Spaces:
Running
Running
File size: 25,443 Bytes
7088d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import numpy as np
import torch
from pytorch3d.ops import points_alignment
from pytorch3d.structures.pointclouds import Pointclouds
from pytorch3d.transforms import rotation_conversions
from .common_testing import get_tests_dir, TestCaseMixin
def _apply_pcl_transformation(X, R, T, s=None):
"""
Apply a batch of similarity/rigid transformations, parametrized with
rotation `R`, translation `T` and scale `s`, to an input batch of
point clouds `X`.
"""
if isinstance(X, Pointclouds):
num_points = X.num_points_per_cloud()
X_t = X.points_padded()
else:
X_t = X
if s is not None:
X_t = s[:, None, None] * X_t
X_t = torch.bmm(X_t, R) + T[:, None, :]
if isinstance(X, Pointclouds):
X_list = [x[:n_p] for x, n_p in zip(X_t, num_points)]
X_t = Pointclouds(X_list)
return X_t
class TestICP(TestCaseMixin, unittest.TestCase):
def setUp(self) -> None:
super().setUp()
torch.manual_seed(42)
np.random.seed(42)
trimesh_results_path = get_tests_dir() / "data/icp_data.pth"
self.trimesh_results = torch.load(trimesh_results_path)
@staticmethod
def iterative_closest_point(
batch_size=10,
n_points_X=100,
n_points_Y=100,
dim=3,
use_pointclouds=False,
estimate_scale=False,
):
device = torch.device("cuda:0")
# initialize a ground truth point cloud
X, Y = [
TestCorrespondingPointsAlignment.init_point_cloud(
batch_size=batch_size,
n_points=n_points,
dim=dim,
device=device,
use_pointclouds=use_pointclouds,
random_pcl_size=True,
fix_seed=i,
)
for i, n_points in enumerate((n_points_X, n_points_Y))
]
torch.cuda.synchronize()
def run_iterative_closest_point():
points_alignment.iterative_closest_point(
X,
Y,
estimate_scale=estimate_scale,
allow_reflection=False,
verbose=False,
max_iterations=100,
relative_rmse_thr=1e-4,
)
torch.cuda.synchronize()
return run_iterative_closest_point
def test_init_transformation(self, batch_size=10):
"""
First runs a full ICP on a random problem. Then takes a given point
in the history of ICP iteration transformations, initializes
a second run of ICP with this transformation and checks whether
both runs ended with the same solution.
"""
device = torch.device("cuda:0")
for dim in (2, 3, 11):
for n_points_X in (30, 100):
for n_points_Y in (30, 100):
# initialize ground truth point clouds
X, Y = [
TestCorrespondingPointsAlignment.init_point_cloud(
batch_size=batch_size,
n_points=n_points,
dim=dim,
device=device,
use_pointclouds=False,
random_pcl_size=True,
)
for n_points in (n_points_X, n_points_Y)
]
# run full icp
(
converged,
_,
Xt,
(R, T, s),
t_hist,
) = points_alignment.iterative_closest_point(
X,
Y,
estimate_scale=False,
allow_reflection=False,
verbose=False,
max_iterations=100,
)
# start from the solution after the third
# iteration of the previous ICP
t_init = t_hist[min(2, len(t_hist) - 1)]
# rerun the ICP
(
converged_init,
_,
Xt_init,
(R_init, T_init, s_init),
t_hist_init,
) = points_alignment.iterative_closest_point(
X,
Y,
init_transform=t_init,
estimate_scale=False,
allow_reflection=False,
verbose=False,
max_iterations=100,
)
# compare transformations and obtained clouds
# check that both sets of transforms are the same
atol = 3e-5
self.assertClose(R_init, R, atol=atol)
self.assertClose(T_init, T, atol=atol)
self.assertClose(s_init, s, atol=atol)
self.assertClose(Xt_init, Xt, atol=atol)
def test_heterogeneous_inputs(self, batch_size=7):
"""
Tests whether we get the same result when running ICP on
a set of randomly-sized Pointclouds and on their padded versions.
