Linly-Talker / pytorch3d /tests /test_cameras.py
linxianzhong0128's picture
Upload folder using huggingface_hub
7088d16 verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# @licenselint-loose-mode
# Some of the code below is adapted from Soft Rasterizer (SoftRas)
#
# Copyright (c) 2017 Hiroharu Kato
# Copyright (c) 2018 Nikos Kolotouros
# Copyright (c) 2019 Shichen Liu
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import math
import pickle
import unittest
from itertools import product
import numpy as np
import torch
from pytorch3d.common.datatypes import Device
from pytorch3d.renderer.camera_utils import join_cameras_as_batch
from pytorch3d.renderer.cameras import (
camera_position_from_spherical_angles,
CamerasBase,
FoVOrthographicCameras,
FoVPerspectiveCameras,
get_world_to_view_transform,
look_at_rotation,
look_at_view_transform,
OpenGLOrthographicCameras,
OpenGLPerspectiveCameras,
OrthographicCameras,
PerspectiveCameras,
SfMOrthographicCameras,
SfMPerspectiveCameras,
)
from pytorch3d.renderer.fisheyecameras import FishEyeCameras
from pytorch3d.transforms import Transform3d
from pytorch3d.transforms.rotation_conversions import random_rotations
from pytorch3d.transforms.so3 import so3_exp_map
from .common_camera_utils import init_random_cameras
from .common_testing import TestCaseMixin
# Naive function adapted from SoftRasterizer for test purposes.
def perspective_project_naive(points, fov=60.0):
"""
Compute perspective projection from a given viewing angle.
Args:
points: (N, V, 3) representing the padded points.
viewing angle: degrees
Returns:
(N, V, 3) tensor of projected points preserving the view space z
coordinate (no z renormalization)
"""
device = points.device
halfFov = torch.tensor((fov / 2) / 180 * np.pi, dtype=torch.float32, device=device)
scale = torch.tan(halfFov[None])
scale = scale[:, None]
z = points[:, :, 2]
x = points[:, :, 0] / z / scale
y = points[:, :, 1] / z / scale
points = torch.stack((x, y, z), dim=2)
return points
def sfm_perspective_project_naive(points, fx=1.0, fy=1.0, p0x=0.0, p0y=0.0):
"""
Compute perspective projection using focal length and principal point.
Args:
points: (N, V, 3) representing the padded points.
fx: world units
fy: world units
p0x: pixels
p0y: pixels
Returns:
(N, V, 3) tensor of projected points.
"""
z = points[:, :, 2]
x = (points[:, :, 0] * fx) / z + p0x
y = (points[:, :, 1] * fy) / z + p0y
points = torch.stack((x, y, 1.0 / z), dim=2)
return points
# Naive function adapted from SoftRasterizer for test purposes.
def orthographic_project_naive(points, scale_xyz=(1.0, 1.0, 1.0)):
"""
Compute orthographic projection from a given angle
Args:
points: (N, V, 3) representing the padded points.
scaled: (N, 3) scaling factors for each of xyz directions
Returns:
(N, V, 3) tensor of projected points preserving the view space z
coordinate (no z renormalization).
"""
if not torch.is_tensor(scale_xyz):
scale_xyz = torch.tensor(scale_xyz)
scale_xyz = scale_xyz.view(-1, 3)
z = points[:, :, 2]
x = points[:, :, 0] * scale_xyz[:, 0]
y = points[:, :, 1] * scale_xyz[:, 1]
points = torch.stack((x, y, z), dim=2)
return points
def ndc_to_screen_points_naive(points, imsize):
"""
Transforms points from PyTorch3D's NDC space to screen space
Args:
points: (N, V, 3) representing padded points
imsize: (N, 2) image size = (height, width)
Returns:
(N, V, 3) tensor of transformed points
"""
height, width = imsize.unbind(1)
width = width.view(-1, 1)
half_width = width / 2.0
height = height.view(-1, 1)
half_height = height / 2.0
scale = (
half_width * (height > width).float() + half_height * (height <= width).float()
)
x, y, z = points.unbind(2)
x = -scale * x + half_width
y = -scale * y + half_height
return torch.stack((x, y, z), dim=2)
class TestCameraHelpers(TestCaseMixin, unittest.TestCase):
def setUp(self) -> None:
super().setUp()
torch.manual_seed(42)
def test_look_at_view_transform_from_eye_point_tuple(self):
dist = math.sqrt(2)
elev = math.pi / 4
azim = 0.0
eye = ((0.0, 1.0, 1.0),)
# using passed values for dist, elev, azim
R, t = look_at_view_transform(dist, elev, azim, degrees=False)
# using other values for dist, elev, azim - eye overrides
R_eye, t_eye = look_at_view_transform(dist=3, elev=2, azim=1, eye=eye)
# using only eye value
R_eye_only, t_eye_only = look_at_view_transform(eye=eye)
self.assertTrue(torch.allclose(R, R_eye, atol=2e-7))
self.assertTrue(torch.allclose(t, t_eye, atol=2e-7))
self.assertTrue(torch.allclose(R, R_eye_only, atol=2e-7))
self.assertTrue(torch.allclose(t, t_eye_only, atol=2e-7))
def test_look_at_view_transform_default_values(self):
dist = 1.0
elev = 0.0
azim = 0.0
# Using passed values for dist, elev, azim
R, t = look_at_view_transform(dist, elev, azim)
# Using default dist=1.0, elev=0.0, azim=0.0
R_default, t_default = look_at_view_transform()
# test default = passed = expected
self.assertTrue(torch.allclose(R, R_default, atol=2e-7))
self.assertTrue(torch.allclose(t, t_default, atol=2e-7))
def test_look_at_view_transform_non_default_at_position(self):
dist = 1.0
elev = 0.0
azim = 0.0
at = ((1, 1, 1),)
# Using passed values for dist, elev, azim, at
R, t = look_at_view_transform(dist, elev, azim, at=at)
# Using default dist=1.0, elev=0.0, azim=0.0
R_default, t_default = look_at_view_transform()
# test default = passed = expected
# R must be the same, t must be translated by (1,-1,1) with respect to t_default
t_trans = torch.tensor([1, -1, 1], dtype=torch.float32).view(1, 3)
self.assertTrue(torch.allclose(R, R_default, atol=2e-7))
self.assertTrue(torch.allclose(t, t_default + t_trans, atol=2e-7))
def test_camera_position_from_angles_python_scalar(self):
dist = 2.7
elev = 90.0
azim = 0.0
expected_position = torch.tensor([0.0, 2.7, 0.0], dtype=torch.float32).view(
1, 3
)
position = camera_position_from_spherical_angles(dist, elev, azim)
self.assertClose(position, expected_position, atol=2e-7)
def test_camera_position_from_angles_python_scalar_radians(self):
dist = 2.7
elev = math.pi / 2
azim = 0.0
expected_position = torch.tensor([0.0, 2.7, 0.0], dtype=torch.float32)
expected_position = expected_position.view(1, 3)
position = camera_position_from_spherical_angles(
dist, elev, azim, degrees=False
)
self.assertClose(position, expected_position, atol=2e-7)
