu()
edges_cpu = edges.clone().cpu()
points.requires_grad = True
edges.requires_grad = True
grad_dists = torch.rand((P, E), dtype=torch.float32, device=device)
# Naive python implementation
dists_naive = torch.zeros((P, E), dtype=torch.float32, device=device)
for p in range(P):
for e in range(E):
dist = self._point_to_edge_distance(points[p], edges[e])
dists_naive[p, e] = dist
# Cuda Forward Implementation
dists_cuda = _C.point_edge_array_dist_forward(points, edges)
dists_cpu = _C.point_edge_array_dist_forward(points_cpu, edges_cpu)
# Compare
self.assertClose(dists_naive.cpu(), dists_cuda.cpu())
self.assertClose(dists_naive.cpu(), dists_cpu)
# CUDA Bacwkard Implementation
grad_points_cuda, grad_edges_cuda = _C.point_edge_array_dist_backward(
points, edges, grad_dists
)
grad_points_cpu, grad_edges_cpu = _C.point_edge_array_dist_backward(
points_cpu, edges_cpu, grad_dists.cpu()
)
dists_naive.backward(grad_dists)
grad_points_naive = points.grad.cpu()
grad_edges_naive = edges.grad.cpu()
# Compare
self.assertClose(grad_points_naive, grad_points_cuda.cpu())
self.assertClose(grad_edges_naive, grad_edges_cuda.cpu())
self.assertClose(grad_points_naive, grad_points_cpu)
self.assertClose(grad_edges_naive, grad_edges_cpu)
def test_point_edge_distance(self):
"""
Test CUDA implementation for PointEdgeDistanceForward
& PointEdgeDistanceBackward
"""
device = get_random_cuda_device()
N, V, F, P = 4, 32, 16, 24
meshes, pcls = self.init_meshes_clouds(N, V, F, P, device=device)
# make points packed a leaf node
points_packed = pcls.points_packed().detach().clone() # (P, 3)
points_first_idx = pcls.cloud_to_packed_first_idx()
max_p = pcls.num_points_per_cloud().max().item()
# make edges packed a leaf node
verts_packed = meshes.verts_packed()
edges_packed = verts_packed[meshes.edges_packed()] # (E, 2, 3)
edges_packed = edges_packed.clone().detach()
edges_first_idx = meshes.mesh_to_edges_packed_first_idx()
# leaf nodes
points_packed.requires_grad = True
edges_packed.requires_grad = True
grad_dists = torch.rand(
(points_packed.shape[0],), dtype=torch.float32, device=device
)
# Cuda Implementation: forward
dists_cuda, idx_cuda = _C.point_edge_dist_forward(
points_packed, points_first_idx, edges_packed, edges_first_idx, max_p
)
# Cuda Implementation: backward
grad_points_cuda, grad_edges_cuda = _C.point_edge_dist_backward(
points_packed, edges_packed, idx_cuda, grad_dists
)
# Cpu Implementation: forward
dists_cpu, idx_cpu = _C.point_edge_dist_forward(
points_packed.cpu(),
points_first_idx.cpu(),
edges_packed.cpu(),
edges_first_idx.cpu(),
max_p,
)
# Cpu Implementation: backward
# Note that using idx_cpu doesn't pass - there seems to be a problem with tied results.
grad_points_cpu, grad_edges_cpu = _C.point_edge_dist_backward(
points_packed.cpu(), edges_packed.cpu(), idx_cuda.cpu(), grad_dists.cpu()
)
# Naive Implementation: forward
edges_list = packed_to_list(edges_packed, meshes.num_edges_per_mesh().tolist())
dists_naive = []
for i in range(N):
points = pcls.points_list()[i]
edges = edges_list[i]
dists_temp = torch.zeros(
(points.shape[0], edges.shape[0]), dtype=torch.float32, device=device
)
for p in range(points.shape[0]):
for e in range(edges.shape[0]):
dist = self._point_to_edge_distance(points[p], edges[e])
