litagin's picture
Use librosa
f4fa6cb
raw
history blame
5.64 kB
import os
import time
from pathlib import Path
import gradio as gr
import librosa
import spaces
import torch
from loguru import logger
from transformers import pipeline
is_hf = os.getenv("SYSTEM") == "spaces"
generate_kwargs = {
"language": "Japanese",
"do_sample": False,
"num_beams": 1,
"no_repeat_ngram_size": 3,
}
model_dict = {
"whisper-large-v2": "openai/whisper-large-v2",
"whisper-large-v3": "openai/whisper-large-v3",
"whisper-large-v3-turbo": "openai/whisper-large-v3-turbo",
"kotoba-whisper-v1.0": "kotoba-tech/kotoba-whisper-v1.0",
"kotoba-whisper-v2.0": "kotoba-tech/kotoba-whisper-v2.0",
"galgame-whisper-wip": (
"litagin/galgame-whisper-wip"
if is_hf
else "../whisper_finetune/galgame-whisper"
),
}
logger.info("Initializing pipelines...")
pipe_dict = {
k: pipeline(
"automatic-speech-recognition",
model=v,
device="cuda" if torch.cuda.is_available() else "cpu",
)
for k, v in model_dict.items()
}
logger.success("Pipelines initialized!")
@spaces.GPU
def transcribe_common(audio: str, model: str) -> tuple[str, float]:
logger.info(f"Transcribing {Path(audio).name} with {model}")
# Read and resample audio to 16kHz
y, sr = librosa.load(audio, mono=True, sr=16000)
# Get duration of audio
duration = librosa.get_duration(y=y, sr=sr)
logger.info(f"Duration: {duration:.2f}s")
if duration > 15:
return "Audio too long, limit is 15 seconds", 0
start_time = time.time()
result = pipe_dict[model](y, generate_kwargs=generate_kwargs)["text"]
end_time = time.time()
logger.success(f"Transcribed {audio} with {model} in {end_time - start_time:.2f}s")
logger.success(f"Result:\n{result}")
return result, end_time - start_time
def transcribe_large_v2(audio) -> tuple[str, float]:
return transcribe_common(audio, "whisper-large-v2")
def transcribe_large_v3(audio) -> tuple[str, float]:
return transcribe_common(audio, "whisper-large-v3")
def transcribe_large_v3_turbo(audio) -> tuple[str, float]:
return transcribe_common(audio, "whisper-large-v3-turbo")
def transcribe_kotoba_v1(audio) -> tuple[str, float]:
return transcribe_common(audio, "kotoba-whisper-v1.0")
def transcribe_kotoba_v2(audio) -> tuple[str, float]:
return transcribe_common(audio, "kotoba-whisper-v2.0")
def transcribe_galgame_whisper(audio) -> tuple[str, float]:
return transcribe_common(audio, "galgame-whisper-wip")
def warmup():
logger.info("Warm-up...")
return transcribe_large_v3_turbo("test.wav")
initial_md = """
# Galgame-Whisper (WIP) Demo
- https://huggingface.co/litagin/galgame-whisper-wip
- 日本語のみ対応
- 比較できるように他モデルもついでに試せる
- 現在0.1エポックくらい
- 音声は15秒まで
pipeに渡しているkwargsは以下の通り:
```python
generate_kwargs = {
"language": "Japanese",
"do_sample": False,
"num_beams": 1,
"no_repeat_ngram_size": 3,
}
```
"""
with gr.Blocks() as app:
gr.Markdown(initial_md)
audio = gr.Audio(type="filepath")
with gr.Row():
with gr.Column():
gr.Markdown("### Galgame-Whisper (WIP)")
button_galgame = gr.Button("Transcribe with Galgame-Whisper (WIP)")
time_galgame = gr.Textbox(label="Time taken")
output_galgame = gr.Textbox(label="Result")
with gr.Row():
with gr.Column():
gr.Markdown("### Whisper-Large-V2")
button_v2 = gr.Button("Transcribe with Whisper-Large-V2")
time_v2 = gr.Textbox(label="Time taken")
output_v2 = gr.Textbox(label="Result")
with gr.Column():
gr.Markdown("### Whisper-Large-V3")
button_v3 = gr.Button("Transcribe with Whisper-Large-V3")
time_v3 = gr.Textbox(label="Time taken")
output_v3 = gr.Textbox(label="Result")
with gr.Column():
gr.Markdown("### Whisper-Large-V3-Turbo")
button_v3_turbo = gr.Button("Transcribe with Whisper-Large-V3-Turbo")
time_v3_turbo = gr.Textbox(label="Time taken")
output_v3_turbo = gr.Textbox(label="Result")
with gr.Row():
with gr.Column():
gr.Markdown("### Kotoba-Whisper-V1.0")
button_kotoba_v1 = gr.Button("Transcribe with Kotoba-Whisper-V1.0")
time_kotoba_v1 = gr.Textbox(label="Time taken")
output_kotoba_v1 = gr.Textbox(label="Result")
with gr.Column():
gr.Markdown("### Kotoba-Whisper-V2.0")
button_kotoba_v2 = gr.Button("Transcribe with Kotoba-Whisper-V2.0")
time_kotoba_v2 = gr.Textbox(label="Time taken")
output_kotoba_v2 = gr.Textbox(label="Result")
warmup_result = gr.Textbox(label="Warm-up result", visible=False)
button_v2.click(transcribe_large_v2, inputs=audio, outputs=[output_v2, time_v2])
button_v3.click(transcribe_large_v3, inputs=audio, outputs=[output_v3, time_v3])
button_v3_turbo.click(
transcribe_large_v3_turbo,
inputs=audio,
outputs=[output_v3_turbo, time_v3_turbo],
)
button_kotoba_v1.click(
transcribe_kotoba_v1, inputs=audio, outputs=[output_kotoba_v1, time_kotoba_v1]
)
button_kotoba_v2.click(
transcribe_kotoba_v2, inputs=audio, outputs=[output_kotoba_v2, time_kotoba_v2]
)
button_galgame.click(
transcribe_galgame_whisper,
inputs=audio,
outputs=[output_galgame, time_galgame],
)
app.load(warmup, inputs=[], outputs=[warmup_result], queue=True)
app.launch(inbrowser=True)