"""
torch.manual_seed(4)
device = torch.device("cuda:0")
for estimate_scale in (True, False):
for max_n_points in (10, 30, 100):
# initialize ground truth point clouds
X_pcl, Y_pcl = [
TestCorrespondingPointsAlignment.init_point_cloud(
batch_size=batch_size,
n_points=max_n_points,
dim=3,
device=device,
use_pointclouds=True,
random_pcl_size=True,
)
for _ in range(2)
]
# get the padded versions and their num of points
X_padded = X_pcl.points_padded()
Y_padded = Y_pcl.points_padded()
n_points_X = X_pcl.num_points_per_cloud()
n_points_Y = Y_pcl.num_points_per_cloud()
# run icp with Pointlouds inputs
(
_,
_,
Xt_pcl,
(R_pcl, T_pcl, s_pcl),
_,
) = points_alignment.iterative_closest_point(
X_pcl,
Y_pcl,
estimate_scale=estimate_scale,
allow_reflection=False,
verbose=False,
max_iterations=100,
)
Xt_pcl = Xt_pcl.points_padded()
# run icp with tensor inputs on each element
# of the batch separately
icp_results = [
points_alignment.iterative_closest_point(
X_[None, :n_X, :],
Y_[None, :n_Y, :],
estimate_scale=estimate_scale,
allow_reflection=False,
verbose=False,
max_iterations=100,
)
for X_, Y_, n_X, n_Y in zip(
X_padded, Y_padded, n_points_X, n_points_Y
)
]
# parse out the transformation results
R, T, s = [
torch.cat([x.RTs[i] for x in icp_results], dim=0) for i in range(3)
]
# check that both sets of transforms are the same
atol = 1e-5
self.assertClose(R_pcl, R, atol=atol)
self.assertClose(T_pcl, T, atol=atol)
self.assertClose(s_pcl, s, atol=atol)
# compare the transformed point clouds
for pcli in range(batch_size):
nX = n_points_X[pcli]
Xt_ = icp_results[pcli].Xt[0, :nX]
Xt_pcl_ = Xt_pcl[pcli][:nX]
self.assertClose(Xt_pcl_, Xt_, atol=atol)
def test_compare_with_trimesh(self):
"""
Compares the outputs of `iterative_closest_point` with the results
of `trimesh.registration.icp` from the `trimesh` python package:
https://github.com/mikedh/trimesh
We have run `trimesh.registration.icp` on several random problems
with different point cloud sizes. The results of trimesh, together with
the randomly generated input clouds are loaded in the constructor of
this class and this test compares the loaded results to our runs.
"""
for n_points_X in (10, 20, 50, 100):
for n_points_Y in (10, 20, 50, 100):
self._compare_with_trimesh(n_points_X=n_points_X, n_points_Y=n_points_Y)
def _compare_with_trimesh(
self, n_points_X=100, n_points_Y=100, estimate_scale=False
):
"""
Executes a single test for `iterative_closest_point` for a
specific setting of the inputs / outputs. Compares the result with
the result of the trimesh package on the same input data.
"""
device = torch.device("cuda:0")
# load the trimesh results and the initial point clouds for icp
key = (int(n_points_X), int(n_points_Y), int(estimate_scale))
X, Y, R_trimesh, T_trimesh, s_trimesh = [
x.to(device) for x in self.trimesh_results[key]
]
# run the icp algorithm
(
converged,
_,
_,
(R_ours, T_ours, s_ours),
_,
) = points_alignment.iterative_closest_point(
X,
Y,
estimate_scale=estimate_scale,
allow_reflection=False,
verbose=False,
max_iterations=100,
)
# check that we have the same transformation
# and that the icp converged
atol = 1e-5
self.assertClose(R_ours, R_trimesh, atol=atol)
self.assertClose(T_ours, T_trimesh, atol=atol)
self.assertClose(s_ours, s_trimesh, atol=atol)
self.assertTrue(converged)
class TestCorrespondingPointsAlignment(TestCaseMixin, unittest.TestCase):
def setUp(self) -> None:
super().setUp()
torch.manual_seed(42)
np.random.seed(42)
@staticmethod
def random_rotation(batch_size, dim, device=None):
"""
Generates a batch of random `dim`-dimensional rotation matrices.