def test_camera_position_from_angles_torch_scalars(self):
dist = torch.tensor(2.7)
elev = torch.tensor(0.0)
azim = torch.tensor(90.0)
expected_position = torch.tensor([2.7, 0.0, 0.0], dtype=torch.float32).view(
1, 3
)
position = camera_position_from_spherical_angles(dist, elev, azim)
self.assertClose(position, expected_position, atol=2e-7)
def test_camera_position_from_angles_mixed_scalars(self):
dist = 2.7
elev = torch.tensor(0.0)
azim = 90.0
expected_position = torch.tensor([2.7, 0.0, 0.0], dtype=torch.float32).view(
1, 3
)
position = camera_position_from_spherical_angles(dist, elev, azim)
self.assertClose(position, expected_position, atol=2e-7)
def test_camera_position_from_angles_torch_scalar_grads(self):
dist = torch.tensor(2.7, requires_grad=True)
elev = torch.tensor(45.0, requires_grad=True)
azim = torch.tensor(45.0)
position = camera_position_from_spherical_angles(dist, elev, azim)
position.sum().backward()
self.assertTrue(hasattr(elev, "grad"))
self.assertTrue(hasattr(dist, "grad"))
elev_grad = elev.grad.clone()
dist_grad = dist.grad.clone()
elev = math.pi / 180.0 * elev.detach()
azim = math.pi / 180.0 * azim
grad_dist = (
torch.cos(elev) * torch.sin(azim)
+ torch.sin(elev)
+ torch.cos(elev) * torch.cos(azim)
)
grad_elev = (
-(torch.sin(elev)) * torch.sin(azim)
+ torch.cos(elev)
- torch.sin(elev) * torch.cos(azim)
)
grad_elev = dist * (math.pi / 180.0) * grad_elev
self.assertClose(elev_grad, grad_elev)
self.assertClose(dist_grad, grad_dist)
def test_camera_position_from_angles_vectors(self):
dist = torch.tensor([2.0, 2.0])
elev = torch.tensor([0.0, 90.0])
azim = torch.tensor([90.0, 0.0])
expected_position = torch.tensor(
[[2.0, 0.0, 0.0], [0.0, 2.0, 0.0]], dtype=torch.float32
)
position = camera_position_from_spherical_angles(dist, elev, azim)
self.assertClose(position, expected_position, atol=2e-7)
def test_camera_position_from_angles_vectors_broadcast(self):
dist = torch.tensor([2.0, 3.0, 5.0])
elev = torch.tensor([0.0])
azim = torch.tensor([90.0])
expected_position = torch.tensor(
[[2.0, 0.0, 0.0], [3.0, 0.0, 0.0], [5.0, 0.0, 0.0]], dtype=torch.float32
)
position = camera_position_from_spherical_angles(dist, elev, azim)
self.assertClose(position, expected_position, atol=3e-7)
def test_camera_position_from_angles_vectors_mixed_broadcast(self):
dist = torch.tensor([2.0, 3.0, 5.0])
elev = 0.0
azim = torch.tensor(90.0)
expected_position = torch.tensor(
[[2.0, 0.0, 0.0], [3.0, 0.0, 0.0], [5.0, 0.0, 0.0]], dtype=torch.float32
)
position = camera_position_from_spherical_angles(dist, elev, azim)
self.assertClose(position, expected_position, atol=3e-7)
def test_camera_position_from_angles_vectors_mixed_broadcast_grads(self):
dist = torch.tensor([2.0, 3.0, 5.0], requires_grad=True)
elev = torch.tensor(45.0, requires_grad=True)
azim = 45.0
position = camera_position_from_spherical_angles(dist, elev, azim)
position.sum().backward()
self.assertTrue(hasattr(elev, "grad"))
self.assertTrue(hasattr(dist, "grad"))
elev_grad = elev.grad.clone()
dist_grad = dist.grad.clone()
azim = torch.tensor(azim)
elev = math.pi / 180.0 * elev.detach()
azim = math.pi / 180.0 * azim
grad_dist = (
torch.cos(elev) * torch.sin(azim)
+ torch.sin(elev)
+ torch.cos(elev) * torch.cos(azim)
)
grad_elev = (
-(torch.sin(elev)) * torch.sin(azim)
+ torch.cos(elev)
- torch.sin(elev) * torch.cos(azim)
)
grad_elev = (dist * (math.pi / 180.0) * grad_elev).sum()
self.assertClose(elev_grad, grad_elev)
self.assertClose(dist_grad, torch.full([3], grad_dist))
def test_camera_position_from_angles_vectors_bad_broadcast(self):
# Batch dim for broadcast must be N or 1
dist = torch.tensor([2.0, 3.0, 5.0])
elev = torch.tensor([0.0, 90.0])
azim = torch.tensor([90.0])
with self.assertRaises(ValueError):
camera_position_from_spherical_angles(dist, elev, azim)
def test_look_at_rotation_python_list(self):
camera_position = [[0.0, 0.0, -1.0]] # camera pointing along negative z
rot_mat = look_at_rotation(camera_position)
self.assertClose(rot_mat, torch.eye(3)[None], atol=2e-7)
def test_look_at_rotation_input_fail(self):
camera_position = [-1.0] # expected to have xyz positions
with self.assertRaises(ValueError):
look_at_rotation(camera_position)
def test_look_at_rotation_list_broadcast(self):
# fmt: off
camera_positions = [[0.0, 0.0, -1.0], [0.0, 0.0, 1.0]]
rot_mats_expected = torch.tensor(
[
[
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0]
],
[
[-1.0, 0.0, 0.0], # noqa: E241, E201
[ 0.0, 1.0, 0.0], # noqa: E241, E201
[ 0.0, 0.0, -1.0] # noqa: E241, E201
],
],
dtype=torch.float32
)
# fmt: on
rot_mats = look_at_rotation(camera_positions)
self.assertClose(rot_mats, rot_mats_expected, atol=2e-7)
def test_look_at_rotation_tensor_broadcast(self):
# fmt: off
camera_positions = torch.tensor([
[0.0, 0.0, -1.0],
[0.0, 0.0, 1.0] # noqa: E241, E201
], dtype=torch.float32)
rot_mats_expected = torch.tensor(
[
[
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0]
],
[
[-1.0, 0.0, 0.0], # noqa: E241, E201
[ 0.0, 1.0, 0.0], # noqa: E241, E201
[ 0.0, 0.0, -1.0] # noqa: E241, E201
],
],
dtype=torch.float32
)
# fmt: on
rot_mats = look_at_rotation(camera_positions)
self.assertClose(rot_mats, rot_mats_expected, atol=2e-7)
def test_look_at_rotation_tensor_grad(self):
camera_position = torch.tensor([[0.0, 0.0, -1.0]], requires_grad=True)
rot_mat = look_at_rotation(camera_position)
rot_mat.sum().backward()
self.assertTrue(hasattr(camera_position, "grad"))
self.assertClose(
camera_position.grad, torch.zeros_like(camera_position), atol=2e-7
)
def test_view_transform(self):
T = torch.tensor([0.0, 0.0, -1.0], requires_grad=True).view(1, -1)
R = look_at_rotation(T)
RT = get_world_to_view_transform(R=R, T=T)
self.assertTrue(isinstance(RT, Transform3d))
def test_look_at_view_transform_corner_case(self):
dist = 2.7
elev = 90
azim = 90
expected_position = torch.tensor([0.0, 2.7, 0.0], dtype=torch.float32).view(
1, 3
)
position = camera_position_from_spherical_angles(dist, elev, azim)
self.assertClose(position, expected_position, atol=2e-7)
R, _ = look_at_view_transform(eye=position)
x_axis = R[:, :, 0]
expected_x_axis = torch.tensor([0.0, 0.0, -1.0], dtype=torch.float32).view(1, 3)
self.assertClose(x_axis, expected_x_axis, atol=5e-3)
class TestCamerasCommon(TestCaseMixin, unittest.TestCase):
