File size: 25,443 Bytes
7088d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import unittest

import numpy as np
import torch
from pytorch3d.ops import points_alignment
from pytorch3d.structures.pointclouds import Pointclouds
from pytorch3d.transforms import rotation_conversions

from .common_testing import get_tests_dir, TestCaseMixin


def _apply_pcl_transformation(X, R, T, s=None):
    """
    Apply a batch of similarity/rigid transformations, parametrized with
    rotation `R`, translation `T` and scale `s`, to an input batch of
    point clouds `X`.
    """
    if isinstance(X, Pointclouds):
        num_points = X.num_points_per_cloud()
        X_t = X.points_padded()
    else:
        X_t = X

    if s is not None:
        X_t = s[:, None, None] * X_t

    X_t = torch.bmm(X_t, R) + T[:, None, :]

    if isinstance(X, Pointclouds):
        X_list = [x[:n_p] for x, n_p in zip(X_t, num_points)]
        X_t = Pointclouds(X_list)

    return X_t


class TestICP(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(42)
        np.random.seed(42)
        trimesh_results_path = get_tests_dir() / "data/icp_data.pth"
        self.trimesh_results = torch.load(trimesh_results_path)

    @staticmethod
    def iterative_closest_point(
        batch_size=10,
        n_points_X=100,
        n_points_Y=100,
        dim=3,
        use_pointclouds=False,
        estimate_scale=False,
    ):

        device = torch.device("cuda:0")

        # initialize a ground truth point cloud
        X, Y = [
            TestCorrespondingPointsAlignment.init_point_cloud(
                batch_size=batch_size,
                n_points=n_points,
                dim=dim,
                device=device,
                use_pointclouds=use_pointclouds,
                random_pcl_size=True,
                fix_seed=i,
            )
            for i, n_points in enumerate((n_points_X, n_points_Y))
        ]

        torch.cuda.synchronize()

        def run_iterative_closest_point():
            points_alignment.iterative_closest_point(
                X,
                Y,
                estimate_scale=estimate_scale,
                allow_reflection=False,
                verbose=False,
                max_iterations=100,
                relative_rmse_thr=1e-4,
            )
            torch.cuda.synchronize()

        return run_iterative_closest_point

    def test_init_transformation(self, batch_size=10):
        """
        First runs a full ICP on a random problem. Then takes a given point
        in the history of ICP iteration transformations, initializes
        a second run of ICP with this transformation and checks whether
        both runs ended with the same solution.
        """

        device = torch.device("cuda:0")

        for dim in (2, 3, 11):
            for n_points_X in (30, 100):
                for n_points_Y in (30, 100):
                    # initialize ground truth point clouds
                    X, Y = [
                        TestCorrespondingPointsAlignment.init_point_cloud(
                            batch_size=batch_size,
                            n_points=n_points,
                            dim=dim,
                            device=device,
                            use_pointclouds=False,
                            random_pcl_size=True,
                        )
                        for n_points in (n_points_X, n_points_Y)
                    ]

                    # run full icp
                    (
                        converged,
                        _,
                        Xt,
                        (R, T, s),
                        t_hist,
                    ) = points_alignment.iterative_closest_point(
                        X,
                        Y,
                        estimate_scale=False,
                        allow_reflection=False,
                        verbose=False,
                        max_iterations=100,
                    )

                    # start from the solution after the third
                    # iteration of the previous ICP
                    t_init = t_hist[min(2, len(t_hist) - 1)]

                    # rerun the ICP
                    (
                        converged_init,
                        _,
                        Xt_init,
                        (R_init, T_init, s_init),
                        t_hist_init,
                    ) = points_alignment.iterative_closest_point(
                        X,
                        Y,
                        init_transform=t_init,
                        estimate_scale=False,
                        allow_reflection=False,
                        verbose=False,
                        max_iterations=100,
                    )