"""
if dim == 3:
R = rotation_conversions.random_rotations(batch_size, device=device)
else:
# generate random rotation matrices with orthogonalization of
# random normal square matrices, followed by a transformation
# that ensures determinant(R)==1
H = torch.randn(batch_size, dim, dim, dtype=torch.float32, device=device)
U, _, V = torch.svd(H)
E = torch.eye(dim, dtype=torch.float32, device=device)[None].repeat(
batch_size, 1, 1
)
E[:, -1, -1] = torch.det(torch.bmm(U, V.transpose(2, 1)))
R = torch.bmm(torch.bmm(U, E), V.transpose(2, 1))
assert torch.allclose(torch.det(R), R.new_ones(batch_size), atol=1e-4)
return R
@staticmethod
def init_point_cloud(
batch_size=10,
n_points=1000,
dim=3,
device=None,
use_pointclouds=False,
random_pcl_size=True,
fix_seed=None,
):
"""
Generate a batch of normally distributed point clouds.
"""
if fix_seed is not None:
# make sure we always generate the same pointcloud
seed = torch.random.get_rng_state()
torch.manual_seed(fix_seed)
if use_pointclouds:
assert dim == 3, "Pointclouds support only 3-dim points."
# generate a `batch_size` point clouds with number of points
# between 4 and `n_points`
if random_pcl_size:
n_points_per_batch = torch.randint(
low=4,
high=n_points,
size=(batch_size,),
device=device,
dtype=torch.int64,
)
X_list = [
torch.randn(int(n_pt), dim, device=device, dtype=torch.float32)
for n_pt in n_points_per_batch
]
X = Pointclouds(X_list)
else:
X = torch.randn(
batch_size, n_points, dim, device=device, dtype=torch.float32
)
X = Pointclouds(list(X))
else:
X = torch.randn(
batch_size, n_points, dim, device=device, dtype=torch.float32
)
if fix_seed:
torch.random.set_rng_state(seed)
return X
@staticmethod
def generate_pcl_transformation(
batch_size=10, scale=False, reflect=False, dim=3, device=None
):
"""
Generate a batch of random rigid/similarity transformations.
"""
R = TestCorrespondingPointsAlignment.random_rotation(
batch_size, dim, device=device
)
T = torch.randn(batch_size, dim, dtype=torch.float32, device=device)
if scale:
s = torch.rand(batch_size, dtype=torch.float32, device=device) + 0.1
else:
s = torch.ones(batch_size, dtype=torch.float32, device=device)
return R, T, s
@staticmethod
def generate_random_reflection(batch_size=10, dim=3, device=None):
"""
Generate a batch of reflection matrices of shape (batch_size, dim, dim),
where M_i is an identity matrix with one random entry on the
diagonal equal to -1.
