Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the BSD-style license found in the | |
# LICENSE file in the root directory of this source tree. | |
import unittest | |
from collections import namedtuple | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from pytorch3d.loss import chamfer_distance | |
from pytorch3d.structures.pointclouds import Pointclouds | |
from .common_testing import get_random_cuda_device, TestCaseMixin | |
# Output of init_pointclouds | |
points_normals = namedtuple( | |
"points_normals", "p1_lengths p2_lengths cloud1 cloud2 p1 p2 n1 n2 weights" | |
) | |
class TestChamfer(TestCaseMixin, unittest.TestCase): | |
def setUp(self) -> None: | |
super().setUp() | |
torch.manual_seed(1) | |
def init_pointclouds( | |
N, P1, P2, device, requires_grad: bool = True, allow_empty: bool = True | |
): | |
""" | |
Create 2 pointclouds object and associated padded points/normals tensors by | |
starting from lists. The clouds and tensors have the same data. The | |
leaf nodes for the clouds are a list of tensors. The padded tensor can be | |
used directly as a leaf node. | |
""" | |
low = 0 if allow_empty else 1 | |
p1_lengths = torch.randint(low, P1, size=(N,), dtype=torch.int64, device=device) | |
p2_lengths = torch.randint(low, P2, size=(N,), dtype=torch.int64, device=device) | |
P1 = p1_lengths.max().item() | |
P2 = p2_lengths.max().item() | |
weights = torch.rand((N,), dtype=torch.float32, device=device) | |
# list of points and normals tensors | |
p1 = torch.rand((N, P1, 3), dtype=torch.float32, device=device) | |
p2 = torch.rand((N, P2, 3), dtype=torch.float32, device=device) | |
n1 = torch.rand((N, P1, 3), dtype=torch.float32, device=device) | |
n2 = torch.rand((N, P2, 3), dtype=torch.float32, device=device) | |
n1 /= n1.norm(dim=-1, p=2, keepdim=True) | |
n2 /= n2.norm(dim=-1, p=2, keepdim=True) | |
p1_list = [] | |
p2_list = [] | |
n1_list = [] | |
n2_list = [] | |
for i in range(N): | |
l1 = p1_lengths[i] | |
l2 = p2_lengths[i] | |
p1_list.append(p1[i, :l1].clone()) | |
p2_list.append(p2[i, :l2].clone()) | |
n1_list.append(n1[i, :l1].clone()) | |
n2_list.append(n2[i, :l2].clone()) | |
# Set requires_grad for all tensors in the lists and | |
# padded tensors. | |
if requires_grad: | |
for p in p2_list + p1_list + n1_list + n2_list + [p1, p2, n1, n2]: | |
p.requires_grad = True | |
# Create pointclouds objects | |
cloud1 = Pointclouds(points=p1_list, normals=n1_list) | |
cloud2 = Pointclouds(points=p2_list, normals=n2_list) | |
# Return pointclouds objects and padded tensors | |
return points_normals( | |
p1_lengths=p1_lengths, | |
p2_lengths=p2_lengths, | |
cloud1=cloud1, | |
cloud2=cloud2, | |
p1=p1, | |
p2=p2, | |
n1=n1, | |
n2=n2, | |
weights=weights, | |
) | |
def chamfer_distance_naive_pointclouds( | |
p1, p2, norm: int = 2, device="cpu", abs_cosine=True | |
): | |
""" | |
Naive iterative implementation of nearest neighbor and chamfer distance. | |
x and y are assumed to be pointclouds objects with points and optionally normals. | |
This functions supports heterogeneous pointclouds in a batch. | |
Returns lists of the unreduced loss and loss_normals. | |
""" | |
x = p1.points_padded() | |
y = p2.points_padded() | |
N, P1, D = x.shape | |
P2 = y.size(1) | |
x_lengths = p1.num_points_per_cloud() | |
y_lengths = p2.num_points_per_cloud() | |
x_normals = p1.normals_padded() | |
y_normals = p2.normals_padded() | |
return_normals = x_normals is not None and y_normals is not None | |
# Initialize all distances to + inf | |
dist = torch.ones((N, P1, P2), dtype=torch.float32, device=device) * np.inf | |
x_mask = ( | |
torch.arange(P1, device=x.device)[None] >= x_lengths[:, None] | |
) # shape [N, P1] | |
y_mask = ( | |
torch.arange(P2, device=y.device)[None] >= y_lengths[:, None] | |
) # shape [N, P2] | |
is_x_heterogeneous = (x_lengths != P1).any() | |
is_y_heterogeneous = (y_lengths != P2).any() | |
# Only calculate the distances for the points which are not masked | |
for n in range(N): | |
for i1 in range(x_lengths[n]): | |
for i2 in range(y_lengths[n]): | |
if norm == 2: | |
dist[n, i1, i2] = torch.sum((x[n, i1, :] - y[n, i2, :]) ** 2) | |
elif norm == 1: | |
dist[n, i1, i2] = torch.sum( | |
torch.abs(x[n, i1, :] - y[n, i2, :]) | |
) | |
else: | |
raise ValueError("No support for norm %d" % (norm)) | |
x_dist = torch.min(dist, dim=2)[0] # (N, P1) | |
y_dist = torch.min(dist, dim=1)[0] # (N, P2) | |
if is_x_heterogeneous: | |
x_dist[x_mask] = 0.0 | |