def test_K(self, batch_size=10):
T = torch.randn(batch_size, 3)
R = random_rotations(batch_size)
K = torch.randn(batch_size, 4, 4)
for cam_type in (
FoVOrthographicCameras,
FoVPerspectiveCameras,
OrthographicCameras,
PerspectiveCameras,
):
cam = cam_type(R=R, T=T, K=K)
cam.get_projection_transform()
# Just checking that we don't crash or anything
def test_view_transform_class_method(self):
T = torch.tensor([0.0, 0.0, -1.0], requires_grad=True).view(1, -1)
R = look_at_rotation(T)
RT = get_world_to_view_transform(R=R, T=T)
for cam_type in (
OpenGLPerspectiveCameras,
OpenGLOrthographicCameras,
SfMOrthographicCameras,
SfMPerspectiveCameras,
FoVOrthographicCameras,
FoVPerspectiveCameras,
OrthographicCameras,
PerspectiveCameras,
):
cam = cam_type(R=R, T=T)
RT_class = cam.get_world_to_view_transform()
self.assertTrue(torch.allclose(RT.get_matrix(), RT_class.get_matrix()))
self.assertTrue(isinstance(RT, Transform3d))
def test_get_camera_center(self, batch_size=10):
T = torch.randn(batch_size, 3)
R = random_rotations(batch_size)
for cam_type in (
OpenGLPerspectiveCameras,
OpenGLOrthographicCameras,
SfMOrthographicCameras,
SfMPerspectiveCameras,
FoVOrthographicCameras,
FoVPerspectiveCameras,
OrthographicCameras,
PerspectiveCameras,
):
cam = cam_type(R=R, T=T)
C = cam.get_camera_center()
C_ = -torch.bmm(R, T[:, :, None])[:, :, 0]
self.assertTrue(torch.allclose(C, C_, atol=1e-05))
@staticmethod
def init_equiv_cameras_ndc_screen(cam_type: CamerasBase, batch_size: int):
T = torch.randn(batch_size, 3) * 0.03
T[:, 2] = 4
R = so3_exp_map(torch.randn(batch_size, 3) * 3.0)
screen_cam_params = {"R": R, "T": T}
ndc_cam_params = {"R": R, "T": T}
if cam_type in (OrthographicCameras, PerspectiveCameras):
fcl = torch.rand((batch_size, 2)) * 3.0 + 0.1
prc = torch.randn((batch_size, 2)) * 0.2
# (height, width)
image_size = torch.randint(low=2, high=64, size=(batch_size, 2))
# scale
scale = (image_size.min(dim=1, keepdim=True).values) / 2.0
ndc_cam_params["focal_length"] = fcl
ndc_cam_params["principal_point"] = prc
ndc_cam_params["image_size"] = image_size
screen_cam_params["image_size"] = image_size
screen_cam_params["focal_length"] = fcl * scale
screen_cam_params["principal_point"] = (
image_size[:, [1, 0]]
) / 2.0 - prc * scale
screen_cam_params["in_ndc"] = False
else:
raise ValueError(str(cam_type))
return cam_type(**ndc_cam_params), cam_type(**screen_cam_params)
def test_unproject_points(self, batch_size=50, num_points=100):
"""
Checks that an unprojection of a randomly projected point cloud
stays the same.
"""
for cam_type in (
SfMOrthographicCameras,
OpenGLPerspectiveCameras,
OpenGLOrthographicCameras,
SfMPerspectiveCameras,
FoVOrthographicCameras,
FoVPerspectiveCameras,
OrthographicCameras,
PerspectiveCameras,
):
# init the cameras
cameras = init_random_cameras(cam_type, batch_size)
# xyz - the ground truth point cloud
xyz = torch.randn(batch_size, num_points, 3) * 0.3
# xyz in camera coordinates
xyz_cam = cameras.get_world_to_view_transform().transform_points(xyz)
# depth = z-component of xyz_cam
depth = xyz_cam[:, :, 2:]
# project xyz
xyz_proj = cameras.transform_points(xyz)
xy, cam_depth = xyz_proj.split(2, dim=2)
# input to the unprojection function
xy_depth = torch.cat((xy, depth), dim=2)
for to_world in (False, True):
if to_world:
matching_xyz = xyz
else:
matching_xyz = xyz_cam
# if we have FoV (= OpenGL) cameras
# test for scaled_depth_input=True/False
if cam_type in (
OpenGLPerspectiveCameras,
OpenGLOrthographicCameras,
FoVPerspectiveCameras,
FoVOrthographicCameras,
):
for scaled_depth_input in (True, False):
if scaled_depth_input:
xy_depth_ = xyz_proj
else:
xy_depth_ = xy_depth
xyz_unproj = cameras.unproject_points(
xy_depth_,
world_coordinates=to_world,
scaled_depth_input=scaled_depth_input,
)
self.assertTrue(
torch.allclose(xyz_unproj, matching_xyz, atol=1e-4)
)
else:
xyz_unproj = cameras.unproject_points(
xy_depth, world_coordinates=to_world
)
self.assertTrue(torch.allclose(xyz_unproj, matching_xyz, atol=1e-4))
@staticmethod
def unproject_points(
cam_type, batch_size=50, num_points=100, device: Device = "cpu"
):
"""
Checks that an unprojection of a randomly projected point cloud
stays the same.
"""
if device == "cuda":
device = torch.device("cuda:0")
else:
device = torch.device("cpu")
str2cls = { # noqa
"OpenGLOrthographicCameras": OpenGLOrthographicCameras,
"OpenGLPerspectiveCameras": OpenGLPerspectiveCameras,
"SfMOrthographicCameras": SfMOrthographicCameras,
"SfMPerspectiveCameras": SfMPerspectiveCameras,
"FoVOrthographicCameras": FoVOrthographicCameras,
"FoVPerspectiveCameras": FoVPerspectiveCameras,
"OrthographicCameras": OrthographicCameras,
"PerspectiveCameras": PerspectiveCameras,
"FishEyeCameras": FishEyeCameras,
}
def run_cameras():
# init the cameras
cameras = init_random_cameras(str2cls[cam_type], batch_size, device=device)
# xyz - the ground truth point cloud
xyz = torch.randn(num_points, 3) * 0.3
xyz = cameras.unproject_points(xyz, scaled_depth_input=True)
return run_cameras
def test_project_points_screen(self, batch_size=50, num_points=100):
"""
Checks that an unprojection of a randomly projected point cloud
stays the same.
"""
for cam_type in (
OpenGLOrthographicCameras,
OpenGLPerspectiveCameras,
SfMOrthographicCameras,
SfMPerspectiveCameras,
FoVOrthographicCameras,
FoVPerspectiveCameras,
OrthographicCameras,
PerspectiveCameras,
):
# init the cameras
cameras = init_random_cameras(cam_type, batch_size)
# xyz - the ground truth point cloud
xy = torch.randn(batch_size, num_points, 2) * 2.0 - 1.0
z = torch.randn(batch_size, num_points, 1) * 3.0 + 1.0
xyz = torch.cat((xy, z), dim=2)
# image size
image_size = torch.randint(low=32, high=64, size=(batch_size, 2))
# project points
xyz_project_ndc = cameras.transform_points_ndc(xyz)
xyz_project_screen = cameras.transform_points_screen(
xyz, image_size=image_size
)
# naive
xyz_project_screen_naive = ndc_to_screen_points_naive(
xyz_project_ndc, image_size
)
# we set atol to 1e-4, remember that screen points are in [0, W]x[0, H] space
self.assertClose(xyz_project_screen, xyz_project_screen_naive, atol=1e-4)
@staticmethod
def transform_points(
cam_type, batch_size=50, num_points=100, device: Device = "cpu"
):
"""
Checks that an unprojection of a randomly projected point cloud
stays the same.
