# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import unittest import numpy as np import torch from pytorch3d.renderer.lighting import AmbientLights, DirectionalLights, PointLights from pytorch3d.transforms import RotateAxisAngle from .common_testing import TestCaseMixin class TestLights(TestCaseMixin, unittest.TestCase): def test_init_lights(self): """ Initialize Lights class with the default values. """ device = torch.device("cuda:0") light = DirectionalLights(device=device) keys = ["ambient_color", "diffuse_color", "specular_color", "direction"] for k in keys: prop = getattr(light, k) self.assertTrue(torch.is_tensor(prop)) self.assertTrue(prop.device == device) self.assertTrue(prop.shape == (1, 3)) light = PointLights(device=device) keys = ["ambient_color", "diffuse_color", "specular_color", "location"] for k in keys: prop = getattr(light, k) self.assertTrue(torch.is_tensor(prop)) self.assertTrue(prop.device == device) self.assertTrue(prop.shape == (1, 3)) def test_lights_clone_to(self): device = torch.device("cuda:0") cpu = torch.device("cpu") light = DirectionalLights() new_light = light.clone().to(device) keys = ["ambient_color", "diffuse_color", "specular_color", "direction"] for k in keys: prop = getattr(light, k) new_prop = getattr(new_light, k) self.assertTrue(prop.device == cpu) self.assertTrue(new_prop.device == device) self.assertSeparate(new_prop, prop) light = PointLights() new_light = light.clone().to(device) keys = ["ambient_color", "diffuse_color", "specular_color", "location"] for k in keys: prop = getattr(light, k) new_prop = getattr(new_light, k) self.assertTrue(prop.device == cpu) self.assertTrue(new_prop.device == device) self.assertSeparate(new_prop, prop) def test_lights_accessor(self): d_light = DirectionalLights(ambient_color=((0.0, 0.0, 0.0), (1.0, 1.0, 1.0))) p_light = PointLights(ambient_color=((0.0, 0.0, 0.0), (1.0, 1.0, 1.0))) for light in [d_light, p_light]: # Update element color = (0.5, 0.5, 0.5) light[1].ambient_color = color self.assertClose(light.ambient_color[1], torch.tensor(color)) # Get item and get value l0 = light[0] self.assertClose(l0.ambient_color, torch.tensor((0.0, 0.0, 0.0))) def test_initialize_lights_broadcast(self): light = DirectionalLights( ambient_color=torch.randn(10, 3), diffuse_color=torch.randn(1, 3), specular_color=torch.randn(1, 3), ) keys = ["ambient_color", "diffuse_color", "specular_color", "direction"] for k in keys: prop = getattr(light, k) self.assertTrue(prop.shape == (10, 3)) light = PointLights( ambient_color=torch.randn(10, 3), diffuse_color=torch.randn(1, 3), specular_color=torch.randn(1, 3), ) keys = ["ambient_color", "diffuse_color", "specular_color", "location"] for k in keys: prop = getattr(light, k) self.assertTrue(prop.shape == (10, 3)) def test_initialize_lights_broadcast_fail(self): """ Batch dims have to be the same or 1. """ with self.assertRaises(ValueError): DirectionalLights( ambient_color=torch.randn(10, 3), diffuse_color=torch.randn(15, 3) ) with self.assertRaises(ValueError): PointLights( ambient_color=torch.randn(10, 3), diffuse_color=torch.randn(15, 3) ) def test_initialize_lights_dimensions_fail(self): """ Color should have shape (N, 3) or (1, 3) """ with self.assertRaises(ValueError): DirectionalLights(ambient_color=torch.randn(10, 4)) with self.assertRaises(ValueError): DirectionalLights(direction=torch.randn(10, 4)) with self.assertRaises(ValueError): PointLights(ambient_color=torch.randn(10, 4)) with self.assertRaises(ValueError): PointLights(location=torch.randn(10, 4)) def test_initialize_ambient(self): N = 13 color = 0.8 * torch.ones((N, 3)) lights = AmbientLights(ambient_color=color) self.assertEqual(len(lights), N) self.assertClose(lights.ambient_color, color) lights = AmbientLights(ambient_color=color[:1]) self.assertEqual(len(lights), 1) self.assertClose(lights.ambient_color, color[:1]) class TestDiffuseLighting(TestCaseMixin, unittest.TestCase): def test_diffuse_directional_lights(self): """ Test with a single point where: 1) the normal and light direction are 45 degrees apart. 