if is_y_heterogeneous: | |
y_dist[y_mask] = 0.0 | |
loss = [x_dist, y_dist] | |
lnorm = [x.new_zeros(()), x.new_zeros(())] | |
if return_normals: | |
x_index = dist.argmin(2).view(N, P1, 1).expand(N, P1, 3) | |
y_index = dist.argmin(1).view(N, P2, 1).expand(N, P2, 3) | |
cosine_sim1 = F.cosine_similarity( | |
x_normals, y_normals.gather(1, x_index), dim=2, eps=1e-6 | |
) | |
cosine_sim2 = F.cosine_similarity( | |
y_normals, x_normals.gather(1, y_index), dim=2, eps=1e-6 | |
) | |
if abs_cosine: | |
lnorm1 = 1 - torch.abs(cosine_sim1) | |
lnorm2 = 1 - torch.abs(cosine_sim2) | |
else: | |
lnorm1 = 1 - cosine_sim1 | |
lnorm2 = 1 - cosine_sim2 | |
if is_x_heterogeneous: | |
lnorm1[x_mask] = 0.0 | |
if is_y_heterogeneous: | |
lnorm2[y_mask] = 0.0 | |
lnorm = [lnorm1, lnorm2] # [(N, P1), (N, P2)] | |
return loss, lnorm | |
def chamfer_distance_naive( | |
x, y, x_normals=None, y_normals=None, norm: int = 2, abs_cosine=True | |
): | |
""" | |
Naive iterative implementation of nearest neighbor and chamfer distance. | |
Returns lists of the unreduced loss and loss_normals. This naive | |
version only supports homogeneous pointcouds in a batch. | |
""" | |
N, P1, D = x.shape | |
P2 = y.size(1) | |
device = x.device | |
return_normals = x_normals is not None and y_normals is not None | |
dist = torch.zeros((N, P1, P2), dtype=torch.float32, device=device) | |
for n in range(N): | |
for i1 in range(P1): | |
for i2 in range(P2): | |
if norm == 2: | |
dist[n, i1, i2] = torch.sum((x[n, i1, :] - y[n, i2, :]) ** 2) | |
elif norm == 1: | |
dist[n, i1, i2] = torch.sum( | |
torch.abs(x[n, i1, :] - y[n, i2, :]) | |
) | |
else: | |
raise ValueError("No support for norm %d" % (norm)) | |
loss = [ | |
torch.min(dist, dim=2)[0], # (N, P1) | |
torch.min(dist, dim=1)[0], # (N, P2) | |
] | |
lnorm = [x.new_zeros(()), x.new_zeros(())] | |
if return_normals: | |
x_index = dist.argmin(2).view(N, P1, 1).expand(N, P1, 3) | |
y_index = dist.argmin(1).view(N, P2, 1).expand(N, P2, 3) | |
cosine_sim1 = F.cosine_similarity( | |
x_normals, y_normals.gather(1, x_index), dim=2, eps=1e-6 | |
) | |
cosine_sim2 = F.cosine_similarity( | |
y_normals, x_normals.gather(1, y_index), dim=2, eps=1e-6 | |
) | |
if abs_cosine: | |
lnorm1 = 1 - torch.abs(cosine_sim1) | |
lnorm2 = 1 - torch.abs(cosine_sim2) | |
else: | |
lnorm1 = 1 - cosine_sim1 | |
lnorm2 = 1 - cosine_sim2 | |
lnorm = [lnorm1, lnorm2] # [(N, P1), (N, P2)] | |
return loss, lnorm | |
def test_chamfer_point_batch_reduction_mean(self): | |
""" | |
Compare output of vectorized chamfer loss with naive implementation | |
for the default settings (point_reduction = "mean" and batch_reduction = "mean") | |
and no normals. | |
This tests only uses homogeneous pointclouds. | |
""" | |
N, max_P1, max_P2 = 7, 10, 18 | |
device = get_random_cuda_device() | |
for norm in [1, 2]: | |
points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device) | |
p1 = points_normals.p1 | |
p2 = points_normals.p2 | |
weights = points_normals.weights | |
p11 = p1.detach().clone() | |
p22 = p2.detach().clone() | |
p11.requires_grad = True | |
p22.requires_grad = True | |
P1 = p1.shape[1] | |
P2 = p2.shape[1] | |
pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive( | |
p1, p2, norm=norm | |
) | |
# point_reduction = "mean". | |
loss, loss_norm = chamfer_distance(p11, p22, weights=weights, norm=norm) | |
pred_loss = pred_loss[0].sum(1) / P1 + pred_loss[1].sum(1) / P2 | |
pred_loss *= weights | |
pred_loss = pred_loss.sum() / weights.sum() | |
self.assertClose(loss, pred_loss) | |
self.assertTrue(loss_norm is None) | |
# Check gradients | |
self._check_gradients(loss, None, pred_loss, None, p1, p11, p2, p22) | |
def test_chamfer_vs_naive_pointcloud(self): | |
""" | |
Test the default settings for chamfer_distance | |
(point reduction = "mean" and batch_reduction="mean") but with heterogeneous | |
pointclouds as input. Compare with the naive implementation of chamfer | |
which supports heterogeneous pointcloud objects. | |
""" | |
N, max_P1, max_P2 = 3, 70, 70 | |
device = get_random_cuda_device() | |
for norm in [1, 2]: | |
points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device) | |
weights = points_normals.weights | |
x_lengths = points_normals.p1_lengths | |
y_lengths = points_normals.p2_lengths | |
# Chamfer with tensors as input for heterogeneous pointclouds. | |
cham_tensor, norm_tensor = chamfer_distance( | |
points_normals.p1, | |
points_normals.p2, | |