"""
# randomly select one of the dimensions to reflect for each
# element in the batch
dim_to_reflect = torch.randint(
low=0, high=dim, size=(batch_size,), device=device, dtype=torch.int64
)
# convert dim_to_reflect to a batch of reflection matrices M
M = torch.diag_embed(
(
dim_to_reflect[:, None]
!= torch.arange(dim, device=device, dtype=torch.float32)
).float()
* 2
- 1,
dim1=1,
dim2=2,
)
return M
@staticmethod
def corresponding_points_alignment(
batch_size=10,
n_points=100,
dim=3,
use_pointclouds=False,
estimate_scale=False,
allow_reflection=False,
reflect=False,
random_weights=False,
):
device = torch.device("cuda:0")
# initialize a ground truth point cloud
X = TestCorrespondingPointsAlignment.init_point_cloud(
batch_size=batch_size,
n_points=n_points,
dim=dim,
device=device,
use_pointclouds=use_pointclouds,
random_pcl_size=True,
)
# generate the true transformation
R, T, s = TestCorrespondingPointsAlignment.generate_pcl_transformation(
batch_size=batch_size,
scale=estimate_scale,
reflect=reflect,
dim=dim,
device=device,
)
# apply the generated transformation to the generated
# point cloud X
X_t = _apply_pcl_transformation(X, R, T, s=s)
weights = None
if random_weights:
template = X.points_padded() if use_pointclouds else X
weights = torch.rand_like(template[:, :, 0])
weights = weights / weights.sum(dim=1, keepdim=True)
# zero out some weights as zero weights are a common use case
# this guarantees there are no zero weight
weights *= (weights * template.size()[1] > 0.3).to(weights)
if use_pointclouds: # convert to List[Tensor]
weights = [
w[:npts] for w, npts in zip(weights, X.num_points_per_cloud())
]
torch.cuda.synchronize()
def run_corresponding_points_alignment():
points_alignment.corresponding_points_alignment(
X,
X_t,
weights,
allow_reflection=allow_reflection,
estimate_scale=estimate_scale,
)
torch.cuda.synchronize()
return run_corresponding_points_alignment
def test_corresponding_points_alignment(self, batch_size=10):
"""
Tests whether we can estimate a rigid/similarity motion between
a randomly initialized point cloud and its randomly transformed version.
The tests are done for all possible combinations
of the following boolean flags:
- estimate_scale ... Estimate also a scaling component of
the transformation.
- reflect ... The ground truth orthonormal part of the generated
transformation is a reflection (det==-1).
- allow_reflection ... If True, the orthonormal matrix of the
estimated transformation is allowed to be
a reflection (det==-1).
- use_pointclouds ... If True, passes the Pointclouds objects
to corresponding_points_alignment.
"""
# run this for several different point cloud sizes
for n_points in (100, 3, 2, 1):
# run this for several different dimensionalities
for dim in range(2, 10):
# switches whether we should use the Pointclouds inputs
use_point_clouds_cases = (
(True, False) if dim == 3 and n_points > 3 else (False,)
)
for random_weights in (False, True):
for use_pointclouds in use_point_clouds_cases:
for estimate_scale in (False, True):
for reflect in (False, True):
for allow_reflection in (False, True):
self._test_single_corresponding_points_alignment(
batch_size=10,
n_points=n_points,
dim=dim,
use_pointclouds=use_pointclouds,
estimate_scale=estimate_scale,
reflect=reflect,
allow_reflection=allow_reflection,
random_weights=random_weights,
)
def _test_single_corresponding_points_alignment(
self,
batch_size=10,
n_points=100,
dim=3,
use_pointclouds=False,
estimate_scale=False,
reflect=False,
allow_reflection=False,
random_weights=False,
):
"""
Executes a single test for `corresponding_points_alignment` for a
specific setting of the inputs / outputs.
