Spaces:
Running
Running
init
Browse files- .gitignore +2 -0
- README.md +1 -1
- app.py +260 -0
- requirements.txt +5 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
.venv/
|
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title: Make Anime
|
3 |
emoji: ⚡
|
4 |
colorFrom: red
|
5 |
colorTo: gray
|
|
|
1 |
---
|
2 |
+
title: Make Anime Emotion Dataset
|
3 |
emoji: ⚡
|
4 |
colorFrom: red
|
5 |
colorTo: gray
|
app.py
ADDED
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import warnings
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
import librosa
|
7 |
+
import numpy as np
|
8 |
+
from datasets import IterableDatasetDict, load_dataset
|
9 |
+
from gradio_client import Client
|
10 |
+
from loguru import logger
|
11 |
+
|
12 |
+
warnings.filterwarnings("ignore")
|
13 |
+
|
14 |
+
NUM_TAR_FILES = 115
|
15 |
+
HF_PATH_TO_DATASET = "litagin/Galgame_Speech_SER_16kHz"
|
16 |
+
|
17 |
+
hf_token = os.getenv("HF_TOKEN")
|
18 |
+
client = Client("litagin/ser_record", hf_token=hf_token)
|
19 |
+
|
20 |
+
id2label = {
|
21 |
+
0: "Angry",
|
22 |
+
1: "Disgusted",
|
23 |
+
2: "Embarrassed",
|
24 |
+
3: "Fearful",
|
25 |
+
4: "Happy",
|
26 |
+
5: "Sad",
|
27 |
+
6: "Surprised",
|
28 |
+
7: "Neutral",
|
29 |
+
8: "Sexual1",
|
30 |
+
9: "Sexual2",
|
31 |
+
}
|
32 |
+
|
33 |
+
id2rich_label = {
|
34 |
+
0: "😠 怒り (0)",
|
35 |
+
1: "😒 嫌悪 (1)",
|
36 |
+
2: "😳 恥ずかしさ・戸惑い (2)",
|
37 |
+
3: "😨 恐怖 (3)",
|
38 |
+
4: "😊 幸せ (4)",
|
39 |
+
5: "😢 悲しみ (5)",
|
40 |
+
6: "😲 驚き (6)",
|
41 |
+
7: "😐 中立 (7)",
|
42 |
+
8: "🥰 NSFW1 (8)",
|
43 |
+
9: "🍭 NSFW2 (9)",
|
44 |
+
}
|
45 |
+
|
46 |
+
current_item: dict | None = None
|
47 |
+
|
48 |
+
|
49 |
+
def _load_dataset(
|
50 |
+
*,
|
51 |
+
streaming: bool = True,
|
52 |
+
use_local_dataset: bool = False,
|
53 |
+
local_dataset_path: str | None = None,
|
54 |
+
data_dir: str = "data",
|
55 |
+
) -> IterableDatasetDict:
|
56 |
+
data_files = {
|
57 |
+
"train": [
|
58 |
+
f"galgame-speech-ser-16kHz-train-000{index:03d}.tar"
|
59 |
+
for index in range(0, NUM_TAR_FILES)
|
60 |
+
],
|
61 |
+
}
|
62 |
+
if use_local_dataset:
|
63 |
+
assert local_dataset_path is not None
|
64 |
+
path = local_dataset_path
|
65 |
+
else:
|
66 |
+
path = HF_PATH_TO_DATASET
|
67 |
+
dataset: IterableDatasetDict = load_dataset(
|
68 |
+
path=path, data_dir=data_dir, data_files=data_files, streaming=streaming
|
69 |
+
) # type: ignore
|
70 |
+
|
71 |
+
dataset = dataset.remove_columns(["__url__"])
|
72 |
+
dataset = dataset.rename_column("ogg", "audio")
|
73 |
+
|
74 |
+
return dataset
|
75 |
+
|
76 |
+
|
77 |
+
logger.info("Start loading dataset")
|
78 |
+
ds = _load_dataset(streaming=True, use_local_dataset=False)
|
79 |
+
logger.info("Dataset loaded")
|
80 |
+
# seed = random.randint(0, 2**32 - 1)
|
81 |
+
# logger.info(f"Seed: {seed}")
|
82 |
+
# ds_iter = iter(ds["train"].shuffle(seed=seed))
|
83 |
+
ds_iter = iter(ds["train"])
|
84 |
+
|
85 |
+
shortcut_js = """
|
86 |
+
<script>
|
87 |
+
function shortcuts(e) {
|
88 |
+