x_normals=points_normals.n1, | |
y_normals=points_normals.n2, | |
x_lengths=points_normals.p1_lengths, | |
y_lengths=points_normals.p2_lengths, | |
weights=weights, | |
norm=norm, | |
) | |
# Chamfer with pointclouds as input. | |
pred_loss, pred_norm_loss = TestChamfer.chamfer_distance_naive_pointclouds( | |
points_normals.cloud1, points_normals.cloud2, norm=norm, device=device | |
) | |
# Mean reduction point loss. | |
pred_loss[0] *= weights.view(N, 1) | |
pred_loss[1] *= weights.view(N, 1) | |
pred_loss_mean = ( | |
pred_loss[0].sum(1) / x_lengths + pred_loss[1].sum(1) / y_lengths | |
) | |
pred_loss_mean = pred_loss_mean.sum() | |
pred_loss_mean /= weights.sum() | |
# Mean reduction norm loss. | |
pred_norm_loss[0] *= weights.view(N, 1) | |
pred_norm_loss[1] *= weights.view(N, 1) | |
pred_norm_loss_mean = ( | |
pred_norm_loss[0].sum(1) / x_lengths | |
+ pred_norm_loss[1].sum(1) / y_lengths | |
) | |
pred_norm_loss_mean = pred_norm_loss_mean.sum() / weights.sum() | |
self.assertClose(pred_loss_mean, cham_tensor) | |
self.assertClose(pred_norm_loss_mean, norm_tensor) | |
self._check_gradients( | |
cham_tensor, | |
norm_tensor, | |
pred_loss_mean, | |
pred_norm_loss_mean, | |
points_normals.cloud1.points_list(), | |
points_normals.p1, | |
points_normals.cloud2.points_list(), | |
points_normals.p2, | |
points_normals.cloud1.normals_list(), | |
points_normals.n1, | |
points_normals.cloud2.normals_list(), | |
points_normals.n2, | |
x_lengths, | |
y_lengths, | |
) | |
def test_single_directional_chamfer_vs_naive_pointcloud(self): | |
""" | |
Test the single directional settings for chamfer_distance | |
(point reduction = "mean" and batch_reduction="mean") but with heterogeneous | |
pointclouds as input. Compare with the naive implementation of chamfer | |
which supports heterogeneous pointcloud objects. | |
""" | |
N, max_P1, max_P2 = 3, 70, 70 | |
device = get_random_cuda_device() | |
for norm in [1, 2]: | |
for abs_cosine in [True, False]: | |
points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device) | |
weights = points_normals.weights | |
x_lengths = points_normals.p1_lengths | |
y_lengths = points_normals.p2_lengths | |
# Chamfer with tensors as input for heterogeneous pointclouds. | |
cham_tensor, norm_tensor = chamfer_distance( | |
points_normals.p1, | |
points_normals.p2, | |
x_normals=points_normals.n1, | |
y_normals=points_normals.n2, | |
x_lengths=points_normals.p1_lengths, | |
y_lengths=points_normals.p2_lengths, | |
weights=weights, | |
norm=norm, | |
single_directional=True, | |
abs_cosine=abs_cosine, | |
) | |
# Chamfer with pointclouds as input. | |
( | |
pred_loss, | |
pred_norm_loss, | |
) = TestChamfer.chamfer_distance_naive_pointclouds( | |
points_normals.cloud1, | |
points_normals.cloud2, | |
norm=norm, | |
device=device, | |
abs_cosine=abs_cosine, | |
) | |
# Mean reduction point loss. | |
pred_loss[0] *= weights.view(N, 1) | |
pred_loss_mean = pred_loss[0].sum(1) / x_lengths | |
pred_loss_mean = pred_loss_mean.sum() | |
pred_loss_mean /= weights.sum() | |
# Mean reduction norm loss. | |
pred_norm_loss[0] *= weights.view(N, 1) | |
pred_norm_loss_mean = pred_norm_loss[0].sum(1) / x_lengths | |
pred_norm_loss_mean = pred_norm_loss_mean.sum() / weights.sum() | |
self.assertClose(pred_loss_mean, cham_tensor) | |
self.assertClose(pred_norm_loss_mean, norm_tensor) | |
self._check_gradients( | |
cham_tensor, | |
norm_tensor, | |
pred_loss_mean, | |
pred_norm_loss_mean, | |
points_normals.cloud1.points_list(), | |
points_normals.p1, | |
points_normals.cloud2.points_list(), | |
points_normals.p2, | |
points_normals.cloud1.normals_list(), | |
points_normals.n1, | |
points_normals.cloud2.normals_list(), | |
points_normals.n2, | |
x_lengths, | |
y_lengths, | |
) | |
def test_chamfer_pointcloud_object_withnormals(self): | |
N = 5 | |
P1, P2 = 100, 100 | |
device = get_random_cuda_device() | |
reductions = [ | |
("sum", "sum"), | |
("mean", "sum"), | |
("sum", "mean"), | |
("mean", "mean"), | |
("sum", None), | |
("mean", None), | |
(None, None), | |
] | |
for point_reduction, batch_reduction in reductions: | |
# Reinitialize all the tensors so that the | |
# backward pass can be computed. | |
points_normals = TestChamfer.init_pointclouds( | |
N, P1, P2, device, allow_empty=False | |
) | |
# Chamfer with pointclouds as input. | |
cham_cloud, norm_cloud = chamfer_distance( | |
points_normals.cloud1, | |
points_normals.cloud2, | |
point_reduction=point_reduction, | |