"""
if device == "cuda":
device = torch.device("cuda:0")
else:
device = torch.device("cpu")
str2cls = { # noqa
"OpenGLOrthographicCameras": OpenGLOrthographicCameras,
"OpenGLPerspectiveCameras": OpenGLPerspectiveCameras,
"SfMOrthographicCameras": SfMOrthographicCameras,
"SfMPerspectiveCameras": SfMPerspectiveCameras,
"FoVOrthographicCameras": FoVOrthographicCameras,
"FoVPerspectiveCameras": FoVPerspectiveCameras,
"OrthographicCameras": OrthographicCameras,
"PerspectiveCameras": PerspectiveCameras,
"FishEyeCameras": FishEyeCameras,
}
def run_cameras():
# init the cameras
cameras = init_random_cameras(str2cls[cam_type], batch_size, device=device)
# xyz - the ground truth point cloud
xy = torch.randn(num_points, 2) * 2.0 - 1.0
z = torch.randn(num_points, 1) * 3.0 + 1.0
xyz = torch.cat((xy, z), dim=-1)
xy = cameras.transform_points(xyz)
return run_cameras
def test_equiv_project_points(self, batch_size=50, num_points=100):
"""
Checks that NDC and screen cameras project points to ndc correctly.
Applies only to OrthographicCameras and PerspectiveCameras.
"""
for cam_type in (OrthographicCameras, PerspectiveCameras):
# init the cameras
(
ndc_cameras,
screen_cameras,
) = TestCamerasCommon.init_equiv_cameras_ndc_screen(cam_type, batch_size)
# xyz - the ground truth point cloud in Py3D space
xy = torch.randn(batch_size, num_points, 2) * 0.3
z = torch.rand(batch_size, num_points, 1) + 3.0 + 0.1
xyz = torch.cat((xy, z), dim=2)
# project points
xyz_ndc = ndc_cameras.transform_points_ndc(xyz)
xyz_screen = screen_cameras.transform_points_ndc(xyz)
# check correctness
self.assertClose(xyz_ndc, xyz_screen, atol=1e-5)
def test_clone(self, batch_size: int = 10):
"""
Checks the clone function of the cameras.
"""
for cam_type in (
SfMOrthographicCameras,
OpenGLPerspectiveCameras,
OpenGLOrthographicCameras,
SfMPerspectiveCameras,
FoVOrthographicCameras,
FoVPerspectiveCameras,
OrthographicCameras,
PerspectiveCameras,
):
cameras = init_random_cameras(cam_type, batch_size)
cameras = cameras.to(torch.device("cpu"))
cameras_clone = cameras.clone()
for var in cameras.__dict__.keys():
val = getattr(cameras, var)
val_clone = getattr(cameras_clone, var)
if torch.is_tensor(val):
self.assertClose(val, val_clone)
self.assertSeparate(val, val_clone)
else:
self.assertTrue(val == val_clone)
def test_join_cameras_as_batch_errors(self):
cam0 = PerspectiveCameras(device="cuda:0")
cam1 = OrthographicCameras(device="cuda:0")
# Cameras not of the same type
with self.assertRaisesRegex(ValueError, "same type"):
join_cameras_as_batch([cam0, cam1])
cam2 = OrthographicCameras(device="cpu")
# Cameras not on the same device
with self.assertRaisesRegex(ValueError, "same device"):
join_cameras_as_batch([cam1, cam2])
cam3 = OrthographicCameras(in_ndc=False, device="cuda:0")
# Different coordinate systems -- all should be in ndc or in screen
with self.assertRaisesRegex(
ValueError, "Attribute _in_ndc is not constant across inputs"
):
join_cameras_as_batch([cam1, cam3])
def join_cameras_as_batch_fov(self, camera_cls):
R0 = torch.randn((6, 3, 3))
R1 = torch.randn((3, 3, 3))
cam0 = camera_cls(znear=10.0, zfar=100.0, R=R0, device="cuda:0")
cam1 = camera_cls(znear=10.0, zfar=200.0, R=R1, device="cuda:0")
cam_batch = join_cameras_as_batch([cam0, cam1])
self.assertEqual(cam_batch._N, cam0._N + cam1._N)
self.assertEqual(cam_batch.device, cam0.device)
self.assertClose(cam_batch.R, torch.cat((R0, R1), dim=0).to(device="cuda:0"))
def join_cameras_as_batch(self, camera_cls):
R0 = torch.randn((6, 3, 3))
R1 = torch.randn((3, 3, 3))
p0 = torch.randn((6, 2, 1))
p1 = torch.randn((3, 2, 1))
f0 = 5.0
f1 = torch.randn(3, 2)
f2 = torch.randn(3, 1)
cam0 = camera_cls(
R=R0,
focal_length=f0,
principal_point=p0,
)
cam1 = camera_cls(
R=R1,
focal_length=f0,
principal_point=p1,
)
cam2 = camera_cls(
R=R1,
focal_length=f1,
principal_point=p1,
)
cam3 = camera_cls(
R=R1,
focal_length=f2,
principal_point=p1,
)
cam_batch = join_cameras_as_batch([cam0, cam1])
self.assertEqual(cam_batch._N, cam0._N + cam1._N)
self.assertEqual(cam_batch.device, cam0.device)
self.assertClose(cam_batch.R, torch.cat((R0, R1), dim=0))
self.assertClose(cam_batch.principal_point, torch.cat((p0, p1), dim=0))
self.assertEqual(cam_batch._in_ndc, cam0._in_ndc)
# Test one broadcasted value and one fixed value
# Focal length as (N,) in one camera and (N, 2) in the other
cam_batch = join_cameras_as_batch([cam0, cam2])
self.assertEqual(cam_batch._N, cam0._N + cam2._N)
self.assertClose(cam_batch.R, torch.cat((R0, R1), dim=0))
self.assertClose(
cam_batch.focal_length,
torch.cat([torch.tensor([[f0, f0]]).expand(6, -1), f1], dim=0),
)
# Focal length as (N, 1) in one camera and (N, 2) in the other
cam_batch = join_cameras_as_batch([cam2, cam3])
self.assertClose(
cam_batch.focal_length,
torch.cat([f1, f2.expand(-1, 2)], dim=0),
)
def test_join_batch_perspective(self):
self.join_cameras_as_batch_fov(FoVPerspectiveCameras)
self.join_cameras_as_batch(PerspectiveCameras)
def test_join_batch_orthographic(self):
self.join_cameras_as_batch_fov(FoVOrthographicCameras)
self.join_cameras_as_batch(OrthographicCameras)
def test_iterable(self):
for camera_type in [PerspectiveCameras, OrthographicCameras]:
a_list = list(camera_type())
self.assertEqual(len(a_list), 1)
############################################################
# FoVPerspective Camera #
############################################################
class TestFoVPerspectiveProjection(TestCaseMixin, unittest.TestCase):
def test_perspective(self):
far = 10.0
near = 1.0
cameras = FoVPerspectiveCameras(znear=near, zfar=far, fov=60.0)
P = cameras.get_projection_transform()
# vertices are at the far clipping plane so z gets mapped to 1.
vertices = torch.tensor([1, 2, far], dtype=torch.float32)
projected_verts = torch.tensor(
[np.sqrt(3) / far, 2 * np.sqrt(3) / far, 1.0], dtype=torch.float32
)
vertices = vertices[None, None, :]
v1 = P.transform_points(vertices)
v2 = perspective_project_naive(vertices, fov=60.0)
self.assertClose(v1[..., :2], v2[..., :2])
self.assertClose(far * v1[..., 2], v2[..., 2])
self.assertClose(v1.squeeze(), projected_verts)