if (e.key === "Enter") {
|
89 |
+
document.getElementById("btn_skip").click();
|
90 |
+
} else if (e.key === "0") {
|
91 |
+
document.getElementById("btn_0").click();
|
92 |
+
} else if (e.key === "1") {
|
93 |
+
document.getElementById("btn_1").click();
|
94 |
+
} else if (e.key === "2") {
|
95 |
+
document.getElementById("btn_2").click();
|
96 |
+
} else if (e.key === "3") {
|
97 |
+
document.getElementById("btn_3").click();
|
98 |
+
} else if (e.key === "4") {
|
99 |
+
document.getElementById("btn_4").click();
|
100 |
+
} else if (e.key === "5") {
|
101 |
+
document.getElementById("btn_5").click();
|
102 |
+
} else if (e.key === "6") {
|
103 |
+
document.getElementById("btn_6").click();
|
104 |
+
} else if (e.key === "7") {
|
105 |
+
document.getElementById("btn_7").click();
|
106 |
+
} else if (e.key === "8") {
|
107 |
+
document.getElementById("btn_8").click();
|
108 |
+
} else if (e.key === "9") {
|
109 |
+
document.getElementById("btn_9").click();
|
110 |
+
}
|
111 |
+
}
|
112 |
+
document.addEventListener('keypress', shortcuts, false);
|
113 |
+
</script>
|
114 |
+
"""
|
115 |
+
|
116 |
+
|
117 |
+
def modify_speed(
|
118 |
+
data: tuple[int, np.ndarray], speed: float = 1.0
|
119 |
+
) -> tuple[int, np.ndarray]:
|
120 |
+
if speed == 1.0:
|
121 |
+
return data
|
122 |
+
sr, array = data
|
123 |
+
return sr, librosa.effects.time_stretch(array, rate=speed)
|
124 |
+
|
125 |
+
|
126 |
+
def parse_item(item, speed: float = 1.0) -> dict:
|
127 |
+
label_id = item["cls"]
|
128 |
+
sampling_rate = item["audio"]["sampling_rate"]
|
129 |
+
array = item["audio"]["array"]
|
130 |
+
|
131 |
+
return {
|
132 |
+
"key": item["__key__"],
|
133 |
+
"audio": (sampling_rate, array),
|
134 |
+
"text": item["txt"],
|
135 |
+
"label": id2rich_label[label_id],
|
136 |
+
"label_id": label_id,
|
137 |
+
}
|
138 |
+
|
139 |
+
|
140 |
+
def get_next_parsed_item(speed: float = 1.0) -> dict:
|
141 |
+
logger.info("Getting next item")
|
142 |
+
next_item = next(ds_iter)
|
143 |
+
parsed = parse_item(next_item, speed=speed)
|
144 |
+
logger.info(
|
145 |
+
f"Next item:\nkey={parsed['key']}\ntext={parsed['text']}\nlabel={parsed['label']}"
|
146 |
+
)
|
147 |
+
return parsed
|
148 |
+
|
149 |
+
|
150 |
+
md = """
|
151 |
+
# 説明
|
152 |
+
|
153 |
+
- このアプリは、ゲームのセリフを感情ラベル付けして、大規模な感情音声データセットを作成するためのものです
|
154 |
+
- **性的な音声が含まれるため、18歳未満の方はご利用をお控えください**
|
155 |
+
- 既存のラベルが適切であれば、そのまま「現在の感情ラベルで適切」ボタンを押してください
|
156 |
+
- ラベルを修正する場合は、適切なボタンを押してください
|
157 |
+
- ショートカットキー(カッコ内)を使うこともできます
|
158 |
+
|
159 |
+
# 補足
|
160 |
+
|
161 |
+
- `🥰 NSFW1` は女性の性的行為中の音声(喘ぎ声等)
|
162 |
+
- `🍭 NSFW2` はキスシーンでのリップ音やフェラシーンでのしゃぶる音(チュパ音)を表します
|
163 |
+
- 感情が音声からは特に読み取れない場合は `😐 中立` を選択してください
|
164 |
+
"""
|
165 |
+
|
166 |
+
with gr.Blocks(head=shortcut_js) as app:
|
167 |
+
gr.Markdown(md)
|
168 |
+
with gr.Row():
|
169 |
+
with gr.Column():
|
170 |
+
btn_init = gr.Button("初期化・再読み込み")
|
171 |
+
speed = gr.Slider(
|
172 |
+
minimum=0.5, maximum=5.0, step=0.1, value=1.0, label="再生速度"
|
173 |
+
)