batch_reduction=batch_reduction, | |
) | |
# Chamfer with tensors as input. | |
cham_tensor, norm_tensor = chamfer_distance( | |
points_normals.p1, | |
points_normals.p2, | |
x_lengths=points_normals.p1_lengths, | |
y_lengths=points_normals.p2_lengths, | |
x_normals=points_normals.n1, | |
y_normals=points_normals.n2, | |
point_reduction=point_reduction, | |
batch_reduction=batch_reduction, | |
) | |
if point_reduction is None: | |
cham_tensor_bidirectional = torch.hstack( | |
[cham_tensor[0], cham_tensor[1]] | |
) | |
norm_tensor_bidirectional = torch.hstack( | |
[norm_tensor[0], norm_tensor[1]] | |
) | |
cham_cloud_bidirectional = torch.hstack([cham_cloud[0], cham_cloud[1]]) | |
norm_cloud_bidirectional = torch.hstack([norm_cloud[0], norm_cloud[1]]) | |
self.assertClose(cham_cloud_bidirectional, cham_tensor_bidirectional) | |
self.assertClose(norm_cloud_bidirectional, norm_tensor_bidirectional) | |
self._check_gradients( | |
cham_tensor_bidirectional, | |
norm_tensor_bidirectional, | |
cham_cloud_bidirectional, | |
norm_cloud_bidirectional, | |
points_normals.cloud1.points_list(), | |
points_normals.p1, | |
points_normals.cloud2.points_list(), | |
points_normals.p2, | |
points_normals.cloud1.normals_list(), | |
points_normals.n1, | |
points_normals.cloud2.normals_list(), | |
points_normals.n2, | |
points_normals.p1_lengths, | |
points_normals.p2_lengths, | |
) | |
else: | |
self.assertClose(cham_cloud, cham_tensor) | |
self.assertClose(norm_cloud, norm_tensor) | |
self._check_gradients( | |
cham_tensor, | |
norm_tensor, | |
cham_cloud, | |
norm_cloud, | |
points_normals.cloud1.points_list(), | |
points_normals.p1, | |
points_normals.cloud2.points_list(), | |
points_normals.p2, | |
points_normals.cloud1.normals_list(), | |
points_normals.n1, | |
points_normals.cloud2.normals_list(), | |
points_normals.n2, | |
points_normals.p1_lengths, | |
points_normals.p2_lengths, | |
) | |
def test_chamfer_pointcloud_object_nonormals(self): | |
N = 5 | |
P1, P2 = 100, 100 | |
device = get_random_cuda_device() | |
reductions = [ | |
("sum", "sum"), | |
("mean", "sum"), | |
("sum", "mean"), | |
("mean", "mean"), | |
("sum", None), | |
("mean", None), | |
(None, None), | |
] | |
for point_reduction, batch_reduction in reductions: | |
# Reinitialize all the tensors so that the | |
# backward pass can be computed. | |
points_normals = TestChamfer.init_pointclouds( | |
N, P1, P2, device, allow_empty=False | |
) | |
# Chamfer with pointclouds as input. | |
cham_cloud, _ = chamfer_distance( | |
points_normals.cloud1, | |
points_normals.cloud2, | |
point_reduction=point_reduction, | |
batch_reduction=batch_reduction, | |
) | |
# Chamfer with tensors as input. | |
cham_tensor, _ = chamfer_distance( | |
points_normals.p1, | |
points_normals.p2, | |
x_lengths=points_normals.p1_lengths, | |
y_lengths=points_normals.p2_lengths, | |
point_reduction=point_reduction, | |
batch_reduction=batch_reduction, | |
) | |
if point_reduction is None: | |
cham_tensor_bidirectional = torch.hstack( | |
[cham_tensor[0], cham_tensor[1]] | |
) | |
cham_cloud_bidirectional = torch.hstack([cham_cloud[0], cham_cloud[1]]) | |
self.assertClose(cham_cloud_bidirectional, cham_tensor_bidirectional) | |
self._check_gradients( | |
cham_tensor_bidirectional, | |
None, | |
cham_cloud_bidirectional, | |
None, | |
points_normals.cloud1.points_list(), | |
points_normals.p1, | |
points_normals.cloud2.points_list(), | |
points_normals.p2, | |
lengths1=points_normals.p1_lengths, | |
lengths2=points_normals.p2_lengths, | |
) | |
else: | |
self.assertClose(cham_cloud, cham_tensor) | |
self._check_gradients( | |
cham_tensor, | |
None, | |
cham_cloud, | |
None, | |
points_normals.cloud1.points_list(), | |
points_normals.p1, | |
points_normals.cloud2.points_list(), | |
points_normals.p2, | |
lengths1=points_normals.p1_lengths, | |
lengths2=points_normals.p2_lengths, | |
) | |
def test_chamfer_point_reduction_mean(self): | |
""" | |
Compare output of vectorized chamfer loss with naive implementation | |
for point_reduction = "mean" and batch_reduction = None. | |
""" | |
N, max_P1, max_P2 = 7, 10, 18 | |
device = get_random_cuda_device() | |
points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device) | |
p1 = points_normals.p1 | |
p2 = points_normals.p2 | |
p1_normals = points_normals.n1 | |
p2_normals = points_normals.n2 | |
weights = points_normals.weights | |
p11 = p1.detach().clone() | |
p22 = p2.detach().clone() | |
p11.requires_grad = True | |