# vertices are at the near clipping plane so z gets mapped to 0.0.
vertices[..., 2] = near
projected_verts = torch.tensor(
[np.sqrt(3) / near, 2 * np.sqrt(3) / near, 0.0], dtype=torch.float32
)
v1 = P.transform_points(vertices)
v2 = perspective_project_naive(vertices, fov=60.0)
self.assertClose(v1[..., :2], v2[..., :2])
self.assertClose(v1.squeeze(), projected_verts)
def test_perspective_kwargs(self):
cameras = FoVPerspectiveCameras(znear=5.0, zfar=100.0, fov=0.0)
# Override defaults by passing in values to get_projection_transform
far = 10.0
P = cameras.get_projection_transform(znear=1.0, zfar=far, fov=60.0)
vertices = torch.tensor([1, 2, far], dtype=torch.float32)
projected_verts = torch.tensor(
[np.sqrt(3) / far, 2 * np.sqrt(3) / far, 1.0], dtype=torch.float32
)
vertices = vertices[None, None, :]
v1 = P.transform_points(vertices)
self.assertClose(v1.squeeze(), projected_verts)
def test_perspective_mixed_inputs_broadcast(self):
far = torch.tensor([10.0, 20.0], dtype=torch.float32)
near = 1.0
fov = torch.tensor(60.0)
cameras = FoVPerspectiveCameras(znear=near, zfar=far, fov=fov)
P = cameras.get_projection_transform()
vertices = torch.tensor([1, 2, 10], dtype=torch.float32)
z1 = 1.0 # vertices at far clipping plane so z = 1.0
z2 = (20.0 / (20.0 - 1.0) * 10.0 + -20.0 / (20.0 - 1.0)) / 10.0
projected_verts = torch.tensor(
[
[np.sqrt(3) / 10.0, 2 * np.sqrt(3) / 10.0, z1],
[np.sqrt(3) / 10.0, 2 * np.sqrt(3) / 10.0, z2],
],
dtype=torch.float32,
)
vertices = vertices[None, None, :]
v1 = P.transform_points(vertices)
v2 = perspective_project_naive(vertices, fov=60.0)
self.assertClose(v1[..., :2], torch.cat([v2, v2])[..., :2])
self.assertClose(v1.squeeze(), projected_verts)
def test_perspective_mixed_inputs_grad(self):
far = torch.tensor([10.0])
near = 1.0
fov = torch.tensor(60.0, requires_grad=True)
cameras = FoVPerspectiveCameras(znear=near, zfar=far, fov=fov)
P = cameras.get_projection_transform()
vertices = torch.tensor([1, 2, 10], dtype=torch.float32)
vertices_batch = vertices[None, None, :]
v1 = P.transform_points(vertices_batch).squeeze()
v1.sum().backward()
self.assertTrue(hasattr(fov, "grad"))
fov_grad = fov.grad.clone()
half_fov_rad = (math.pi / 180.0) * fov.detach() / 2.0
grad_cotan = -(1.0 / (torch.sin(half_fov_rad) ** 2.0) * 1 / 2.0)
grad_fov = (math.pi / 180.0) * grad_cotan
grad_fov = (vertices[0] + vertices[1]) * grad_fov / 10.0
self.assertClose(fov_grad, grad_fov)
def test_camera_class_init(self):
device = torch.device("cuda:0")
cam = FoVPerspectiveCameras(znear=10.0, zfar=(100.0, 200.0))
# Check broadcasting
self.assertTrue(cam.znear.shape == (2,))
self.assertTrue(cam.zfar.shape == (2,))
# Test to
new_cam = cam.to(device=device)
self.assertTrue(new_cam.device == device)
def test_getitem(self):
N_CAMERAS = 6
R_matrix = torch.randn((N_CAMERAS, 3, 3))
cam = FoVPerspectiveCameras(znear=10.0, zfar=100.0, R=R_matrix)
# Check get item returns an instance of the same class
# with all the same keys
c0 = cam[0]
self.assertTrue(isinstance(c0, FoVPerspectiveCameras))
self.assertEqual(cam.__dict__.keys(), c0.__dict__.keys())
# Check all fields correct in get item with int index
self.assertEqual(len(c0), 1)
self.assertClose(c0.zfar, torch.tensor([100.0]))
self.assertClose(c0.znear, torch.tensor([10.0]))
self.assertClose(c0.R, R_matrix[0:1, ...])
self.assertEqual(c0.device, torch.device("cpu"))
# Check list(int) index
c012 = cam[[0, 1, 2]]
self.assertEqual(len(c012), 3)
self.assertClose(c012.zfar, torch.tensor([100.0] * 3))
self.assertClose(c012.znear, torch.tensor([10.0] * 3))
self.assertClose(c012.R, R_matrix[0:3, ...])
# Check torch.LongTensor index
SLICE = [1, 3, 5]
index = torch.tensor(SLICE, dtype=torch.int64)
c135 = cam[index]
self.assertEqual(len(c135), 3)
self.assertClose(c135.zfar, torch.tensor([100.0] * 3))
self.assertClose(c135.znear, torch.tensor([10.0] * 3))
self.assertClose(c135.R, R_matrix[SLICE, ...])
# Check torch.BoolTensor index
bool_slice = [i in SLICE for i in range(N_CAMERAS)]
index = torch.tensor(bool_slice, dtype=torch.bool)
c135 = cam[index]
self.assertEqual(len(c135), 3)
self.assertClose(c135.zfar, torch.tensor([100.0] * 3))
self.assertClose(c135.znear, torch.tensor([10.0] * 3))
self.assertClose(c135.R, R_matrix[SLICE, ...])
