infini-gram / app.py
liujch1998's picture
Add IP-based throttle
0d3c7d8
raw
history blame
29 kB
import gradio as gr
import datetime
import json
import os
import requests
import time
from constants import *
API_IPADDR = os.environ.get('API_IPADDR', None)
default_concurrency_limit = os.environ.get('default_concurrency_limit', 10)
max_size = os.environ.get('max_size', 100)
max_threads = os.environ.get('max_threads', 40)
debug = (os.environ.get('debug', 'False') != 'False')
last_query_time_by_ip = {}
def process(corpus_desc, query_desc, query, ret_num, request: gr.Request):
global last_query_time_by_ip
ip = request.client.host if request else ''
timestamp = datetime.datetime.now().strftime('%Y%m%d-%H%M%S')
t = time.time()
last_query_time = 0 if ip == '' else last_query_time_by_ip.get(ip, 0)
blocked = (t - last_query_time < MIN_QUERY_INTERVAL_SECONDS)
corpus = CORPUS_BY_DESC[corpus_desc]
query_type = QUERY_TYPE_BY_DESC[query_desc]
data = {
'timestamp': timestamp,
'ip': ip,
'blocked': blocked,
'corpus': corpus,
'query_type': query_type,
'query': query,
}
print(json.dumps(data))
if blocked:
return tuple([f'You queried too frequently. Please try again in {MIN_QUERY_INTERVAL_SECONDS} seconds.'] + [''] * (ret_num - 1))
if ip != '':
last_query_time_by_ip[ip] = t
if API_IPADDR is None:
raise ValueError(f'API_IPADDR envvar is not set!')
response = requests.post(f'http://{API_IPADDR}:5000/', json=data)
if response.status_code == 200:
result = response.json()
else:
raise ValueError(f'HTTP error {response.status_code}: {response.json()}')
if debug:
print(result)
return result
def process_1(corpus_desc, query_desc, query, request: gr.Request):
return process(corpus_desc, query_desc, query, 1, request)
def process_2(corpus_desc, query_desc, query, request: gr.Request):
return process(corpus_desc, query_desc, query, 2, request)
def process_3(corpus_desc, query_desc, query, request: gr.Request):
return process(corpus_desc, query_desc, query, 3, request)
def process_ard_cnf_multi(corpus_desc, query_desc, query, maxnum, request: gr.Request):
global last_query_time_by_ip
ip = request.client.host if request else ''
timestamp = datetime.datetime.now().strftime('%Y%m%d-%H%M%S')
t = time.time()
last_query_time = 0 if ip == '' else last_query_time_by_ip.get(ip, 0)
blocked = (t - last_query_time < MIN_QUERY_INTERVAL_SECONDS)
corpus = CORPUS_BY_DESC[corpus_desc]
query_type = QUERY_TYPE_BY_DESC[query_desc]
timestamp = datetime.datetime.now().strftime('%Y%m%d-%H%M%S')
data = {
'timestamp': timestamp,
'ip': ip,
'blocked': blocked,
'corpus': corpus,
'query_type': query_type,
'query': query,
'maxnum': maxnum,
}
print(json.dumps(data))
if blocked:
return tuple([f'You queried too frequently. Please try again in {MIN_QUERY_INTERVAL_SECONDS} seconds.'] + [''] * 11)
if ip != '':
last_query_time_by_ip[ip] = t
if API_IPADDR is None:
raise ValueError(f'API_IPADDR envvar is not set!')