p22.requires_grad = True | |
P1 = p1.shape[1] | |
P2 = p2.shape[1] | |
pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive( | |
p1, p2, x_normals=p1_normals, y_normals=p2_normals | |
) | |
# point_reduction = "mean". | |
loss, loss_norm = chamfer_distance( | |
p11, | |
p22, | |
x_normals=p1_normals, | |
y_normals=p2_normals, | |
weights=weights, | |
batch_reduction=None, | |
point_reduction="mean", | |
) | |
pred_loss_mean = pred_loss[0].sum(1) / P1 + pred_loss[1].sum(1) / P2 | |
pred_loss_mean *= weights | |
self.assertClose(loss, pred_loss_mean) | |
pred_loss_norm_mean = ( | |
pred_loss_norm[0].sum(1) / P1 + pred_loss_norm[1].sum(1) / P2 | |
) | |
pred_loss_norm_mean *= weights | |
self.assertClose(loss_norm, pred_loss_norm_mean) | |
# Check gradients | |
self._check_gradients( | |
loss, loss_norm, pred_loss_mean, pred_loss_norm_mean, p1, p11, p2, p22 | |
) | |
def test_single_direction_chamfer_point_reduction_mean(self): | |
""" | |
Compare output of vectorized chamfer loss with naive implementation | |
for point_reduction = "mean" and batch_reduction = None. | |
""" | |
N, max_P1, max_P2 = 7, 10, 18 | |
device = get_random_cuda_device() | |
points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device) | |
p1 = points_normals.p1 | |
p2 = points_normals.p2 | |
p1_normals = points_normals.n1 | |
p2_normals = points_normals.n2 | |
weights = points_normals.weights | |
p11 = p1.detach().clone() | |
p22 = p2.detach().clone() | |
p11.requires_grad = True | |
p22.requires_grad = True | |
P1 = p1.shape[1] | |
pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive( | |
p1, p2, x_normals=p1_normals, y_normals=p2_normals | |
) | |
# point_reduction = "mean". | |
loss, loss_norm = chamfer_distance( | |
p11, | |
p22, | |
x_normals=p1_normals, | |
y_normals=p2_normals, | |
weights=weights, | |
batch_reduction=None, | |
point_reduction="mean", | |
single_directional=True, | |
) | |
pred_loss_mean = pred_loss[0].sum(1) / P1 | |
pred_loss_mean *= weights | |
self.assertClose(loss, pred_loss_mean) | |
pred_loss_norm_mean = pred_loss_norm[0].sum(1) / P1 | |
pred_loss_norm_mean *= weights | |
self.assertClose(loss_norm, pred_loss_norm_mean) | |
# Check gradients | |
self._check_gradients( | |
loss, loss_norm, pred_loss_mean, pred_loss_norm_mean, p1, p11, p2, p22 | |
) | |
def test_chamfer_point_reduction_sum(self): | |
""" | |
Compare output of vectorized chamfer loss with naive implementation | |
for point_reduction = "sum" and batch_reduction = None. | |
""" | |
N, P1, P2 = 7, 10, 18 | |
device = get_random_cuda_device() | |
points_normals = TestChamfer.init_pointclouds(N, P1, P2, device) | |
p1 = points_normals.p1 | |
p2 = points_normals.p2 | |
p1_normals = points_normals.n1 | |
p2_normals = points_normals.n2 | |
weights = points_normals.weights | |
p11 = p1.detach().clone() | |
p22 = p2.detach().clone() | |
p11.requires_grad = True | |
p22.requires_grad = True | |
pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive( | |
p1, p2, x_normals=p1_normals, y_normals=p2_normals | |
) | |
loss, loss_norm = chamfer_distance( | |
p11, | |
p22, | |
x_normals=p1_normals, | |
y_normals=p2_normals, | |
weights=weights, | |
batch_reduction=None, | |
point_reduction="sum", | |
) | |
pred_loss_sum = pred_loss[0].sum(1) + pred_loss[1].sum(1) | |
pred_loss_sum *= weights | |
self.assertClose(loss, pred_loss_sum) | |
pred_loss_norm_sum = pred_loss_norm[0].sum(1) + pred_loss_norm[1].sum(1) | |
pred_loss_norm_sum *= weights | |
self.assertClose(loss_norm, pred_loss_norm_sum) | |
# Check gradients | |
self._check_gradients( | |
loss, loss_norm, pred_loss_sum, pred_loss_norm_sum, p1, p11, p2, p22 | |
) | |
def test_single_directional_chamfer_point_reduction_sum(self): | |
""" | |
Compare output of vectorized single directional chamfer loss with naive implementation | |
for point_reduction = "sum" and batch_reduction = None. | |
""" | |
N, P1, P2 = 7, 10, 18 | |
device = get_random_cuda_device() | |
points_normals = TestChamfer.init_pointclouds(N, P1, P2, device) | |
p1 = points_normals.p1 | |
p2 = points_normals.p2 | |
p1_normals = points_normals.n1 | |
p2_normals = points_normals.n2 | |
weights = points_normals.weights | |
p11 = p1.detach().clone() | |
p22 = p2.detach().clone() | |
p11.requires_grad = True | |
p22.requires_grad = True | |
pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive( | |
p1, p2, x_normals=p1_normals, y_normals=p2_normals | |
) | |
loss, loss_norm = chamfer_distance( | |