# Check errors with get item
with self.assertRaisesRegex(IndexError, "out of bounds"):
cam[N_CAMERAS]
index = torch.tensor([1, 0, 1], dtype=torch.bool)
with self.assertRaisesRegex(ValueError, "does not match cameras"):
cam[index]
with self.assertRaisesRegex(ValueError, "Invalid index type"):
cam[slice(0, 1)]
with self.assertRaisesRegex(ValueError, "Invalid index type"):
cam[[True, False]]
index = torch.tensor(SLICE, dtype=torch.float32)
with self.assertRaisesRegex(ValueError, "Invalid index type"):
cam[index]
def test_get_full_transform(self):
cam = FoVPerspectiveCameras()
T = torch.tensor([0.0, 0.0, 1.0]).view(1, -1)
R = look_at_rotation(T)
P = cam.get_full_projection_transform(R=R, T=T)
self.assertTrue(isinstance(P, Transform3d))
self.assertClose(cam.R, R)
self.assertClose(cam.T, T)
def test_transform_points(self):
# Check transform_points methods works with default settings for
# RT and P
far = 10.0
cam = FoVPerspectiveCameras(znear=1.0, zfar=far, fov=60.0)
points = torch.tensor([1, 2, far], dtype=torch.float32)
points = points.view(1, 1, 3).expand(5, 10, -1)
projected_points = torch.tensor(
[np.sqrt(3) / far, 2 * np.sqrt(3) / far, 1.0], dtype=torch.float32
)
projected_points = projected_points.view(1, 1, 3).expand(5, 10, -1)
new_points = cam.transform_points(points)
self.assertClose(new_points, projected_points)
def test_perspective_type(self):
cam = FoVPerspectiveCameras(znear=1.0, zfar=10.0, fov=60.0)
self.assertTrue(cam.is_perspective())
self.assertEqual(cam.get_znear(), 1.0)
############################################################
# FoVOrthographic Camera #
############################################################
class TestFoVOrthographicProjection(TestCaseMixin, unittest.TestCase):
def test_orthographic(self):
far = 10.0
near = 1.0
cameras = FoVOrthographicCameras(znear=near, zfar=far)
P = cameras.get_projection_transform()
vertices = torch.tensor([1, 2, far], dtype=torch.float32)
projected_verts = torch.tensor([1, 2, 1], dtype=torch.float32)
vertices = vertices[None, None, :]
v1 = P.transform_points(vertices)
v2 = orthographic_project_naive(vertices)
self.assertClose(v1[..., :2], v2[..., :2])
self.assertClose(v1.squeeze(), projected_verts)
vertices[..., 2] = near
projected_verts[2] = 0.0
v1 = P.transform_points(vertices)
v2 = orthographic_project_naive(vertices)
self.assertClose(v1[..., :2], v2[..., :2])
self.assertClose(v1.squeeze(), projected_verts)
def test_orthographic_scaled(self):
vertices = torch.tensor([1, 2, 0.5], dtype=torch.float32)
vertices = vertices[None, None, :]
scale = torch.tensor([[2.0, 0.5, 20]])
# applying the scale puts the z coordinate at the far clipping plane
# so the z is mapped to 1.0
projected_verts = torch.tensor([2, 1, 1], dtype=torch.float32)
cameras = FoVOrthographicCameras(znear=1.0, zfar=10.0, scale_xyz=scale)
P = cameras.get_projection_transform()
v1 = P.transform_points(vertices)
v2 = orthographic_project_naive(vertices, scale)
self.assertClose(v1[..., :2], v2[..., :2])
self.assertClose(v1, projected_verts[None, None])
def test_orthographic_kwargs(self):
cameras = FoVOrthographicCameras(znear=5.0, zfar=100.0)
far = 10.0
P = cameras.get_projection_transform(znear=1.0, zfar=far)
vertices = torch.tensor([1, 2, far], dtype=torch.float32)
projected_verts = torch.tensor([1, 2, 1], dtype=torch.float32)
vertices = vertices[None, None, :]
v1 = P.transform_points(vertices)
self.assertClose(v1.squeeze(), projected_verts)
def test_orthographic_mixed_inputs_broadcast(self):
far = torch.tensor([10.0, 20.0])
near = 1.0
cameras = FoVOrthographicCameras(znear=near, zfar=far)
P = cameras.get_projection_transform()
vertices = torch.tensor([1.0, 2.0, 10.0], dtype=torch.float32)
z2 = 1.0 / (20.0 - 1.0) * 10.0 + -1.0 / (20.0 - 1.0)
projected_verts = torch.tensor(
[[1.0, 2.0, 1.0], [1.0, 2.0, z2]], dtype=torch.float32
)
vertices = vertices[None, None, :]
v1 = P.transform_points(vertices)
v2 = orthographic_project_naive(vertices)
self.assertClose(v1[..., :2], torch.cat([v2, v2])[..., :2])
self.assertClose(v1.squeeze(), projected_verts)
def test_orthographic_mixed_inputs_grad(self):
far = torch.tensor([10.0])
near = 1.0
scale = torch.tensor([[1.0, 1.0, 1.0]], requires_grad=True)
cameras = FoVOrthographicCameras(znear=near, zfar=far, scale_xyz=scale)
P = cameras.get_projection_transform()
vertices = torch.tensor([1.0, 2.0, 10.0], dtype=torch.float32)
vertices_batch = vertices[None, None, :]
v1 = P.transform_points(vertices_batch)
v1.sum().backward()
self.assertTrue(hasattr(scale, "grad"))
scale_grad = scale.grad.clone()
grad_scale = torch.tensor(
[
[
vertices[0] * P._matrix[:, 0, 0],
vertices[1] * P._matrix[:, 1, 1],
vertices[2] * P._matrix[:, 2, 2],
]
]
)
self.assertClose(scale_grad, grad_scale)
def test_perspective_type(self):
cam = FoVOrthographicCameras(znear=1.0, zfar=10.0)
self.assertFalse(cam.is_perspective())
self.assertEqual(cam.get_znear(), 1.0)
def test_getitem(self):
R_matrix = torch.randn((6, 3, 3))
scale = torch.tensor([[1.0, 1.0, 1.0]], requires_grad=True)
cam = FoVOrthographicCameras(
znear=10.0, zfar=100.0, R=R_matrix, scale_xyz=scale
)
# Check get item returns an instance of the same class
# with all the same keys
c0 = cam[0]
self.assertTrue(isinstance(c0, FoVOrthographicCameras))
self.assertEqual(cam.__dict__.keys(), c0.__dict__.keys())
# Check torch.LongTensor index
index = torch.tensor([1, 3, 5], dtype=torch.int64)
c135 = cam[index]
self.assertEqual(len(c135), 3)
self.assertClose(c135.zfar, torch.tensor([100.0] * 3))
self.assertClose(c135.znear, torch.tensor([10.0] * 3))
self.assertClose(c135.min_x, torch.tensor([-1.0] * 3))
self.assertClose(c135.max_x, torch.tensor([1.0] * 3))
self.assertClose(c135.R, R_matrix[[1, 3, 5], ...])
self.assertClose(c135.scale_xyz, scale.expand(3, -1))
############################################################
# Orthographic Camera #
############################################################
class TestOrthographicProjection(TestCaseMixin, unittest.TestCase):
def test_orthographic(self):
cameras = OrthographicCameras()
P = cameras.get_projection_transform()
vertices = torch.randn([3, 4, 3], dtype=torch.float32)
projected_verts = vertices.clone()
v1 = P.transform_points(vertices)
v2 = orthographic_project_naive(vertices)
self.assertClose(v1[..., :2], v2[..., :2])
self.assertClose(v1, projected_verts)
def test_orthographic_scaled(self):
focal_length_x = 10.0
focal_length_y = 15.0
cameras = OrthographicCameras(focal_length=((focal_length_x, focal_length_y),))
P = cameras.get_projection_transform()
vertices = torch.randn([3, 4, 3], dtype=torch.float32)
projected_verts = vertices.clone()
projected_verts[:, :, 0] *= focal_length_x
projected_verts[:, :, 1] *= focal_length_y
v1 = P.transform_points(vertices)
v2 = orthographic_project_naive(
vertices, scale_xyz=(focal_length_x, focal_length_y, 1.0)
)
v3 = cameras.transform_points(vertices)
self.assertClose(v1[..., :2], v2[..., :2])
self.assertClose(v3[..., :2], v2[..., :2])
self.assertClose(v1, projected_verts)
def test_orthographic_kwargs(self):
cameras = OrthographicCameras(focal_length=5.0, principal_point=((2.5, 2.5),))
P = cameras.get_projection_transform(
focal_length=2.0, principal_point=((2.5, 3.5),)
)
vertices = torch.randn([3, 4, 3], dtype=torch.float32)
projected_verts = vertices.clone()
projected_verts[:, :, :2] *= 2.0
projected_verts[:, :, 0] += 2.5
projected_verts[:, :, 1] += 3.5
v1 = P.transform_points(vertices)
self.assertClose(v1, projected_verts)
def test_perspective_type(self):
cam = OrthographicCameras(focal_length=5.0, principal_point=((2.5, 2.5),))
self.assertFalse(cam.is_perspective())
self.assertIsNone(cam.get_znear())
def test_getitem(self):
R_matrix = torch.randn((6, 3, 3))
principal_point = torch.randn((6, 2, 1))
focal_length = 5.0
cam = OrthographicCameras(
R=R_matrix,
focal_length=focal_length,
principal_point=principal_point,
)
# Check get item returns an instance of the same class
# with all the same keys
c0 = cam[0]
self.assertTrue(isinstance(c0, OrthographicCameras))
self.assertEqual(cam.__dict__.keys(), c0.__dict__.keys())
# Check torch.LongTensor index
index = torch.tensor([1, 3, 5], dtype=torch.int64)
c135 = cam[index]
self.assertEqual(len(c135), 3)
self.assertClose(c135.focal_length, torch.tensor([[5.0, 5.0]] * 3))
self.assertClose(c135.R, R_matrix[[1, 3, 5], ...])
self.assertClose(c135.principal_point, principal_point[[1, 3, 5], ...])