response = requests.post(f'http://{API_IPADDR}:5000/', json=data)
if response.status_code == 200:
result = response.json()
else:
raise ValueError(f'HTTP error {response.status_code}: {response.json()}')
if debug:
print(result)
if len(result) != 3:
raise ValueError(f'Invalid result: {result}')
outputs, output_tokens, message = result[0], result[1], result[2]
outputs = outputs[:maxnum]
while len(outputs) < 10:
outputs.append([])
return message, output_tokens, outputs[0], outputs[1], outputs[2], outputs[3], outputs[4], outputs[5], outputs[6], outputs[7], outputs[8], outputs[9]
with gr.Blocks() as demo:
with gr.Column():
gr.HTML(
'''<h1 text-align="center">Infini-gram: An Engine for n-gram / ∞-gram Language Models with Trillion-Token Corpora</h1>
<p style='font-size: 16px;'>This is an engine that processes n-gram / ∞-gram queries on a text corpus. Please first select the corpus and the type of query, then enter your query and submit.</p>
<p style='font-size: 16px;'>The engine is developed by <a href="https://liujch1998.github.io">Jiacheng (Gary) Liu</a> and documented in our paper: <a href="https://arxiv.org/abs/2401.17377">Infini-gram: Scaling Unbounded n-gram Language Models to a Trillion Tokens</a></p>
<p style='font-size: 16px;'>HF Paper Page: <a href="https://huggingface.co/papers/2401.17377">https://huggingface.co/papers/2401.17377</a></p>
<p style='font-size: 16px;'><b>Note: We kindly ask you not to programmatically submit queries to the API at the moment. We will release a more stable API soon. Thank you :)</b></p>
'''
)
with gr.Row():
with gr.Column(scale=1):
corpus_desc = gr.Radio(choices=CORPUS_DESCS, label='Corpus', value=CORPUS_DESCS[0])
with gr.Column(scale=3):
query_desc = gr.Radio(
choices=QUERY_DESCS, label='Query Type', value=QUERY_DESCS[0],
)
with gr.Row(visible=True) as row_1:
with gr.Column():
gr.HTML('<h2>1. Count an n-gram</h2>')
gr.HTML('<p style="font-size: 16px;">This counts the number of times an n-gram appears in the corpus. If you submit an empty input, it will return the total number of tokens in the corpus.</p>')
gr.HTML('<p style="font-size: 16px;">Example query: <b>natural language processing</b> (the output is Cnt(natural language processing))</p>')
with gr.Row():
with gr.Column(scale=1):
count_input = gr.Textbox(placeholder='Enter a string (an n-gram) here', label='Query', interactive=True)
with gr.Row():
count_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True)
count_submit = gr.Button(value='Submit', variant='primary', visible=True)
count_output_tokens = gr.Textbox(label='Tokenized', lines=2, interactive=False)
with gr.Column(scale=1):
count_output = gr.Label(label='Count', num_top_classes=0)
with gr.Row(visible=False) as row_2:
with gr.Column():
gr.HTML('<h2>2. Compute the probability of the last token in an n-gram</h2>')
gr.HTML('<p style="font-size: 16px;">This computes the n-gram probability of the last token conditioned on the previous tokens (i.e. (n-1)-gram)).</p>')
gr.HTML('<p style="font-size: 16px;">Example query: <b>natural language processing</b> (the output is P(processing | natural language), by counting the appearance of the 3-gram "natural language processing" and the 2-gram "natural language", and take the division between the two)</p>')
gr.HTML('<p style="font-size: 16px;">Note: The (n-1)-gram needs to exist in the corpus. If the (n-1)-gram is not found in the corpus, an error message will appear.</p>')
with gr.Row():
with gr.Column(scale=1):
ngram_input = gr.Textbox(placeholder='Enter a string (an n-gram) here', label='Query', interactive=True)
with gr.Row():
ngram_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True)
ngram_submit = gr.Button(value='Submit', variant='primary', visible=True)
ngram_output_tokens = gr.Textbox(label='Tokenized', lines=2, interactive=False)
with gr.Column(scale=1):
ngram_output = gr.Label(label='Probability', num_top_classes=0)
with gr.Row(visible=False) as row_3:
with gr.Column():
gr.HTML('<h2>3. Compute the next-token distribution of an (n-1)-gram</h2>')
gr.HTML('<p style="font-size: 16px;">This is an extension of the Query 2: It interprets your input as the (n-1)-gram and gives you the full next-token distribution.</p>')
gr.HTML('<p style="font-size: 16px;">Example query: <b>natural language</b> (the output is P(* | natural language), for the top-10 tokens *)</p>')
gr.HTML(f'<p style="font-size: 16px;">Note: The (n-1)-gram needs to exist in the corpus. If the (n-1)-gram is not found in the corpus, an error message will appear. If the (n-1)-gram appears more than {MAX_CNT_FOR_NTD} times in the corpus, the result will be approximate.</p>')
with gr.Row():
with gr.Column(scale=1):