p11, | |
p22, | |
x_normals=p1_normals, | |
y_normals=p2_normals, | |
weights=weights, | |
batch_reduction=None, | |
point_reduction="sum", | |
single_directional=True, | |
) | |
pred_loss_sum = pred_loss[0].sum(1) | |
pred_loss_sum *= weights | |
self.assertClose(loss, pred_loss_sum) | |
pred_loss_norm_sum = pred_loss_norm[0].sum(1) | |
pred_loss_norm_sum *= weights | |
self.assertClose(loss_norm, pred_loss_norm_sum) | |
# Check gradients | |
self._check_gradients( | |
loss, loss_norm, pred_loss_sum, pred_loss_norm_sum, p1, p11, p2, p22 | |
) | |
def test_chamfer_point_reduction_none(self): | |
""" | |
Compare output of vectorized chamfer loss with naive implementation | |
for point_reduction = None and batch_reduction = None. | |
""" | |
N, max_P1, max_P2 = 7, 10, 18 | |
device = get_random_cuda_device() | |
points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device) | |
p1 = points_normals.p1 | |
p2 = points_normals.p2 | |
p1_normals = points_normals.n1 | |
p2_normals = points_normals.n2 | |
p11 = p1.detach().clone() | |
p22 = p2.detach().clone() | |
p11.requires_grad = True | |
p22.requires_grad = True | |
pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive( | |
p1, p2, x_normals=p1_normals, y_normals=p2_normals | |
) | |
# point_reduction = None | |
loss, loss_norm = chamfer_distance( | |
p11, | |
p22, | |
x_normals=p1_normals, | |
y_normals=p2_normals, | |
batch_reduction=None, | |
point_reduction=None, | |
) | |
loss_bidirectional = torch.hstack([loss[0], loss[1]]) | |
pred_loss_bidirectional = torch.hstack([pred_loss[0], pred_loss[1]]) | |
loss_norm_bidirectional = torch.hstack([loss_norm[0], loss_norm[1]]) | |
pred_loss_norm_bidirectional = torch.hstack( | |
[pred_loss_norm[0], pred_loss_norm[1]] | |
) | |
self.assertClose(loss_bidirectional, pred_loss_bidirectional) | |
self.assertClose(loss_norm_bidirectional, pred_loss_norm_bidirectional) | |
# Check gradients | |
self._check_gradients( | |
loss_bidirectional, | |
loss_norm_bidirectional, | |
pred_loss_bidirectional, | |
pred_loss_norm_bidirectional, | |
p1, | |
p11, | |
p2, | |
p22, | |
) | |
def test_single_direction_chamfer_point_reduction_none(self): | |
""" | |
Compare output of vectorized chamfer loss with naive implementation | |
for point_reduction = None and batch_reduction = None. | |
""" | |
N, max_P1, max_P2 = 7, 10, 18 | |
device = get_random_cuda_device() | |
points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device) | |
p1 = points_normals.p1 | |
p2 = points_normals.p2 | |
p1_normals = points_normals.n1 | |
p2_normals = points_normals.n2 | |
p11 = p1.detach().clone() | |
p22 = p2.detach().clone() | |
p11.requires_grad = True | |
p22.requires_grad = True | |
pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive( | |
p1, p2, x_normals=p1_normals, y_normals=p2_normals | |
) | |
# point_reduction = None | |
loss, loss_norm = chamfer_distance( | |
p11, | |
p22, | |
x_normals=p1_normals, | |
y_normals=p2_normals, | |
batch_reduction=None, | |
point_reduction=None, | |
single_directional=True, | |
) | |
self.assertClose(loss, pred_loss[0]) | |
self.assertClose(loss_norm, pred_loss_norm[0]) | |
# Check gradients | |
self._check_gradients( | |
loss, loss_norm, pred_loss[0], pred_loss_norm[0], p1, p11, p2, p22 | |
) | |
def _check_gradients( | |
self, | |
loss, | |
loss_norm, | |
pred_loss, | |
pred_loss_norm, | |
x1, | |
x2, | |
y1, | |
y2, | |
xn1=None, # normals | |
xn2=None, # normals | |
yn1=None, # normals | |
yn2=None, # normals | |
lengths1=None, | |
lengths2=None, | |
): | |
""" | |
x1 and x2 can have different types based on the leaf node used in the calculation: | |
e.g. x1 may be a list of tensors whereas x2 is a padded tensor. | |
This also applies for the pairs: (y1, y2), (xn1, xn2), (yn1, yn2). | |
""" | |
grad_loss = torch.rand(loss.shape, device=loss.device, dtype=loss.dtype) | |
# Loss for normals is optional. Iniitalize to 0. | |
norm_loss_term = pred_norm_loss_term = 0.0 | |
if loss_norm is not None and pred_loss_norm is not None: | |
grad_normals = torch.rand( | |
loss_norm.shape, device=loss.device, dtype=loss.dtype | |
) | |
norm_loss_term = loss_norm * grad_normals | |
pred_norm_loss_term = pred_loss_norm * grad_normals | |
l1 = (loss * grad_loss) + norm_loss_term | |
l1.sum().backward() | |
l2 = (pred_loss * grad_loss) + pred_norm_loss_term | |
l2.sum().backward() | |
self._check_grad_by_type(x1, x2, lengths1) | |
self._check_grad_by_type(y1, y2, lengths2) | |