dists_temp[p, e] = dist
# torch.min() doesn't necessarily return the first index of the
# smallest value, our warp_reduce does. So it's not straightforward
# to directly compare indices, nor the gradients of grad_edges which
# also depend on the indices of the minimum value.
# To be able to compare, we will compare dists_temp.min(1) and
# then feed the cuda indices to the naive output
start = points_first_idx[i]
end = points_first_idx[i + 1] if i < N - 1 else points_packed.shape[0]
min_idx = idx_cuda[start:end] - edges_first_idx[i]
iidx = torch.arange(points.shape[0], device=device)
min_dist = dists_temp[iidx, min_idx]
dists_naive.append(min_dist)
dists_naive = torch.cat(dists_naive)
# Compare
self.assertClose(dists_naive.cpu(), dists_cuda.cpu())
self.assertClose(dists_naive.cpu(), dists_cpu)
# Naive Implementation: backward
dists_naive.backward(grad_dists)
grad_points_naive = torch.cat([cloud.grad for cloud in pcls.points_list()])
grad_edges_naive = edges_packed.grad.cpu()
# Compare
self.assertClose(grad_points_naive.cpu(), grad_points_cuda.cpu(), atol=1e-7)
self.assertClose(grad_edges_naive, grad_edges_cuda.cpu(), atol=5e-7)
self.assertClose(grad_points_naive.cpu(), grad_points_cpu, atol=1e-7)
self.assertClose(grad_edges_naive, grad_edges_cpu, atol=5e-7)
def test_edge_point_distance(self):
"""
Test CUDA implementation for EdgePointDistanceForward
& EdgePointDistanceBackward
"""
device = get_random_cuda_device()
N, V, F, P = 4, 32, 16, 24
meshes, pcls = self.init_meshes_clouds(N, V, F, P, device=device)
# make points packed a leaf node
points_packed = pcls.points_packed().detach().clone() # (P, 3)
points_first_idx = pcls.cloud_to_packed_first_idx()
# make edges packed a leaf node
verts_packed = meshes.verts_packed()
edges_packed = verts_packed[meshes.edges_packed()] # (E, 2, 3)
edges_packed = edges_packed.clone().detach()
edges_first_idx = meshes.mesh_to_edges_packed_first_idx()
max_e = meshes.num_edges_per_mesh().max().item()
# leaf nodes
points_packed.requires_grad = True
edges_packed.requires_grad = True
grad_dists = torch.rand(
(edges_packed.shape[0],), dtype=torch.float32, device=device
)
# Cuda Implementation: forward
dists_cuda, idx_cuda = _C.edge_point_dist_forward(
points_packed, points_first_idx, edges_packed, edges_first_idx, max_e
)
# Cuda Implementation: backward
grad_points_cuda, grad_edges_cuda = _C.edge_point_dist_backward(
points_packed, edges_packed, idx_cuda, grad_dists
)
# Cpu Implementation: forward
dists_cpu, idx_cpu = _C.edge_point_dist_forward(
points_packed.cpu(),
points_first_idx.cpu(),
edges_packed.cpu(),
edges_first_idx.cpu(),
max_e,
)
# Cpu Implementation: backward
grad_points_cpu, grad_edges_cpu = _C.edge_point_dist_backward(
points_packed.cpu(), edges_packed.cpu(), idx_cpu, grad_dists.cpu()
)
# Naive Implementation: forward
edges_list = packed_to_list(edges_packed, meshes.num_edges_per_mesh().tolist())
dists_naive = []
for i in range(N):
points = pcls.points_list()[i]
edges = edges_list[i]
dists_temp = torch.zeros(
(edges.shape[0], points.shape[0]), dtype=torch.float32, device=device
)
for e in range(edges.shape[0]):
for p in range(points.shape[0]):
dist = self._point_to_edge_distance(points[p], edges[e])