2) the normal and light direction are 90 degrees apart. The output should be zero for this case """ color = torch.tensor([1, 1, 1], dtype=torch.float32) direction = torch.tensor( [0, 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32 ) normals = torch.tensor([0, 0, 1], dtype=torch.float32) normals = normals[None, None, :] expected_output = torch.tensor( [1 / np.sqrt(2), 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32 ) expected_output = expected_output.view(1, 1, 3).repeat(3, 1, 1) light = DirectionalLights(diffuse_color=color, direction=direction) output_light = light.diffuse(normals=normals) self.assertClose(output_light, expected_output) # Change light direction to be 90 degrees apart from normal direction. direction = torch.tensor([0, 1, 0], dtype=torch.float32) light.direction = direction expected_output = torch.zeros_like(expected_output) output_light = light.diffuse(normals=normals) self.assertClose(output_light, expected_output) def test_diffuse_point_lights(self): """ Test with a single point at the origin. Test two cases: 1) the point light is at (1, 0, 1) hence the light direction is 45 degrees apart from the normal direction 1) the point light is at (0, 1, 0) hence the light direction is 90 degrees apart from the normal direction. The output should be zero for this case """ color = torch.tensor([1, 1, 1], dtype=torch.float32) location = torch.tensor( [0, 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32 ) points = torch.tensor([0, 0, 0], dtype=torch.float32) normals = torch.tensor([0, 0, 1], dtype=torch.float32) expected_output = torch.tensor( [1 / np.sqrt(2), 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32 ) expected_output = expected_output.view(-1, 1, 3) light = PointLights(diffuse_color=color[None, :], location=location[None, :]) output_light = light.diffuse( points=points[None, None, :], normals=normals[None, None, :] ) self.assertClose(output_light, expected_output) # Change light direction to be 90 degrees apart from normal direction. location = torch.tensor([0, 1, 0], dtype=torch.float32) expected_output = torch.zeros_like(expected_output) light = PointLights(diffuse_color=color[None, :], location=location[None, :]) output_light = light.diffuse( points=points[None, None, :], normals=normals[None, None, :] ) self.assertClose(output_light, expected_output) def test_diffuse_batched(self): """ Test with a batch where each batch element has one point where the normal and light direction are 45 degrees apart. """ batch_size = 10 color = torch.tensor([1, 1, 1], dtype=torch.float32) direction = torch.tensor( [0, 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32 ) normals = torch.tensor([0, 0, 1], dtype=torch.float32) expected_out = torch.tensor( [1 / np.sqrt(2), 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32 ) # Reshape direction = direction.view(-1, 3).expand(batch_size, -1) normals = normals.view(-1, 1, 3).expand(batch_size, -1, -1) color = color.view(-1, 3).expand(batch_size, -1) expected_out = expected_out.view(-1, 1, 3).expand(batch_size, 1, 3) lights = DirectionalLights(diffuse_color=color, direction=direction) output_light = lights.diffuse(normals=normals) self.assertClose(output_light, expected_out) def test_diffuse_batched_broadcast_inputs(self): """ Test with a batch where each batch element has one point where the normal and light direction are 45 degrees apart. The color and direction are the same for each batch element. """ batch_size = 10 color = torch.tensor([1, 1, 1], dtype=torch.float32) direction = torch.tensor( [0, 