# If leaf nodes for normals are passed in, check their gradients. | |
if all(n is not None for n in [xn1, xn2, yn1, yn2]): | |
self._check_grad_by_type(xn1, xn2, lengths1) | |
self._check_grad_by_type(yn1, yn2, lengths2) | |
def _check_grad_by_type(self, x1, x2, lengths=None): | |
""" | |
x1 and x2 can be of different types e.g. list or tensor - compare appropriately | |
based on the types. | |
""" | |
error_msg = "All values for gradient checks must be tensors or lists of tensors" | |
if all(isinstance(p, list) for p in [x1, x2]): | |
# Lists of tensors | |
for i in range(len(x1)): | |
self.assertClose(x1[i].grad, x2[i].grad) | |
elif isinstance(x1, list) and torch.is_tensor(x2): | |
self.assertIsNotNone(lengths) # lengths is required | |
# List of tensors vs padded tensor | |
for i in range(len(x1)): | |
self.assertClose(x1[i].grad, x2.grad[i, : lengths[i]], atol=1e-7) | |
self.assertTrue(x2.grad[i, lengths[i] :].sum().item() == 0.0) | |
elif all(torch.is_tensor(p) for p in [x1, x2]): | |
# Two tensors | |
self.assertClose(x1.grad, x2.grad) | |
else: | |
raise ValueError(error_msg) | |
def test_chamfer_joint_reduction(self): | |
""" | |
Compare output of vectorized chamfer loss with naive implementation | |
when batch_reduction in ["mean", "sum"] and | |
point_reduction in ["mean", "sum"]. | |
""" | |
N, max_P1, max_P2 = 7, 10, 18 | |
device = get_random_cuda_device() | |
points_normals = TestChamfer.init_pointclouds(N, max_P1, max_P2, device) | |
p1 = points_normals.p1 | |
p2 = points_normals.p2 | |
p1_normals = points_normals.n1 | |
p2_normals = points_normals.n2 | |
weights = points_normals.weights | |
P1 = p1.shape[1] | |
P2 = p2.shape[1] | |
pred_loss, pred_loss_norm = TestChamfer.chamfer_distance_naive( | |
p1, p2, x_normals=p1_normals, y_normals=p2_normals | |
) | |
# batch_reduction = "sum", point_reduction = "sum". | |
loss, loss_norm = chamfer_distance( | |
p1, | |
p2, | |
x_normals=p1_normals, | |
y_normals=p2_normals, | |
weights=weights, | |
batch_reduction="sum", | |
point_reduction="sum", | |
) | |
pred_loss[0] *= weights.view(N, 1) | |
pred_loss[1] *= weights.view(N, 1) | |
pred_loss_sum = pred_loss[0].sum(1) + pred_loss[1].sum(1) # point sum | |
pred_loss_sum = pred_loss_sum.sum() # batch sum | |
self.assertClose(loss, pred_loss_sum) | |
pred_loss_norm[0] *= weights.view(N, 1) | |
pred_loss_norm[1] *= weights.view(N, 1) | |
pred_loss_norm_sum = pred_loss_norm[0].sum(1) + pred_loss_norm[1].sum( | |
1 | |
) # point sum. | |
pred_loss_norm_sum = pred_loss_norm_sum.sum() # batch sum | |
self.assertClose(loss_norm, pred_loss_norm_sum) | |
# batch_reduction = "mean", point_reduction = "sum". | |
loss, loss_norm = chamfer_distance( | |
p1, | |
p2, | |
x_normals=p1_normals, | |
y_normals=p2_normals, | |
weights=weights, | |
batch_reduction="mean", | |
point_reduction="sum", | |
) | |
pred_loss_sum /= weights.sum() | |
self.assertClose(loss, pred_loss_sum) | |
pred_loss_norm_sum /= weights.sum() | |
self.assertClose(loss_norm, pred_loss_norm_sum) | |
# batch_reduction = "sum", point_reduction = "mean". | |
loss, loss_norm = chamfer_distance( | |
p1, | |
p2, | |
x_normals=p1_normals, | |
y_normals=p2_normals, | |
weights=weights, | |
batch_reduction="sum", | |
point_reduction="mean", | |
) | |
pred_loss_mean = pred_loss[0].sum(1) / P1 + pred_loss[1].sum(1) / P2 | |
pred_loss_mean = pred_loss_mean.sum() | |
self.assertClose(loss, pred_loss_mean) | |
pred_loss_norm_mean = ( | |
pred_loss_norm[0].sum(1) / P1 + pred_loss_norm[1].sum(1) / P2 | |
) | |
pred_loss_norm_mean = pred_loss_norm_mean.sum() | |
self.assertClose(loss_norm, pred_loss_norm_mean) | |
# batch_reduction = "mean", point_reduction = "mean". This is the default. | |
loss, loss_norm = chamfer_distance( | |
p1, | |
p2, | |
x_normals=p1_normals, | |
y_normals=p2_normals, | |
weights=weights, | |
batch_reduction="mean", | |
point_reduction="mean", | |
) | |
pred_loss_mean /= weights.sum() | |
self.assertClose(loss, pred_loss_mean) | |
pred_loss_norm_mean /= weights.sum() | |
self.assertClose(loss_norm, pred_loss_norm_mean) | |
# Error when batch_reduction is not in ["mean", "sum"] or None. | |
with self.assertRaisesRegex(ValueError, "batch_reduction must be one of"): | |
chamfer_distance(p1, p2, weights=weights, batch_reduction="max") | |
# Error when point_reduction is not in ["mean", "sum"] or None. | |
with self.assertRaisesRegex(ValueError, "point_reduction must be one of"): | |