dists_temp[e, p] = dist
# torch.min() doesn't necessarily return the first index of the
# smallest value, our warp_reduce does. So it's not straightforward
# to directly compare indices, nor the gradients of grad_edges which
# also depend on the indices of the minimum value.
# To be able to compare, we will compare dists_temp.min(1) and
# then feed the cuda indices to the naive output
start = edges_first_idx[i]
end = edges_first_idx[i + 1] if i < N - 1 else edges_packed.shape[0]
min_idx = idx_cuda.cpu()[start:end] - points_first_idx[i].cpu()
iidx = torch.arange(edges.shape[0], device=device)
min_dist = dists_temp[iidx, min_idx]
dists_naive.append(min_dist)
dists_naive = torch.cat(dists_naive)
# Compare
self.assertClose(dists_naive.cpu(), dists_cuda.cpu())
self.assertClose(dists_naive.cpu(), dists_cpu)
# Naive Implementation: backward
dists_naive.backward(grad_dists)
grad_points_naive = torch.cat([cloud.grad for cloud in pcls.points_list()])
grad_edges_naive = edges_packed.grad.cpu()
# Compare
self.assertClose(grad_points_naive.cpu(), grad_points_cuda.cpu(), atol=1e-7)
self.assertClose(grad_edges_naive, grad_edges_cuda.cpu(), atol=5e-7)
self.assertClose(grad_points_naive.cpu(), grad_points_cpu, atol=1e-7)
self.assertClose(grad_edges_naive, grad_edges_cpu, atol=5e-7)
def test_point_mesh_edge_distance(self):
"""
Test point_mesh_edge_distance from pytorch3d.loss
"""
device = get_random_cuda_device()
N, V, F, P = 4, 32, 16, 24
meshes, pcls = self.init_meshes_clouds(N, V, F, P, device=device)
# clone and detach for another backward pass through the op
verts_op = [verts.clone().detach() for verts in meshes.verts_list()]
for i in range(N):
verts_op[i].requires_grad = True
faces_op = [faces.clone().detach() for faces in meshes.faces_list()]
meshes_op = Meshes(verts=verts_op, faces=faces_op)
points_op = [points.clone().detach() for points in pcls.points_list()]
for i in range(N):
points_op[i].requires_grad = True
pcls_op = Pointclouds(points_op)
# Cuda implementation: forward & backward
loss_op = point_mesh_edge_distance(meshes_op, pcls_op)
# Naive implementation: forward & backward
edges_packed = meshes.edges_packed()
edges_list = packed_to_list(edges_packed, meshes.num_edges_per_mesh().tolist())
loss_naive = torch.zeros(N, dtype=torch.float32, device=device)
for i in range(N):
points = pcls.points_list()[i]
verts = meshes.verts_list()[i]
v_first_idx = meshes.mesh_to_verts_packed_first_idx()[i]
edges = verts[edges_list[i] - v_first_idx]
num_p = points.shape[0]
num_e = edges.shape[0]
dists = torch.zeros((num_p, num_e), dtype=torch.float32, device=device)
for p in range(num_p):
for e in range(num_e):
dist = self._point_to_edge_distance(points[p], edges[e])
dists[p, e] = dist
min_dist_p, min_idx_p = dists.min(1)
min_dist_e, min_idx_e = dists.min(0)
loss_naive[i] = min_dist_p.mean() + min_dist_e.mean()
loss_naive = loss_naive.mean()
# NOTE that hear the comparison holds despite the discrepancy
# due to the argmin indices returned by min(). This is because
# we don't will compare gradients on the verts and not on the
# edges or faces.
# Compare forward pass
self.assertClose(loss_op, loss_naive)
# Compare backward pass
rand_val = torch.rand(1).item()
grad_dist = torch.tensor(rand_val, dtype=torch.float32, device=device)
loss_naive.backward(grad_dist)
loss_op.backward(grad_dist)
# check verts grad
for i in range(N):
self.assertClose(
meshes.verts_list()[i].grad, meshes_op.verts_list()[i].grad
)
self.assertClose(pcls.points_list()[i].grad, pcls_op.points_list()[i].grad)
def test_point_face_array_distance(self):
"""
Test CUDA implementation for PointFaceArrayDistanceForward
& PointFaceArrayDistanceBackward
"""
P, T = 16, 32
device = get_random_cuda_device()
points = torch.rand((P, 3), dtype=torch.float32, device=device)
tris = torch.rand((T, 3, 3), dtype=torch.float32, device=device)