                    # compare transformations and obtained clouds
                    # check that both sets of transforms are the same
                    atol = 3e-5
                    self.assertClose(R_init, R, atol=atol)
                    self.assertClose(T_init, T, atol=atol)
                    self.assertClose(s_init, s, atol=atol)
                    self.assertClose(Xt_init, Xt, atol=atol)

    def test_heterogeneous_inputs(self, batch_size=7):
        """
        Tests whether we get the same result when running ICP on
        a set of randomly-sized Pointclouds and on their padded versions.
        """

        torch.manual_seed(4)
        device = torch.device("cuda:0")

        for estimate_scale in (True, False):
            for max_n_points in (10, 30, 100):
                # initialize ground truth point clouds
                X_pcl, Y_pcl = [
                    TestCorrespondingPointsAlignment.init_point_cloud(
                        batch_size=batch_size,
                        n_points=max_n_points,
                        dim=3,
                        device=device,
                        use_pointclouds=True,
                        random_pcl_size=True,
                    )
                    for _ in range(2)
                ]

                # get the padded versions and their num of points
                X_padded = X_pcl.points_padded()
                Y_padded = Y_pcl.points_padded()
                n_points_X = X_pcl.num_points_per_cloud()
                n_points_Y = Y_pcl.num_points_per_cloud()

                # run icp with Pointlouds inputs
                (
                    _,
                    _,
                    Xt_pcl,
                    (R_pcl, T_pcl, s_pcl),
                    _,
                ) = points_alignment.iterative_closest_point(
                    X_pcl,
                    Y_pcl,
                    estimate_scale=estimate_scale,
                    allow_reflection=False,
                    verbose=False,
                    max_iterations=100,
                )
                Xt_pcl = Xt_pcl.points_padded()

                # run icp with tensor inputs on each element
                # of the batch separately
                icp_results = [
                    points_alignment.iterative_closest_point(
                        X_[None, :n_X, :],
                        Y_[None, :n_Y, :],
                        estimate_scale=estimate_scale,
                        allow_reflection=False,
                        verbose=False,
                        max_iterations=100,
                    )
                    for X_, Y_, n_X, n_Y in zip(
                        X_padded, Y_padded, n_points_X, n_points_Y
                    )
                ]

                # parse out the transformation results
                R, T, s = [
                    torch.cat([x.RTs[i] for x in icp_results], dim=0) for i in range(3)
                ]

                # check that both sets of transforms are the same
                atol = 1e-5
                self.assertClose(R_pcl, R, atol=atol)
                self.assertClose(T_pcl, T, atol=atol)
                self.assertClose(s_pcl, s, atol=atol)

                # compare the transformed point clouds
                for pcli in range(batch_size):
                    nX = n_points_X[pcli]
                    Xt_ = icp_results[pcli].Xt[0, :nX]
                    Xt_pcl_ = Xt_pcl[pcli][:nX]
                    self.assertClose(Xt_pcl_, Xt_, atol=atol)

    def test_compare_with_trimesh(self):
        """
        Compares the outputs of `iterative_closest_point` with the results
        of `trimesh.registration.icp` from the `trimesh` python package:
        https://github.com/mikedh/trimesh

        We have run `trimesh.registration.icp` on several random problems
        with different point cloud sizes. The results of trimesh, together with
        the randomly generated input clouds are loaded in the constructor of
        this class and this test compares the loaded results to our runs.
        """
        for n_points_X in (10, 20, 50, 100):
            for n_points_Y in (10, 20, 50, 100):
                self._compare_with_trimesh(n_points_X=n_points_X, n_points_Y=n_points_Y)

    def _compare_with_trimesh(
        self, n_points_X=100, n_points_Y=100, estimate_scale=False
    ):
        """
        Executes a single test for `iterative_closest_point` for a
        specific setting of the inputs / outputs. Compares the result with
        the result of the trimesh package on the same input data.
        """

        device = torch.device("cuda:0")

        # load the trimesh results and the initial point clouds for icp
        key = (int(n_points_X), int(n_points_Y), int(estimate_scale))
        X, Y, R_trimesh, T_trimesh, s_trimesh = [
            x.to(device) for x in self.trimesh_results[key]
        ]

        # run the icp algorithm
        (
            converged,
            _,
            _,
            (R_ours, T_ours, s_ours),
            _,
        ) = points_alignment.iterative_closest_point(
            X,
            Y,
            estimate_scale=estimate_scale,
            allow_reflection=False,
            verbose=False,
            max_iterations=100,
        )