"""
device = torch.device("cuda:0")
# initialize the a ground truth point cloud
X = TestCorrespondingPointsAlignment.init_point_cloud(
batch_size=batch_size,
n_points=n_points,
dim=dim,
device=device,
use_pointclouds=use_pointclouds,
random_pcl_size=True,
)
# generate the true transformation
R, T, s = TestCorrespondingPointsAlignment.generate_pcl_transformation(
batch_size=batch_size,
scale=estimate_scale,
reflect=reflect,
dim=dim,
device=device,
)
if reflect:
# generate random reflection M and apply to the rotations
M = TestCorrespondingPointsAlignment.generate_random_reflection(
batch_size=batch_size, dim=dim, device=device
)
R = torch.bmm(M, R)
weights = None
if random_weights:
template = X.points_padded() if use_pointclouds else X
weights = torch.rand_like(template[:, :, 0])
weights = weights / weights.sum(dim=1, keepdim=True)
# zero out some weights as zero weights are a common use case
# this guarantees there are no zero weight
weights *= (weights * template.size()[1] > 0.3).to(weights)
if use_pointclouds: # convert to List[Tensor]
weights = [
w[:npts] for w, npts in zip(weights, X.num_points_per_cloud())
]
# apply the generated transformation to the generated
# point cloud X
X_t = _apply_pcl_transformation(X, R, T, s=s)
# run the CorrespondingPointsAlignment algorithm
R_est, T_est, s_est = points_alignment.corresponding_points_alignment(
X,
X_t,
weights,
allow_reflection=allow_reflection,
estimate_scale=estimate_scale,
)
assert_error_message = (
f"Corresponding_points_alignment assertion failure for "
f"n_points={n_points}, "
f"dim={dim}, "
f"use_pointclouds={use_pointclouds}, "
f"estimate_scale={estimate_scale}, "
f"reflect={reflect}, "
f"allow_reflection={allow_reflection},"
f"random_weights={random_weights}."
)
# if we test the weighted case, check that weights help with noise
if random_weights and not use_pointclouds and n_points >= (dim + 10):
# add noise to 20% points with smallest weight
X_noisy = X_t.clone()
_, mink_idx = torch.topk(-weights, int(n_points * 0.2), dim=1)
mink_idx = mink_idx[:, :, None].expand(-1, -1, X_t.shape[-1])
X_noisy.scatter_add_(
1, mink_idx, 0.3 * torch.randn_like(mink_idx, dtype=X_t.dtype)
)
def align_and_get_mse(weights_):
R_n, T_n, s_n = points_alignment.corresponding_points_alignment(
X_noisy,
X_t,
weights_,
allow_reflection=allow_reflection,
estimate_scale=estimate_scale,
)
X_t_est = _apply_pcl_transformation(X_noisy, R_n, T_n, s=s_n)
return (((X_t_est - X_t) * weights[..., None]) ** 2).sum(
dim=(1, 2)
) / weights.sum(dim=-1)
# check that using weights leads to lower weighted_MSE(X_noisy, X_t)
self.assertTrue(
torch.all(align_and_get_mse(weights) <= align_and_get_mse(None))
)
if reflect and not allow_reflection:
# check that all rotations have det=1
self._assert_all_close(
torch.det(R_est),
R_est.new_ones(batch_size),
assert_error_message,
atol=2e-5,
)
else:
# mask out inputs with too few non-degenerate points for assertions
w = (
torch.ones_like(R_est[:, 0, 0])
if weights is None or n_points >= dim + 10
else (weights > 0.0).all(dim=1).to(R_est)
)
# check that the estimated tranformation is the same
# as the ground truth
if n_points >= (dim + 1):
# the checks on transforms apply only when
# the problem setup is unambiguous
msg = assert_error_message
self._assert_all_close(R_est, R, msg, w[:, None, None], atol=1e-5)
self._assert_all_close(T_est, T, msg, w[:, None])
self._assert_all_close(s_est, s, msg, w)
# check that the orthonormal part of the
# transformation has a correct determinant (+1/-1)
desired_det = R_est.new_ones(batch_size)
if reflect:
desired_det *= -1.0
self._assert_all_close(torch.det(R_est), desired_det, msg, w, atol=2e-5)
# check that the transformed point cloud
# X matches X_t
X_t_est = _apply_pcl_transformation(X, R_est, T_est, s=s_est)
self._assert_all_close(
X_t, X_t_est, assert_error_message, w[:, None, None], atol=2e-5
)
def _assert_all_close(self, a_, b_, err_message, weights=None, atol=1e-6):
if isinstance(a_, Pointclouds):
a_ = a_.points_packed()
if isinstance(b_, Pointclouds):
b_ = b_.points_packed()
if weights is None:
self.assertClose(a_, b_, atol=atol, msg=err_message)
else:
self.assertClose(a_ * weights, b_ * weights, atol=atol, msg=err_message)
|