points_cpu = points.clone().cpu()
tris_cpu = tris.clone().cpu()
points.requires_grad = True
tris.requires_grad = True
grad_dists = torch.rand((P, T), dtype=torch.float32, device=device)
points_temp = points.clone().detach()
points_temp.requires_grad = True
tris_temp = tris.clone().detach()
tris_temp.requires_grad = True
# Naive python implementation
dists_naive = torch.zeros((P, T), dtype=torch.float32, device=device)
for p in range(P):
for t in range(T):
dist = self._point_to_tri_distance(points[p], tris[t])
dists_naive[p, t] = dist
# Naive Backward
dists_naive.backward(grad_dists)
grad_points_naive = points.grad.cpu()
grad_tris_naive = tris.grad.cpu()
# Cuda Forward Implementation
dists_cuda = _C.point_face_array_dist_forward(
points, tris, TestPointMeshDistance.min_triangle_area()
)
dists_cpu = _C.point_face_array_dist_forward(
points_cpu, tris_cpu, TestPointMeshDistance.min_triangle_area()
)
# Compare
self.assertClose(dists_naive.cpu(), dists_cuda.cpu())
self.assertClose(dists_naive.cpu(), dists_cpu)
# CUDA Backward Implementation
grad_points_cuda, grad_tris_cuda = _C.point_face_array_dist_backward(
points, tris, grad_dists, TestPointMeshDistance.min_triangle_area()
)
grad_points_cpu, grad_tris_cpu = _C.point_face_array_dist_backward(
points_cpu,
tris_cpu,
grad_dists.cpu(),
TestPointMeshDistance.min_triangle_area(),
)
# Compare
self.assertClose(grad_points_naive, grad_points_cuda.cpu())
self.assertClose(grad_tris_naive, grad_tris_cuda.cpu(), atol=5e-6)
self.assertClose(grad_points_naive, grad_points_cpu)
self.assertClose(grad_tris_naive, grad_tris_cpu, atol=5e-6)
def test_point_face_distance(self):
"""
Test CUDA implementation for PointFaceDistanceForward
& PointFaceDistanceBackward
"""
device = get_random_cuda_device()
N, V, F, P = 4, 32, 16, 24
meshes, pcls = self.init_meshes_clouds(N, V, F, P, device=device)
# make points packed a leaf node
points_packed = pcls.points_packed().detach().clone() # (P, 3)
points_first_idx = pcls.cloud_to_packed_first_idx()
max_p = pcls.num_points_per_cloud().max().item()
# make edges packed a leaf node
verts_packed = meshes.verts_packed()
faces_packed = verts_packed[meshes.faces_packed()] # (T, 3, 3)
faces_packed = faces_packed.clone().detach()
faces_first_idx = meshes.mesh_to_faces_packed_first_idx()
# leaf nodes
points_packed.requires_grad = True
faces_packed.requires_grad = True
grad_dists = torch.rand(
(points_packed.shape[0],), dtype=torch.float32, device=device
)
# Cuda Implementation: forward
dists_cuda, idx_cuda = _C.point_face_dist_forward(
points_packed,
points_first_idx,
faces_packed,
faces_first_idx,
max_p,
TestPointMeshDistance.min_triangle_area(),
)
# Cuda Implementation: backward
grad_points_cuda, grad_faces_cuda = _C.point_face_dist_backward(
points_packed,
faces_packed,
idx_cuda,
grad_dists,
TestPointMeshDistance.min_triangle_area(),
)
# Cpu Implementation: forward
dists_cpu, idx_cpu = _C.point_face_dist_forward(
points_packed.cpu(),
points_first_idx.cpu(),
faces_packed.cpu(),
faces_first_idx.cpu(),
max_p,
TestPointMeshDistance.min_triangle_area(),
)
# Cpu Implementation: backward
# Note that using idx_cpu doesn't pass - there seems to be a problem with tied results.
grad_points_cpu, grad_faces_cpu = _C.point_face_dist_backward(
points_packed.cpu(),
faces_packed.cpu(),
idx_cuda.cpu(),
grad_dists.cpu(),
TestPointMeshDistance.min_triangle_area(),
)
# Naive Implementation: forward
faces_list = packed_to_list(faces_packed, meshes.num_faces_per_mesh().tolist())
dists_naive = []
for i in range(N):
points = pcls.points_list()[i]
tris = faces_list[i]
dists_temp = torch.zeros(
(points.shape[0], tris.shape[0]), dtype=torch.float32, device=device
)
for p in range(points.shape[0]):
for t in range(tris.shape[0]):
dist = self._point_to_tri_distance(points[p], tris[t])