        # check that we have the same transformation
        # and that the icp converged
        atol = 1e-5
        self.assertClose(R_ours, R_trimesh, atol=atol)
        self.assertClose(T_ours, T_trimesh, atol=atol)
        self.assertClose(s_ours, s_trimesh, atol=atol)
        self.assertTrue(converged)


class TestCorrespondingPointsAlignment(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(42)
        np.random.seed(42)

    @staticmethod
    def random_rotation(batch_size, dim, device=None):
        """
        Generates a batch of random `dim`-dimensional rotation matrices.
        """
        if dim == 3:
            R = rotation_conversions.random_rotations(batch_size, device=device)
        else:
            # generate random rotation matrices with orthogonalization of
            # random normal square matrices, followed by a transformation
            # that ensures determinant(R)==1
            H = torch.randn(batch_size, dim, dim, dtype=torch.float32, device=device)
            U, _, V = torch.svd(H)
            E = torch.eye(dim, dtype=torch.float32, device=device)[None].repeat(
                batch_size, 1, 1
            )
            E[:, -1, -1] = torch.det(torch.bmm(U, V.transpose(2, 1)))
            R = torch.bmm(torch.bmm(U, E), V.transpose(2, 1))
            assert torch.allclose(torch.det(R), R.new_ones(batch_size), atol=1e-4)

        return R

    @staticmethod
    def init_point_cloud(
        batch_size=10,
        n_points=1000,
        dim=3,
        device=None,
        use_pointclouds=False,
        random_pcl_size=True,
        fix_seed=None,
    ):
        """
        Generate a batch of normally distributed point clouds.
        """

        if fix_seed is not None:
            # make sure we always generate the same pointcloud
            seed = torch.random.get_rng_state()
            torch.manual_seed(fix_seed)

        if use_pointclouds:
            assert dim == 3, "Pointclouds support only 3-dim points."
            # generate a `batch_size` point clouds with number of points
            # between 4 and `n_points`
            if random_pcl_size:
                n_points_per_batch = torch.randint(
                    low=4,
                    high=n_points,
                    size=(batch_size,),
                    device=device,
                    dtype=torch.int64,
                )
                X_list = [
                    torch.randn(int(n_pt), dim, device=device, dtype=torch.float32)
                    for n_pt in n_points_per_batch
                ]
                X = Pointclouds(X_list)
            else:
                X = torch.randn(
                    batch_size, n_points, dim, device=device, dtype=torch.float32
                )
                X = Pointclouds(list(X))
        else:
            X = torch.randn(
                batch_size, n_points, dim, device=device, dtype=torch.float32
            )

        if fix_seed:
            torch.random.set_rng_state(seed)

        return X

    @staticmethod
    def generate_pcl_transformation(
        batch_size=10, scale=False, reflect=False, dim=3, device=None
    ):
        """
        Generate a batch of random rigid/similarity transformations.
        """
        R = TestCorrespondingPointsAlignment.random_rotation(
            batch_size, dim, device=device
        )
        T = torch.randn(batch_size, dim, dtype=torch.float32, device=device)
        if scale:
            s = torch.rand(batch_size, dtype=torch.float32, device=device) + 0.1
        else:
            s = torch.ones(batch_size, dtype=torch.float32, device=device)

        return R, T, s

    @staticmethod
    def generate_random_reflection(batch_size=10, dim=3, device=None):
        """
        Generate a batch of reflection matrices of shape (batch_size, dim, dim),
        where M_i is an identity matrix with one random entry on the
        diagonal equal to -1.
        """
        # randomly select one of the dimensions to reflect for each
        # element in the batch
        dim_to_reflect = torch.randint(
            low=0, high=dim, size=(batch_size,), device=device, dtype=torch.int64
        )

        # convert dim_to_reflect to a batch of reflection matrices M
        M = torch.diag_embed(
            (
                dim_to_reflect[:, None]
                != torch.arange(dim, device=device, dtype=torch.float32)
            ).float()
            * 2
            - 1,
            dim1=1,
            dim2=2,
        )

        return M

    @staticmethod
    def corresponding_points_alignment(
        batch_size=10,
        n_points=100,
        dim=3,
        use_pointclouds=False,
        estimate_scale=False,
        allow_reflection=False,
        reflect=False,
        random_weights=False,
    ):

        device = torch.device("cuda:0")