|
174 |
+
with gr.Column(variant="panel"):
|
175 |
+
key = gr.Textbox(label="Key")
|
176 |
+
audio = gr.Audio()
|
177 |
+
text = gr.Textbox(label="Text")
|
178 |
+
label = gr.Textbox(label="感情ラベル")
|
179 |
+
label_id = gr.Textbox(visible=False)
|
180 |
+
btn_skip = gr.Button("現在の感情ラベルで適切 (Enter)", elem_id="btn_skip")
|
181 |
+
with gr.Column():
|
182 |
+
gr.Markdown("# 感情ラベルを修正する場合")
|
183 |
+
btn_list = [
|
184 |
+
gr.Button(id2rich_label[_id], elem_id=f"btn_{_id}") for _id in range(10)
|
185 |
+
]
|
186 |
+
|
187 |
+
def update_current_item(data: dict) -> dict:
|
188 |
+
global current_item
|
189 |
+
if current_item is None:
|
190 |
+
speed_value = data[speed]
|
191 |
+
current_item = get_next_parsed_item(speed=speed_value)
|
192 |
+
modified_audio = modify_speed(current_item["audio"], speed=data[speed])
|
193 |
+
return {
|
194 |
+
key: current_item["key"],
|
195 |
+
audio: gr.Audio(modified_audio, autoplay=True),
|
196 |
+
text: current_item["text"],
|
197 |
+
label: current_item["label"],
|
198 |
+
label_id: current_item["label_id"],
|
199 |
+
}
|
200 |
+
|
201 |
+
def set_next_item(data: dict) -> dict:
|
202 |
+
global current_item
|
203 |
+
speed_value = data[speed]
|
204 |
+
current_item = get_next_parsed_item(speed=speed_value)
|
205 |
+
return update_current_item(data)
|
206 |
+
|
207 |
+
def put_unmodified(data: dict) -> dict:
|
208 |
+
logger.info("Putting unmodified")
|
209 |
+
current_key = data[key]
|
210 |
+
current_label_id = data[label_id]
|
211 |
+
_ = client.predict(
|
212 |
+
new_data=json.dumps(
|
213 |
+
{
|
214 |
+
"key": current_key,
|
215 |
+
"cls": int(current_label_id),
|
216 |
+
}
|
217 |
+
),
|
218 |
+
api_name="/put_data",
|
219 |
+
)
|
220 |
+
logger.info("Unmodified sent")
|
221 |
+
return set_next_item(data)
|
222 |
+
|
223 |
+
btn_init.click(
|
224 |
+
update_current_item, inputs={speed}, outputs=[key, audio, text, label, label_id]
|
225 |
+
)
|
226 |
+
|
227 |
+
btn_skip.click(
|
228 |
+
put_unmodified,
|
229 |
+
inputs={key, label_id, speed},
|
230 |
+
outputs=[key, audio, text, label, label_id],
|
231 |
+
)
|
232 |
+
|
233 |
+
functions_list = []
|
234 |
+
for _id in range(10):
|
235 |
+
|
236 |
+
def put_label(data: dict, _id=_id) -> dict:
|
237 |
+
logger.info(f"Putting label: {id2rich_label[_id]}")
|
238 |
+
current_key = data[key]
|
239 |
+
_ = client.predict(
|
240 |
+
new_data=json.dumps(
|
241 |
+
{
|
242 |
+
"key": current_key,
|
243 |
+
"cls": _id,
|
244 |
+
}
|
245 |
+
),
|
246 |
+
api_name="/put_data",
|
247 |
+
)
|
248 |
+
logger.info("Modified sent")
|
249 |
+
return set_next_item(data)
|
250 |
+
|
251 |
+
functions_list.append(put_label)
|
252 |
+
|
253 |
+
for _id in range(10):
|
254 |
+
btn_list[_id].click(
|
255 |
+
functions_list[_id],
|
256 |
+
inputs={key, speed},
|
257 |
+
outputs=[key, audio, text, label, label_id],
|
258 |
+
)
|
259 |
+
|
260 |
+
app.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
datasets
|
2 |
+
gradio
|
3 |
+
librosa
|
4 |
+
loguru
|
5 |
+
numpy<2.0
|