ntd_input = gr.Textbox(placeholder='Enter a string (an (n-1)-gram) here', label='Query', interactive=True)
with gr.Row():
ntd_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True)
ntd_submit = gr.Button(value='Submit', variant='primary', visible=True)
ntd_output_tokens = gr.Textbox(label='Tokenized', lines=2, interactive=False)
with gr.Column(scale=1):
ntd_output = gr.Label(label='Distribution', num_top_classes=10)
with gr.Row(visible=False) as row_4:
with gr.Column():
gr.HTML('<h2>4. Compute the ∞-gram probability of the last token</h2>')
gr.HTML('<p style="font-size: 16px;">This computes the ∞-gram probability of the last token conditioned on the previous tokens. Compared to Query 2 (which uses your entire input for n-gram modeling), here we take the longest suffix that we can find in the corpus.</p>')
gr.HTML('<p style="font-size: 16px;">Example query: <b>I love natural language processing</b> (the output is P(processing | natural language), because "natural language" appears in the corpus but "love natural language" doesn\'t; in this case the effective n = 3)</p>')
gr.HTML('<p style="font-size: 16px;">Note: It may be possible that the effective n = 1, in which case it reduces to the uni-gram probability of the last token.</p>')
with gr.Row():
with gr.Column(scale=1):
infgram_input = gr.Textbox(placeholder='Enter a string here', label='Query', interactive=True)
with gr.Row():
infgram_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True)
infgram_submit = gr.Button(value='Submit', variant='primary', visible=True)
infgram_output_tokens = gr.Textbox(label='Tokenized', lines=2, interactive=False)
infgram_longest_suffix = gr.Textbox(label='Longest Found Suffix', interactive=False)
with gr.Column(scale=1):
infgram_output = gr.Label(label='Probability', num_top_classes=0)
with gr.Row(visible=False) as row_5:
with gr.Column():
gr.HTML('<h2>5. Compute the ∞-gram next-token distribution</h2>')
gr.HTML('<p style="font-size: 16px;">This is similar to Query 3, but with ∞-gram instead of n-gram.</p>')
gr.HTML('<p style="font-size: 16px;">Example query: <b>I love natural language</b> (the output is P(* | natural language), for the top-10 tokens *)</p>')
with gr.Row():
with gr.Column(scale=1):
infntd_input = gr.Textbox(placeholder='Enter a string here', label='Query', interactive=True)
with gr.Row():
infntd_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True)
infntd_submit = gr.Button(value='Submit', variant='primary', visible=True)
infntd_output_tokens = gr.Textbox(label='Tokenized', lines=2, interactive=False)
infntd_longest_suffix = gr.Textbox(label='Longest Found Suffix', interactive=False)
with gr.Column(scale=1):
infntd_output = gr.Label(label='Distribution', num_top_classes=10)
# with gr.Row(visible=False) as row_6:
# with gr.Column():
# gr.HTML(f'''<h2>6. Searching for document containing n-gram(s)</h2>
# <p style="font-size: 16px;">This displays a random document in the corpus that satisfies your query. You can simply enter an n-gram, in which case the document displayed would contain your n-gram. You can also connect multiple n-gram terms with the AND/OR operators, in the <a href="https://en.wikipedia.org/wiki/Conjunctive_normal_form">CNF format</a>, in which case the displayed document contains n-grams such that it satisfies this logical constraint.</p>
# <p style="font-size: 16px;">Example queries:</p>
# <ul style="font-size: 16px;">
# <li><b>natural language processing</b> (the displayed document would contain "natural language processing")</li>
# <li><b>natural language processing AND deep learning</b> (the displayed document would contain both "natural language processing" and "deep learning")</li>
# <li><b>natural language processing OR artificial intelligence AND deep learning OR machine learning</b> (the displayed document would contain at least one of "natural language processing" / "artificial intelligence", and also at least one of "deep learning" / "machine learning")</li>
# </ul>
# <p style="font-size: 16px;">If you want another random document, simply hit the Submit button again :)</p>
# <p style="font-size: 16px;">A few notes:</p>
# <ul style="font-size: 16px;">
# <li>When you write a query in CNF, note that <b>OR has higher precedence than AND</b> (which is contrary to conventions in boolean algebra).</li>
# <li>If the document is too long, it will be truncated to {MAX_OUTPUT_DOC_TOKENS} tokens.</li>
# <li>We can only include documents where all terms (or clauses) are separated by no more than {MAX_DIFF_TOKENS} tokens.