dists_temp[p, t] = dist
# torch.min() doesn't necessarily return the first index of the
# smallest value, our warp_reduce does. So it's not straightforward
# to directly compare indices, nor the gradients of grad_tris which
# also depend on the indices of the minimum value.
# To be able to compare, we will compare dists_temp.min(1) and
# then feed the cuda indices to the naive output
start = points_first_idx[i]
end = points_first_idx[i + 1] if i < N - 1 else points_packed.shape[0]
min_idx = idx_cuda.cpu()[start:end] - faces_first_idx[i].cpu()
iidx = torch.arange(points.shape[0], device=device)
min_dist = dists_temp[iidx, min_idx]
dists_naive.append(min_dist)
dists_naive = torch.cat(dists_naive)
# Compare
self.assertClose(dists_naive.cpu(), dists_cuda.cpu())
self.assertClose(dists_naive.cpu(), dists_cpu)
# Naive Implementation: backward
dists_naive.backward(grad_dists)
grad_points_naive = torch.cat([cloud.grad for cloud in pcls.points_list()])
grad_faces_naive = faces_packed.grad.cpu()
# Compare
self.assertClose(grad_points_naive.cpu(), grad_points_cuda.cpu(), atol=1e-7)
self.assertClose(grad_faces_naive, grad_faces_cuda.cpu(), atol=5e-7)
self.assertClose(grad_points_naive.cpu(), grad_points_cpu, atol=1e-7)
self.assertClose(grad_faces_naive, grad_faces_cpu, atol=5e-7)
def test_face_point_distance(self):
"""
Test CUDA implementation for FacePointDistanceForward
& FacePointDistanceBackward
"""
device = get_random_cuda_device()
N, V, F, P = 4, 32, 16, 24
meshes, pcls = self.init_meshes_clouds(N, V, F, P, device=device)
# make points packed a leaf node
points_packed = pcls.points_packed().detach().clone() # (P, 3)
points_first_idx = pcls.cloud_to_packed_first_idx()
# make edges packed a leaf node
verts_packed = meshes.verts_packed()
faces_packed = verts_packed[meshes.faces_packed()] # (T, 3, 3)
faces_packed = faces_packed.clone().detach()
faces_first_idx = meshes.mesh_to_faces_packed_first_idx()
max_f = meshes.num_faces_per_mesh().max().item()
# leaf nodes
points_packed.requires_grad = True
faces_packed.requires_grad = True
grad_dists = torch.rand(
(faces_packed.shape[0],), dtype=torch.float32, device=device
)
# Cuda Implementation: forward
dists_cuda, idx_cuda = _C.face_point_dist_forward(
points_packed,
points_first_idx,
faces_packed,
faces_first_idx,
max_f,
TestPointMeshDistance.min_triangle_area(),
)
# Cuda Implementation: backward
grad_points_cuda, grad_faces_cuda = _C.face_point_dist_backward(
points_packed,
faces_packed,
idx_cuda,
grad_dists,
TestPointMeshDistance.min_triangle_area(),
)
# Cpu Implementation: forward
dists_cpu, idx_cpu = _C.face_point_dist_forward(
points_packed.cpu(),
points_first_idx.cpu(),
faces_packed.cpu(),
faces_first_idx.cpu(),
max_f,
TestPointMeshDistance.min_triangle_area(),
)
# Cpu Implementation: backward
grad_points_cpu, grad_faces_cpu = _C.face_point_dist_backward(
points_packed.cpu(),
faces_packed.cpu(),
idx_cpu,
grad_dists.cpu(),
TestPointMeshDistance.min_triangle_area(),
)
# Naive Implementation: forward
faces_list = packed_to_list(faces_packed, meshes.num_faces_per_mesh().tolist())
dists_naive = []
for i in range(N):
points = pcls.points_list()[i]
tris = faces_list[i]
dists_temp = torch.zeros(
(tris.shape[0], points.shape[0]), dtype=torch.float32, device=device
)
for t in range(tris.shape[0]):
for p in range(points.shape[0]):
dist = self._point_to_tri_distance(points[p], tris[t])