############################################################
# Perspective Camera #
############################################################
class TestPerspectiveProjection(TestCaseMixin, unittest.TestCase):
def test_perspective(self):
cameras = PerspectiveCameras()
P = cameras.get_projection_transform()
vertices = torch.randn([3, 4, 3], dtype=torch.float32)
v1 = P.transform_points(vertices)
v2 = sfm_perspective_project_naive(vertices)
self.assertClose(v1, v2)
def test_perspective_scaled(self):
focal_length_x = 10.0
focal_length_y = 15.0
p0x = 15.0
p0y = 30.0
cameras = PerspectiveCameras(
focal_length=((focal_length_x, focal_length_y),),
principal_point=((p0x, p0y),),
)
P = cameras.get_projection_transform()
vertices = torch.randn([3, 4, 3], dtype=torch.float32)
v1 = P.transform_points(vertices)
v2 = sfm_perspective_project_naive(
vertices, fx=focal_length_x, fy=focal_length_y, p0x=p0x, p0y=p0y
)
v3 = cameras.transform_points(vertices)
self.assertClose(v1, v2)
self.assertClose(v3[..., :2], v2[..., :2])
def test_perspective_kwargs(self):
cameras = PerspectiveCameras(focal_length=5.0, principal_point=((2.5, 2.5),))
P = cameras.get_projection_transform(
focal_length=2.0, principal_point=((2.5, 3.5),)
)
vertices = torch.randn([3, 4, 3], dtype=torch.float32)
v1 = P.transform_points(vertices)
v2 = sfm_perspective_project_naive(vertices, fx=2.0, fy=2.0, p0x=2.5, p0y=3.5)
self.assertClose(v1, v2, atol=1e-6)
def test_perspective_type(self):
cam = PerspectiveCameras(focal_length=5.0, principal_point=((2.5, 2.5),))
self.assertTrue(cam.is_perspective())
self.assertIsNone(cam.get_znear())
def test_getitem(self):
R_matrix = torch.randn((6, 3, 3))
principal_point = torch.randn((6, 2, 1))
focal_length = 5.0
cam = PerspectiveCameras(
R=R_matrix,
focal_length=focal_length,
principal_point=principal_point,
)
# Check get item returns an instance of the same class
# with all the same keys
c0 = cam[0]
self.assertTrue(isinstance(c0, PerspectiveCameras))
self.assertEqual(cam.__dict__.keys(), c0.__dict__.keys())
# Check torch.LongTensor index
index = torch.tensor([1, 3, 5], dtype=torch.int64)
c135 = cam[index]
self.assertEqual(len(c135), 3)
self.assertClose(c135.focal_length, torch.tensor([[5.0, 5.0]] * 3))
self.assertClose(c135.R, R_matrix[[1, 3, 5], ...])
self.assertClose(c135.principal_point, principal_point[[1, 3, 5], ...])
# Check in_ndc is handled correctly
self.assertEqual(cam._in_ndc, c0._in_ndc)
def test_clone_picklable(self):
camera = PerspectiveCameras()
pickle.dumps(camera)
pickle.dumps(camera.clone())
############################################################
# FishEye Camera #
############################################################
class TestFishEyeProjection(TestCaseMixin, unittest.TestCase):
def setUpSimpleCase(self) -> None:
super().setUp()
focal = torch.tensor([[240]], dtype=torch.float32)
principal_point = torch.tensor([[320, 240]])
p_3d = torch.tensor(
[
[2.0, 3.0, 1.0],
[3.0, 2.0, 1.0],
],
dtype=torch.float32,
)
return focal, principal_point, p_3d
def setUpAriaCase(self) -> None:
super().setUp()
torch.manual_seed(42)
focal = torch.tensor([[608.9255557152]], dtype=torch.float32)
principal_point = torch.tensor(
[[712.0114821205, 706.8666571177]], dtype=torch.float32
)
radial_params = torch.tensor(
[
[
0.3877090026,
-0.315613384,
-0.3434984955,
1.8565874201,
-2.1799372221,
0.7713834763,
],
],
dtype=torch.float32,
)
tangential_params = torch.tensor(
[[-0.0002747019, 0.0005228974]], dtype=torch.float32
)
thin_prism_params = torch.tensor(
[
[0.000134884, -0.000084822, -0.0009420014, -0.0001276838],
],
dtype=torch.float32,
)
return (
focal,
principal_point,
radial_params,
tangential_params,
thin_prism_params,
)
def setUpBatchCameras(self, combination: None) -> None:
super().setUp()
focal, principal_point, p_3d = self.setUpSimpleCase()
radial_params = torch.tensor(
[
[0, 0, 0, 0, 0, 0],
],
dtype=torch.float32,
)
tangential_params = torch.tensor([[0, 0]], dtype=torch.float32)
thin_prism_params = torch.tensor([[0, 0, 0, 0]], dtype=torch.float32)
(
focal1,
principal_point1,
radial_params1,
tangential_params1,
thin_prism_params1,
) = self.setUpAriaCase()
focal = torch.cat([focal, focal1], dim=0)
principal_point = torch.cat([principal_point, principal_point1], dim=0)
radial_params = torch.cat([radial_params, radial_params1], dim=0)
tangential_params = torch.cat([tangential_params, tangential_params1], dim=0)
thin_prism_params = torch.cat([thin_prism_params, thin_prism_params1], dim=0)
if combination is None:
combination = [True, True, True]
cameras = FishEyeCameras(
use_radial=combination[0],
use_tangential=combination[1],
use_thin_prism=combination[2],
focal_length=focal,
principal_point=principal_point,
radial_params=radial_params,
tangential_params=tangential_params,
thin_prism_params=thin_prism_params,
)
return cameras
def test_distortion_params_set_to_zeors(self):
# test case 1: all distortion params are 0. Note that
# setting radial_params to zeros is not equivalent to
# disabling radial distortions, set use_radial=False does
focal, principal_point, p_3d = self.setUpSimpleCase()
cameras = FishEyeCameras(
focal_length=focal,
principal_point=principal_point,
)
uv_case1 = cameras.transform_points(p_3d)
self.assertClose(
uv_case1,
torch.tensor(
[[493.0993, 499.6489, 1.0], [579.6489, 413.0993, 1.0]],
),
)
# test case 2: equivalent of test case 1 by
# disabling use_tangential and use_thin_prism
cameras = FishEyeCameras(
focal_length=focal,
principal_point=principal_point,
use_tangential=False,
use_thin_prism=False,
)
uv_case2 = cameras.transform_points(p_3d)
self.assertClose(uv_case2, uv_case1)
def test_fisheye_against_perspective_cameras(self):
# test case: check equivalence with PerspectiveCameras
# by disabling all distortions
focal, principal_point, p_3d = self.setUpSimpleCase()
cameras = PerspectiveCameras(
focal_length=focal,
principal_point=principal_point,
)
P = cameras.get_projection_transform()
uv_perspective = P.transform_points(p_3d)
# disable all distortions
cameras = FishEyeCameras(
focal_length=focal,
principal_point=principal_point,
use_radial=False,
use_tangential=False,
use_thin_prism=False,
)
uv = cameras.transform_points(p_3d)
self.assertClose(uv, uv_perspective)
def test_project_shape_broadcasts(self):