        # initialize a ground truth point cloud
        X = TestCorrespondingPointsAlignment.init_point_cloud(
            batch_size=batch_size,
            n_points=n_points,
            dim=dim,
            device=device,
            use_pointclouds=use_pointclouds,
            random_pcl_size=True,
        )

        # generate the true transformation
        R, T, s = TestCorrespondingPointsAlignment.generate_pcl_transformation(
            batch_size=batch_size,
            scale=estimate_scale,
            reflect=reflect,
            dim=dim,
            device=device,
        )

        # apply the generated transformation to the generated
        # point cloud X
        X_t = _apply_pcl_transformation(X, R, T, s=s)

        weights = None
        if random_weights:
            template = X.points_padded() if use_pointclouds else X
            weights = torch.rand_like(template[:, :, 0])
            weights = weights / weights.sum(dim=1, keepdim=True)
            # zero out some weights as zero weights are a common use case
            # this guarantees there are no zero weight
            weights *= (weights * template.size()[1] > 0.3).to(weights)
            if use_pointclouds:  # convert to List[Tensor]
                weights = [
                    w[:npts] for w, npts in zip(weights, X.num_points_per_cloud())
                ]

        torch.cuda.synchronize()

        def run_corresponding_points_alignment():
            points_alignment.corresponding_points_alignment(
                X,
                X_t,
                weights,
                allow_reflection=allow_reflection,
                estimate_scale=estimate_scale,
            )
            torch.cuda.synchronize()

        return run_corresponding_points_alignment

    def test_corresponding_points_alignment(self, batch_size=10):
        """
        Tests whether we can estimate a rigid/similarity motion between
        a randomly initialized point cloud and its randomly transformed version.

        The tests are done for all possible combinations
        of the following boolean flags:
            - estimate_scale ... Estimate also a scaling component of
                                 the transformation.
            - reflect ... The ground truth orthonormal part of the generated
                         transformation is a reflection (det==-1).
            - allow_reflection ... If True, the orthonormal matrix of the
                                  estimated transformation is allowed to be
                                  a reflection (det==-1).
            - use_pointclouds ... If True, passes the Pointclouds objects
                                  to corresponding_points_alignment.
        """
        # run this for several different point cloud sizes
        for n_points in (100, 3, 2, 1):
            # run this for several different dimensionalities
            for dim in range(2, 10):
                # switches whether we should use the Pointclouds inputs
                use_point_clouds_cases = (
                    (True, False) if dim == 3 and n_points > 3 else (False,)
                )
                for random_weights in (False, True):
                    for use_pointclouds in use_point_clouds_cases:
                        for estimate_scale in (False, True):
                            for reflect in (False, True):
                                for allow_reflection in (False, True):
                                    self._test_single_corresponding_points_alignment(
                                        batch_size=10,
                                        n_points=n_points,
                                        dim=dim,
                                        use_pointclouds=use_pointclouds,
                                        estimate_scale=estimate_scale,
                                        reflect=reflect,
                                        allow_reflection=allow_reflection,
                                        random_weights=random_weights,
                                    )

    def _test_single_corresponding_points_alignment(
        self,
        batch_size=10,
        n_points=100,
        dim=3,
        use_pointclouds=False,
        estimate_scale=False,
        reflect=False,
        allow_reflection=False,
        random_weights=False,
    ):
        """
        Executes a single test for `corresponding_points_alignment` for a
        specific setting of the inputs / outputs.
        """

        device = torch.device("cuda:0")

        # initialize the a ground truth point cloud
        X = TestCorrespondingPointsAlignment.init_point_cloud(
            batch_size=batch_size,
            n_points=n_points,
            dim=dim,
            device=device,
            use_pointclouds=use_pointclouds,
            random_pcl_size=True,
        )

        # generate the true transformation
        R, T, s = TestCorrespondingPointsAlignment.generate_pcl_transformation(
            batch_size=batch_size,
            scale=estimate_scale,
            reflect=reflect,
            dim=dim,
            device=device,
        )

        if reflect:
            # generate random reflection M and apply to the rotations
            M = TestCorrespondingPointsAlignment.generate_random_reflection(
                batch_size=batch_size, dim=dim, device=device
            )
            R = torch.bmm(M, R)

        weights = None
        if random_weights:
            template = X.points_padded() if use_pointclouds else X
            weights = torch.rand_like(template[:, :, 0])
            weights = weights / weights.sum(dim=1, keepdim=True)
            # zero out some weights as zero weights are a common use case
            # this guarantees there are no zero weight
            weights *= (weights * template.size()[1] > 0.3).to(weights)
            if use_pointclouds:  # convert to List[Tensor]
                weights = [
                    w[:npts] for w, npts in zip(weights, X.num_points_per_cloud())
                ]