chamfer_distance(p1, p2, weights=weights, point_reduction="max") | |
def test_incorrect_weights(self): | |
N, P1, P2 = 16, 64, 128 | |
device = get_random_cuda_device() | |
p1 = torch.rand( | |
(N, P1, 3), dtype=torch.float32, device=device, requires_grad=True | |
) | |
p2 = torch.rand( | |
(N, P2, 3), dtype=torch.float32, device=device, requires_grad=True | |
) | |
weights = torch.zeros((N,), dtype=torch.float32, device=device) | |
loss, loss_norm = chamfer_distance( | |
p1, p2, weights=weights, batch_reduction="mean" | |
) | |
self.assertClose(loss.cpu(), torch.zeros(())) | |
self.assertTrue(loss.requires_grad) | |
self.assertClose(loss_norm.cpu(), torch.zeros(())) | |
self.assertTrue(loss_norm.requires_grad) | |
loss, loss_norm = chamfer_distance( | |
p1, p2, weights=weights, batch_reduction=None | |
) | |
self.assertClose(loss.cpu(), torch.zeros((N, N))) | |
self.assertTrue(loss.requires_grad) | |
self.assertClose(loss_norm.cpu(), torch.zeros((N, N))) | |
self.assertTrue(loss_norm.requires_grad) | |
weights = torch.ones((N,), dtype=torch.float32, device=device) * -1 | |
with self.assertRaises(ValueError): | |
loss, loss_norm = chamfer_distance(p1, p2, weights=weights) | |
weights = torch.zeros((N - 1,), dtype=torch.float32, device=device) | |
with self.assertRaises(ValueError): | |
loss, loss_norm = chamfer_distance(p1, p2, weights=weights) | |
def test_incorrect_inputs(self): | |
N, P1, P2 = 7, 10, 18 | |
device = get_random_cuda_device() | |
points_normals = TestChamfer.init_pointclouds(N, P1, P2, device) | |
p1 = points_normals.p1 | |
p2 = points_normals.p2 | |
p1_normals = points_normals.n1 | |
# Normals of wrong shape | |
with self.assertRaisesRegex(ValueError, "Expected normals to be of shape"): | |
chamfer_distance(p1, p2, x_normals=p1_normals[None]) | |
# Points of wrong shape | |
with self.assertRaisesRegex(ValueError, "Expected points to be of shape"): | |
chamfer_distance(p1[None], p2) | |
# Lengths of wrong shape | |
with self.assertRaisesRegex(ValueError, "Expected lengths to be of shape"): | |
chamfer_distance(p1, p2, x_lengths=torch.tensor([1, 2, 3], device=device)) | |
# Points are not a tensor or Pointclouds | |
with self.assertRaisesRegex(ValueError, "Pointclouds objects or torch.Tensor"): | |
chamfer_distance(x=[1, 1, 1], y=[1, 1, 1]) | |
def test_invalid_norm(self): | |
N, P1, P2 = 7, 10, 18 | |
device = get_random_cuda_device() | |
points_normals = TestChamfer.init_pointclouds(N, P1, P2, device) | |
p1 = points_normals.p1 | |
p2 = points_normals.p2 | |
with self.assertRaisesRegex(ValueError, "Support for 1 or 2 norm."): | |
chamfer_distance(p1, p2, norm=0) | |
with self.assertRaisesRegex(ValueError, "Support for 1 or 2 norm."): | |
chamfer_distance(p1, p2, norm=3) | |
def test_empty_clouds(self): | |
# Check that point_reduction doesn't divide by zero | |
points1 = Pointclouds(points=[torch.zeros(0, 3), torch.zeros(10, 3)]) | |
points2 = Pointclouds(points=torch.ones(2, 40, 3)) | |
loss, _ = chamfer_distance(points1, points2, batch_reduction=None) | |
self.assertClose(loss, torch.tensor([0.0, 6.0])) | |
# Check that batch_reduction doesn't divide by zero | |
loss2, _ = chamfer_distance(Pointclouds([]), Pointclouds([])) | |
self.assertClose(loss2, torch.tensor(0.0)) | |
def chamfer_with_init( | |
batch_size: int, | |
P1: int, | |
P2: int, | |
return_normals: bool, | |
homogeneous: bool, | |
device="cpu", | |
): | |
points_normals = TestChamfer.init_pointclouds(batch_size, P1, P2, device=device) | |
l1 = points_normals.p1_lengths | |
l2 = points_normals.p2_lengths | |
if homogeneous: | |
# Set lengths to None so in Chamfer it assumes | |
# there is no padding. | |
l1 = l2 = None | |
torch.cuda.synchronize() | |
def loss(): | |
loss, loss_normals = chamfer_distance( | |
points_normals.p1, | |
points_normals.p2, | |
x_lengths=l1, | |
y_lengths=l2, | |
x_normals=points_normals.n1, | |
y_normals=points_normals.n2, | |
weights=points_normals.weights, | |
) | |
torch.cuda.synchronize() | |
return loss | |
def chamfer_naive_with_init( | |
batch_size: int, P1: int, P2: int, return_normals: bool, device="cpu" | |
): | |
points_normals = TestChamfer.init_pointclouds(batch_size, P1, P2, device=device) | |
torch.cuda.synchronize() | |
def loss(): | |
loss, loss_normals = TestChamfer.chamfer_distance_naive( | |
points_normals.p1, | |
points_normals.p2, | |
x_normals=points_normals.n1, | |
y_normals=points_normals.n2, | |
) | |
torch.cuda.synchronize() | |
return loss | |