focal, principal_point, p_3d = self.setUpSimpleCase()
torch.set_printoptions(precision=6)
combinations = product([0, 1], repeat=3)
for combination in combinations:
cameras = FishEyeCameras(
use_radial=combination[0],
use_tangential=combination[1],
use_thin_prism=combination[2],
focal_length=focal,
principal_point=principal_point,
)
# test case 1:
# 1 transform with points of shape (P, 3) -> (P, 3)
# 1 transform with points of shape (1, P, 3) -> (1, P, 3)
# 1 transform with points of shape (M, P, 3) -> (M, P, 3)
points = p_3d.repeat(1, 1, 1)
cameras = FishEyeCameras(
focal_length=focal,
principal_point=principal_point,
use_radial=False,
use_tangential=False,
use_thin_prism=False,
)
uv = cameras.transform_points(p_3d)
uv_point_batch = cameras.transform_points(points)
self.assertClose(uv_point_batch, uv.repeat(1, 1, 1))
points = p_3d.repeat(3, 1, 1)
uv_point_batch = cameras.transform_points(points)
self.assertClose(uv_point_batch, uv.repeat(3, 1, 1))
# test case 2
# test with N transforms and points of shape (P, 3) -> (N, P, 3)
# test with N transforms and points of shape (1, P, 3) -> (N, P, 3)
torch.set_printoptions(sci_mode=False)
p_3d = torch.tensor(
[
[2.0, 3.0, 1.0],
[3.0, 2.0, 1.0],
]
)
expected_res = torch.tensor(
[
[
[
[800.000000, 960.000000, 1.000000],
[1040.000000, 720.000000, 1.000000],
],
[
[1929.862549, 2533.643311, 1.000000],
[2538.788086, 1924.717773, 1.000000],
],
],
[
[
[800.000000, 960.000000, 1.000000],
[1040.000000, 720.000000, 1.000000],
],
[
[1927.272095, 2524.220459, 1.000000],
[2536.197754, 1915.295166, 1.000000],
],
],
[
[
[800.000000, 960.000000, 1.000000],
[1040.000000, 720.000000, 1.000000],
],
[
[1930.050293, 2538.434814, 1.000000],
[2537.956543, 1927.569092, 1.000000],
],
],
[
[
[800.000000, 960.000000, 1.000000],
[1040.000000, 720.000000, 1.000000],
],
[
[1927.459839, 2529.011963, 1.000000],
[2535.366211, 1918.146484, 1.000000],
],
],
[
[
[493.099304, 499.648926, 1.000000],
[579.648926, 413.099304, 1.000000],
],
[
[1662.673950, 2132.860352, 1.000000],
[2138.005127, 1657.529053, 1.000000],
],
],
[
[
[493.099304, 499.648926, 1.000000],
[579.648926, 413.099304, 1.000000],
],
[
[1660.083496, 2123.437744, 1.000000],
[2135.414795, 1648.106445, 1.000000],
],
],
[
[
[493.099304, 499.648926, 1.000000],
[579.648926, 413.099304, 1.000000],
],
[
[1662.861816, 2137.651855, 1.000000],
[2137.173828, 1660.380371, 1.000000],
],
],
[
[
[493.099304, 499.648926, 1.000000],
[579.648926, 413.099304, 1.000000],
],
[
[1660.271240, 2128.229248, 1.000000],
[2134.583496, 1650.957764, 1.000000],
],
],
]
)
combinations = product([0, 1], repeat=3)
for i, combination in enumerate(combinations):
cameras = self.setUpBatchCameras(combination)
uv_point_batch = cameras.transform_points(p_3d)
self.assertClose(uv_point_batch, expected_res[i])
uv_point_batch = cameras.transform_points(p_3d.repeat(1, 1, 1))
self.assertClose(uv_point_batch, expected_res[i].repeat(1, 1, 1))
def test_cuda(self):
"""
Test cuda device
"""
focal, principal_point, p_3d = self.setUpSimpleCase()
cameras_cuda = FishEyeCameras(
focal_length=focal,
principal_point=principal_point,
device="cuda:0",
)
uv = cameras_cuda.transform_points(p_3d)
expected_res = torch.tensor(
[[493.0993, 499.6489, 1.0], [579.6489, 413.0993, 1.0]],
)
self.assertClose(uv, expected_res.to("cuda:0"))
rep_3d = cameras_cuda.unproject_points(uv)
self.assertClose(rep_3d, p_3d.to("cuda:0"))
def test_unproject_shape_broadcasts(self):
# test case 1:
# 1 transform with points of (P, 3) -> (P, 3)
# 1 transform with points of (M, P, 3) -> (M, P, 3)
(
focal,
principal_point,
radial_params,
tangential_params,
thin_prism_params,
) = self.setUpAriaCase()
xy_depth = torch.tensor(
[
[2134.5814033, 1650.95653328, 1.0],
[1074.25442904, 1159.52461285, 1.0],
]
)
cameras = FishEyeCameras(
focal_length=focal,
principal_point=principal_point,
radial_params=radial_params,
tangential_params=tangential_params,
thin_prism_params=thin_prism_params,
)
rep_3d = cameras.unproject_points(xy_depth)
expected_res = torch.tensor(
[
[[2.999442, 1.990583, 1.000000], [0.666728, 0.833142, 1.000000]],
[[2.997338, 2.005411, 1.000000], [0.666859, 0.834456, 1.000000]],
[[3.002090, 1.985229, 1.000000], [0.666537, 0.832025, 1.000000]],
[[2.999999, 2.000000, 1.000000], [0.666667, 0.833333, 1.000000]],
[[2.999442, 1.990583, 1.000000], [0.666728, 0.833142, 1.000000]],
[[2.997338, 2.005411, 1.000000], [0.666859, 0.834456, 1.000000]],
[[3.002090, 1.985229, 1.000000], [0.666537, 0.832025, 1.000000]],
[[2.999999, 2.000000, 1.000000], [0.666667, 0.833333, 1.000000]],
]
)
torch.set_printoptions(precision=6)
combinations = product([0, 1], repeat=3)
for i, combination in enumerate(combinations):
cameras = FishEyeCameras(
use_radial=combination[0],
use_tangential=combination[1],
use_thin_prism=combination[2],
focal_length=focal,
principal_point=principal_point,
radial_params=radial_params,
tangential_params=tangential_params,
thin_prism_params=thin_prism_params,
)
rep_3d = cameras.unproject_points(xy_depth)
self.assertClose(rep_3d, expected_res[i])
rep_3d = cameras.unproject_points(xy_depth.repeat(3, 1, 1))
self.assertClose(rep_3d, expected_res[i].repeat(3, 1, 1))
# test case 2:
# N transforms with points of (P, 3) -> (N, P, 3)
# N transforms with points of (1, P, 3) -> (N, P, 3)
cameras = FishEyeCameras(
use_radial=combination[0],
use_tangential=combination[1],
use_thin_prism=combination[2],
focal_length=focal.repeat(2, 1),
principal_point=principal_point.repeat(2, 1),
radial_params=radial_params.repeat(2, 1),
tangential_params=tangential_params.repeat(2, 1),
thin_prism_params=thin_prism_params.repeat(2, 1),
)
rep_3d = cameras.unproject_points(xy_depth)
self.assertClose(rep_3d, expected_res[i].repeat(2, 1, 1))
def test_unhandled_shape(self):
"""
Test error handling when shape of transforms
and points are not expected.
"""
cameras = self.setUpBatchCameras(None)
points = torch.rand(3, 3, 1)
with self.assertRaises(ValueError):
cameras.transform_points(points)
def test_getitem(self):
# Check get item returns an instance of the same class
# with all the same keys
cam = self.setUpBatchCameras(None)
c0 = cam[0]
self.assertTrue(isinstance(c0, FishEyeCameras))
self.assertEqual(cam.__dict__.keys(), c0.__dict__.keys())