        # apply the generated transformation to the generated
        # point cloud X
        X_t = _apply_pcl_transformation(X, R, T, s=s)

        # run the CorrespondingPointsAlignment algorithm
        R_est, T_est, s_est = points_alignment.corresponding_points_alignment(
            X,
            X_t,
            weights,
            allow_reflection=allow_reflection,
            estimate_scale=estimate_scale,
        )

        assert_error_message = (
            f"Corresponding_points_alignment assertion failure for "
            f"n_points={n_points}, "
            f"dim={dim}, "
            f"use_pointclouds={use_pointclouds}, "
            f"estimate_scale={estimate_scale}, "
            f"reflect={reflect}, "
            f"allow_reflection={allow_reflection},"
            f"random_weights={random_weights}."
        )

        # if we test the weighted case, check that weights help with noise
        if random_weights and not use_pointclouds and n_points >= (dim + 10):
            # add noise to 20% points with smallest weight
            X_noisy = X_t.clone()
            _, mink_idx = torch.topk(-weights, int(n_points * 0.2), dim=1)
            mink_idx = mink_idx[:, :, None].expand(-1, -1, X_t.shape[-1])
            X_noisy.scatter_add_(
                1, mink_idx, 0.3 * torch.randn_like(mink_idx, dtype=X_t.dtype)
            )

            def align_and_get_mse(weights_):
                R_n, T_n, s_n = points_alignment.corresponding_points_alignment(
                    X_noisy,
                    X_t,
                    weights_,
                    allow_reflection=allow_reflection,
                    estimate_scale=estimate_scale,
                )

                X_t_est = _apply_pcl_transformation(X_noisy, R_n, T_n, s=s_n)

                return (((X_t_est - X_t) * weights[..., None]) ** 2).sum(
                    dim=(1, 2)
                ) / weights.sum(dim=-1)

            # check that using weights leads to lower weighted_MSE(X_noisy, X_t)
            self.assertTrue(
                torch.all(align_and_get_mse(weights) <= align_and_get_mse(None))
            )

        if reflect and not allow_reflection:
            # check that all rotations have det=1
            self._assert_all_close(
                torch.det(R_est),
                R_est.new_ones(batch_size),
                assert_error_message,
                atol=2e-5,
            )

        else:
            # mask out inputs with too few non-degenerate points for assertions
            w = (
                torch.ones_like(R_est[:, 0, 0])
                if weights is None or n_points >= dim + 10
                else (weights > 0.0).all(dim=1).to(R_est)
            )
            # check that the estimated tranformation is the same
            # as the ground truth
            if n_points >= (dim + 1):
                # the checks on transforms apply only when
                # the problem setup is unambiguous
                msg = assert_error_message
                self._assert_all_close(R_est, R, msg, w[:, None, None], atol=1e-5)
                self._assert_all_close(T_est, T, msg, w[:, None])
                self._assert_all_close(s_est, s, msg, w)

                # check that the orthonormal part of the
                # transformation has a correct determinant (+1/-1)
                desired_det = R_est.new_ones(batch_size)
                if reflect:
                    desired_det *= -1.0
                self._assert_all_close(torch.det(R_est), desired_det, msg, w, atol=2e-5)

            # check that the transformed point cloud
            # X matches X_t
            X_t_est = _apply_pcl_transformation(X, R_est, T_est, s=s_est)
            self._assert_all_close(
                X_t, X_t_est, assert_error_message, w[:, None, None], atol=2e-5
            )

    def _assert_all_close(self, a_, b_, err_message, weights=None, atol=1e-6):
        if isinstance(a_, Pointclouds):
            a_ = a_.points_packed()
        if isinstance(b_, Pointclouds):
            b_ = b_.points_packed()
        if weights is None:
            self.assertClose(a_, b_, atol=atol, msg=err_message)
        else:
            self.assertClose(a_ * weights, b_ * weights, atol=atol, msg=err_message)