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32 ) normals = torch.tensor([0, 0, 1], dtype=torch.float32) expected_out = torch.tensor( [1 / np.sqrt(2), 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32 ) # Reshape normals = normals.view(-1, 1, 3).expand(batch_size, -1, -1) expected_out = expected_out.view(-1, 1, 3).expand(batch_size, 1, 3) # Don't expand the direction or color. Broadcasting should happen # in the diffuse function. direction = direction.view(1, 3) color = color.view(1, 3) lights = DirectionalLights(diffuse_color=color, direction=direction) output_light = lights.diffuse(normals=normals) self.assertClose(output_light, expected_out) def test_diffuse_batched_arbitrary_input_dims(self): """ Test with a batch of inputs where shape of the input is mimicking the shape in a shading function i.e. an interpolated normal per pixel for top K faces per pixel. """ N, H, W, K = 16, 256, 256, 100 device = torch.device("cuda:0") color = torch.tensor([1, 1, 1], dtype=torch.float32, device=device) direction = torch.tensor( [0, 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32, device=device ) normals = torch.tensor([0, 0, 1], dtype=torch.float32, device=device) normals = normals.view(1, 1, 1, 1, 3).expand(N, H, W, K, -1) direction = direction.view(1, 3) color = color.view(1, 3) expected_output = torch.tensor( [1 / np.sqrt(2), 1 / np.sqrt(2), 1 / np.sqrt(2)], dtype=torch.float32, device=device, ) expected_output = expected_output.view(1, 1, 1, 1, 3) expected_output = expected_output.expand(N, H, W, K, -1) lights = DirectionalLights(diffuse_color=color, direction=direction) output_light = lights.diffuse(normals=normals) self.assertClose(output_light, expected_output) def test_diffuse_batched_packed(self): """ Test with a batch of 2 meshes each of which has faces on a single plane. The normal and light direction are 45 degrees apart for the first mesh and 90 degrees apart for the second mesh. The points and normals are in the packed format i.e. no batch dimension. """ verts_packed = torch.rand((10, 3)) # points aren't used faces_per_mesh = [6, 4] mesh_to_vert_idx = [0] * faces_per_mesh[0] + [1] * faces_per_mesh[1] mesh_to_vert_idx = torch.tensor(mesh_to_vert_idx, dtype=torch.int64) color = torch.tensor([[1, 1, 1], [1, 1, 1]], dtype=torch.float32) direction = torch.tensor( [ [0, 1 / np.sqrt(2), 1 / np.sqrt(2)], [0, 1, 0], # 90 degrees to normal so zero diffuse light ], dtype=torch.float32, ) normals = torch.tensor([[0, 0, 1], [0, 0, 1]], dtype=torch.float32) expected_output = torch.zeros_like(verts_packed, dtype=torch.float32) expected_output[:6, :] += 1 / np.sqrt(2) expected_output[6:, :] = 0.0 lights = DirectionalLights( diffuse_color=color[mesh_to_vert_idx, :], direction=direction[mesh_to_vert_idx, :], ) output_light = lights.diffuse(normals=normals[mesh_to_vert_idx, :]) self.assertClose(output_light, expected_output) class TestSpecularLighting(TestCaseMixin, unittest.TestCase): def test_specular_directional_lights(self): """ Specular highlights depend on the camera position as well as the light position/direction. Test with a single point where: 1) the normal and light direction are -45 degrees apart and the normal and camera position are +45 degrees apart. The reflected light ray will be perfectly aligned with the camera so the output is 1.0. 