dists_temp[t, p] = dist
# torch.min() doesn't necessarily return the first index of the
# smallest value, our warp_reduce does. So it's not straightforward
# to directly compare indices, nor the gradients of grad_tris which
# also depend on the indices of the minimum value.
# To be able to compare, we will compare dists_temp.min(1) and
# then feed the cuda indices to the naive output
start = faces_first_idx[i]
end = faces_first_idx[i + 1] if i < N - 1 else faces_packed.shape[0]
min_idx = idx_cuda.cpu()[start:end] - points_first_idx[i].cpu()
iidx = torch.arange(tris.shape[0], device=device)
min_dist = dists_temp[iidx, min_idx]
dists_naive.append(min_dist)
dists_naive = torch.cat(dists_naive)
# Compare
self.assertClose(dists_naive.cpu(), dists_cuda.cpu())
self.assertClose(dists_naive.cpu(), dists_cpu)
# Naive Implementation: backward
dists_naive.backward(grad_dists)
grad_points_naive = torch.cat([cloud.grad for cloud in pcls.points_list()])
grad_faces_naive = faces_packed.grad
# Compare
self.assertClose(grad_points_naive.cpu(), grad_points_cuda.cpu(), atol=1e-7)
self.assertClose(grad_faces_naive.cpu(), grad_faces_cuda.cpu(), atol=5e-7)
self.assertClose(grad_points_naive.cpu(), grad_points_cpu, atol=1e-7)
self.assertClose(grad_faces_naive.cpu(), grad_faces_cpu, atol=5e-7)
def test_point_mesh_face_distance(self):
"""
Test point_mesh_face_distance from pytorch3d.loss
"""
device = get_random_cuda_device()
N, V, F, P = 4, 32, 16, 24
meshes, pcls = self.init_meshes_clouds(N, V, F, P, device=device)
# clone and detach for another backward pass through the op
verts_op = [verts.clone().detach() for verts in meshes.verts_list()]
for i in range(N):
verts_op[i].requires_grad = True
faces_op = [faces.clone().detach() for faces in meshes.faces_list()]
meshes_op = Meshes(verts=verts_op, faces=faces_op)
points_op = [points.clone().detach() for points in pcls.points_list()]
for i in range(N):
points_op[i].requires_grad = True
pcls_op = Pointclouds(points_op)
# naive implementation
loss_naive = torch.zeros(N, dtype=torch.float32, device=device)
for i in range(N):
points = pcls.points_list()[i]
verts = meshes.verts_list()[i]
faces = meshes.faces_list()[i]
tris = verts[faces]
num_p = points.shape[0]
num_t = tris.shape[0]
dists = torch.zeros((num_p, num_t), dtype=torch.float32, device=device)
for p in range(num_p):
for t in range(num_t):
dist = self._point_to_tri_distance(points[p], tris[t])
dists[p, t] = dist
min_dist_p, min_idx_p = dists.min(1)
min_dist_t, min_idx_t = dists.min(0)
loss_naive[i] = min_dist_p.mean() + min_dist_t.mean()
loss_naive = loss_naive.mean()
# Op
loss_op = point_mesh_face_distance(meshes_op, pcls_op)
# Compare forward pass
self.assertClose(loss_op, loss_naive)
# Compare backward pass
rand_val = torch.rand(1).item()
grad_dist = torch.tensor(rand_val, dtype=torch.float32, device=device)
loss_naive.backward(grad_dist)
loss_op.backward(grad_dist)
# check verts grad
for i in range(N):
self.assertClose(
meshes.verts_list()[i].grad, meshes_op.verts_list()[i].grad
)
self.assertClose(pcls.points_list()[i].grad, pcls_op.points_list()[i].grad)
def test_small_faces_case(self):
for device in [torch.device("cpu"), torch.device("cuda:0")]:
mesh_vertices = torch.tensor(
[
[-0.0021, -0.3769, 0.7146],
[-0.0161, -0.3771, 0.7146],
[-0.0021, -0.3771, 0.7147],
],
dtype=torch.float32,
device=device,
)
mesh1_faces = torch.tensor([[0, 2, 1]], device=device)
mesh2_faces = torch.tensor([[2, 0, 1]], device=device)
pcd_points = torch.tensor([[-0.3623, -0.5340, 0.7727]], device=device)
mesh1 = Meshes(verts=[mesh_vertices], faces=[mesh1_faces])
mesh2 = Meshes(verts=[mesh_vertices], faces=[mesh2_faces])
pcd = Pointclouds(points=[pcd_points])
loss1 = point_mesh_face_distance(mesh1, pcd)
loss2 = point_mesh_face_distance(mesh2, pcd)
self.assertClose(loss1, loss2)
@staticmethod
def point_mesh_edge(N: int, V: int, F: int, P: int, device: str):
device = torch.device(device)
meshes, pcls = TestPointMeshDistance.init_meshes_clouds(
N, V, F, P, device=device
)
torch.cuda.synchronize()
def loss():
point_mesh_edge_distance(meshes, pcls)
torch.cuda.synchronize()
return loss
@staticmethod
def point_mesh_face(N: int, V: int, F: int, P: int, device: str):
device = torch.device(device)
meshes, pcls = TestPointMeshDistance.init_meshes_clouds(
N, V, F, P, device=device
)
torch.cuda.synchronize()
def loss():
point_mesh_face_distance(meshes, pcls)
torch.cuda.synchronize()
return loss
|