2) the normal and light direction are -45 degrees apart and the camera position is behind the point. The output should be zero for this case. """ color = torch.tensor([1, 0, 1], dtype=torch.float32) direction = torch.tensor( [-1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32 ) camera_position = torch.tensor( [+1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32 ) points = torch.tensor([0, 0, 0], dtype=torch.float32) normals = torch.tensor([0, 1, 0], dtype=torch.float32) expected_output = torch.tensor([1.0, 0.0, 1.0], dtype=torch.float32) expected_output = expected_output.view(1, 1, 3).repeat(3, 1, 1) lights = DirectionalLights(specular_color=color, direction=direction) output_light = lights.specular( points=points[None, None, :], normals=normals[None, None, :], camera_position=camera_position[None, :], shininess=torch.tensor(10), ) self.assertClose(output_light, expected_output) # Change camera position to be behind the point. camera_position = torch.tensor( [+1 / np.sqrt(2), -1 / np.sqrt(2), 0], dtype=torch.float32 ) expected_output = torch.zeros_like(expected_output) output_light = lights.specular( points=points[None, None, :], normals=normals[None, None, :], camera_position=camera_position[None, :], shininess=torch.tensor(10), ) self.assertClose(output_light, expected_output) def test_specular_point_lights(self): """ Replace directional lights with point lights and check the output is the same. Test an additional case where the angle between the light reflection direction and the view direction is 30 degrees. """ color = torch.tensor([1, 0, 1], dtype=torch.float32) location = torch.tensor([-1, 1, 0], dtype=torch.float32) camera_position = torch.tensor( [+1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32 ) points = torch.tensor([0, 0, 0], dtype=torch.float32) normals = torch.tensor([0, 1, 0], dtype=torch.float32) expected_output = torch.tensor([1.0, 0.0, 1.0], dtype=torch.float32) expected_output = expected_output.view(-1, 1, 3) lights = PointLights(specular_color=color[None, :], location=location[None, :]) output_light = lights.specular( points=points[None, None, :], normals=normals[None, None, :], camera_position=camera_position[None, :], shininess=torch.tensor(10), ) self.assertClose(output_light, expected_output) # Change camera position to be behind the point camera_position = torch.tensor( [+1 / np.sqrt(2), -1 / np.sqrt(2), 0], dtype=torch.float32 ) expected_output = torch.zeros_like(expected_output) output_light = lights.specular( points=points[None, None, :], normals=normals[None, None, :], camera_position=camera_position[None, :], shininess=torch.tensor(10), ) self.assertClose(output_light, expected_output) # Change camera direction to be 30 degrees from the reflection direction camera_position = torch.tensor( [+1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32 ) rotate_30 = RotateAxisAngle(-30, axis="z") camera_position = rotate_30.transform_points(camera_position[None, :]) expected_output = torch.tensor( [np.cos(30.0 * np.pi / 180), 0.0, np.cos(30.0 * np.pi / 180)], dtype=torch.float32, ) expected_output = expected_output.view(-1, 1, 3) output_light = lights.specular( points=points[None, None, :], normals=normals[None, None, :], camera_position=camera_position[None, :], shininess=torch.tensor(10), ) self.assertClose(output_light, expected_output**10) def test_specular_batched(self): batch_size = 10 color = torch.tensor([1, 0, 1], dtype=torch.float32) direction = torch.tensor( [-1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32 ) camera_position = torch.tensor( [+1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32 ) points = torch.tensor([0, 0, 0], dtype=torch.float32) normals = torch.tensor([0, 1, 0], dtype=torch.float32) expected_out = torch.tensor([1.0, 0.0, 1.0], dtype=torch.float32) # Reshape direction = direction.view(1, 3).expand(batch_size, -1) camera_position = camera_position.view(1, 3).expand(batch_size, -1) normals = normals.view(1, 1, 3).expand(batch_size, -1, -1) points = points.view(1, 1, 3).expand(batch_size, -1, -1) color = color.view(1, 3).expand(batch_size, -1) expected_out = expected_out.view(1, 1, 3).expand(batch_size, 1, 3) lights = DirectionalLights(specular_color=color, direction=direction) output_light = lights.specular( points=points, normals=normals, camera_position=camera_position, shininess=torch.tensor(10), ) self.assertClose(output_light, expected_out) def test_specular_batched_broadcast_inputs(self): batch_size = 10 color = torch.tensor([1, 0, 1], dtype=torch.float32) direction = torch.tensor( [-1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32 ) camera_position = torch.tensor( [+1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32 ) points = torch.tensor([0, 0, 0], dtype=torch.float32) normals = torch.tensor([0, 1, 0], dtype=torch.float32) expected_out = torch.tensor([1.0, 0.0, 1.0], dtype=torch.float32) # Reshape normals = normals.view(1, 1, 3).expand(batch_size, -1, -1) points = points.view(1, 1, 3).expand(batch_size, -1, -1) expected_out = expected_out.view(1, 1, 3).expand(batch_size, 1, 3) # Don't expand the direction, color or camera_position. # These should be broadcasted in the specular function direction = direction.view(1, 3) camera_position = camera_position.view(1, 3) color = color.view(1, 3) lights = DirectionalLights(specular_color=color, direction=direction) output_light = lights.specular( points=points, normals=normals, camera_position=camera_position, shininess=torch.tensor(10), ) self.assertClose(output_light, expected_out) def test_specular_batched_arbitrary_input_dims(self): """ Test with a batch of inputs where shape of the input is mimicking the shape expected after rasterization i.e. a normal per pixel for top K faces per pixel. """ device = torch.device("cuda:0") N, H, W, K = 8, 128, 128, 100 color = torch.tensor([1, 0, 1], dtype=torch.float32, device=device) direction = torch.tensor( [-1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32 ) camera_position = torch.tensor( [+1 / np.sqrt(2), 1 / np.sqrt(2), 0], dtype=torch.float32 ) points = torch.tensor([0, 0, 0], dtype=torch.float32, device=device) normals = torch.tensor([0, 1, 0], dtype=torch.float32, device=device) points = points.view(1, 1, 1, 1, 3).expand(N, H, W, K, 3) normals = normals.view(1, 1, 1, 1, 3).expand(N, H, W, K, 3) direction = direction.view(1, 3) color = color.view(1, 3) camera_position = camera_position.view(1, 3) expected_output = torch.tensor( [1.0, 0.0, 1.0], dtype=torch.float32, device=device ) expected_output = expected_output.view(-1, 1, 1, 1, 3) expected_output = expected_output.expand(N, H, W, K, -1) lights = DirectionalLights(specular_color=color, direction=direction) output_light = lights.specular( points=points, normals=normals, camera_position=camera_position, shininess=10.0, ) self.assertClose(output_light, expected_output) def test_specular_batched_packed(self): """ Test with a batch of 2 meshes each of which has faces on a single plane. The points and normals are in the packed format i.e. no batch dimension. """ faces_per_mesh = [6, 4] mesh_to_vert_idx = [0] * faces_per_mesh[0] + [1] * faces_per_mesh[1] mesh_to_vert_idx = torch.tensor(mesh_to_vert_idx, dtype=torch.int64) color = torch.tensor([[1, 1, 1], [1, 0, 1]], dtype=torch.float32) direction = torch.tensor( [[-1 / np.sqrt(2), 1 / np.sqrt(2), 0], [-1, 1, 0]], dtype=torch.float32 ) camera_position = torch.tensor( [ [+1 / np.sqrt(2), 1 / np.sqrt(2), 0], [+1 / np.sqrt(2), -1 / np.sqrt(2), 0], ], dtype=torch.float32, ) points = torch.tensor([[0, 0, 0]], dtype=torch.float32) normals = torch.tensor([[0, 1, 0], [0, 1, 0]], dtype=torch.float32) expected_output = torch.zeros((10, 3), dtype=torch.float32) expected_output[:6, :] += 1.0 lights = DirectionalLights( specular_color=color[mesh_to_vert_idx, :], direction=direction[mesh_to_vert_idx, :], ) output_light = lights.specular( points=points.view(-1, 3).expand(10, -1), normals=normals.view(-1, 3)[mesh_to_vert_idx, :], camera_position=camera_position[mesh_to_vert_idx, :], shininess=10.0, ) self.assertClose(output_light, expected_output)