</li>
# <li>If you query for two or more clauses, and a clause has more than {MAX_CLAUSE_FREQ_FAST_APPROX_PER_SHARD} matches (per shard), we will estimate the count from a random subset of all documents containing that clause. This might cause a zero count on conjuction of some simple n-grams (e.g., <b>birds AND oil</b>).</li>
# <li>The number of found documents may contain duplicates (e.g., if a document contains your query term twice, it may be counted twice).</li>
# </ul>
# <p style="font-size: 16px;">❗️WARNING: Corpus may contain problematic contents such as PII, toxicity, hate speech, and NSFW text. This tool is merely presenting selected text from the corpus, without any post-hoc safety filtering. It is NOT creating new text. This is a research prototype through which we can expose and examine existing problems with massive text corpora. Please use with caution. Don't be evil :)</p>
# ''')
# with gr.Row():
# with gr.Column(scale=1):
# ard_cnf_input = gr.Textbox(placeholder='Enter a query here', label='Query', interactive=True)
# with gr.Row():
# ard_cnf_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True)
# ard_cnf_submit = gr.Button(value='Submit', variant='primary', visible=True)
# ard_cnf_output_tokens = gr.Textbox(label='Tokenized', lines=2, interactive=False)
# with gr.Column(scale=1):
# ard_cnf_output_message = gr.Label(label='Message', num_top_classes=0)
# ard_cnf_output = gr.HighlightedText(label='Document', show_legend=False, color_map={"-": "red", "0": "green", "1": "cyan", "2": "blue", "3": "magenta"})
with gr.Row(visible=False) as row_6a:
with gr.Column():
gr.HTML(f'''<h2>6. Searching for documents containing n-gram(s)</h2>
<p style="font-size: 16px;">This displays a few random documents in the corpus that satisfies your query. You can simply enter an n-gram, in which case the document displayed would contain your n-gram. You can also connect multiple n-gram terms with the AND/OR operators, in the <a href="https://en.wikipedia.org/wiki/Conjunctive_normal_form">CNF format</a>, in which case the displayed document contains n-grams such that it satisfies this logical constraint.</p>
<p style="font-size: 16px;">Example queries:</p>
<ul style="font-size: 16px;">
<li><b>natural language processing</b> (the displayed document would contain "natural language processing")</li>
<li><b>natural language processing AND deep learning</b> (the displayed document would contain both "natural language processing" and "deep learning")</li>
<li><b>natural language processing OR artificial intelligence AND deep learning OR machine learning</b> (the displayed document would contain at least one of "natural language processing" / "artificial intelligence", and also at least one of "deep learning" / "machine learning")</li>
</ul>
<p style="font-size: 16px;">If you want another batch of random documents, simply hit the Submit button again :)</p>
<p style="font-size: 16px;">A few notes:</p>
<ul style="font-size: 16px;">
<li>When you write a query in CNF, note that <b>OR has higher precedence than AND</b> (which is contrary to conventions in boolean algebra).</li>
<li>If the document is too long, it will be truncated to {MAX_OUTPUT_DOC_TOKENS} tokens.</li>
<li>We can only include documents where all terms (or clauses) are separated by no more than {MAX_DIFF_TOKENS} tokens.</li>
<li>If you query for two or more clauses, and a clause has more than {MAX_CLAUSE_FREQ_FAST_APPROX_PER_SHARD} matches (per shard), we will estimate the count from a random subset of all documents containing that clause. This might cause a zero count on conjuction of some simple n-grams (e.g., <b>birds AND oil</b>).</li>
<li>The number of found documents may contain duplicates (e.g., if a document contains your query term twice, it may be counted twice).</li>
</ul>
<p style="font-size: 16px;">❗️WARNING: Corpus may contain problematic contents such as PII, toxicity, hate speech, and NSFW text. This tool is merely presenting selected text from the corpus, without any post-hoc safety filtering. It is NOT creating new text. This is a research prototype through which we can expose and examine existing problems with massive text corpora. Please use with caution. Don't be evil :)</p>
''')
with gr.Row():
with gr.Column(scale=1):
ard_cnf_multi_input = gr.Textbox(placeholder='Enter a query here', label='Query', interactive=True)
ard_cnf_multi_maxnum = gr.Slider(minimum=1, maximum=10, value=1, step=1, label='Number of documents to Display')
with gr.Row():
ard_cnf_multi_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True)
ard_cnf_multi_submit = gr.Button(value='Submit', variant='primary', visible=True)
ard_cnf_multi_output_tokens = gr.Textbox(label='Tokenized', lines=2, interactive=False)
with gr.Column(scale=1):
ard_cnf_multi_output_message = gr.Label(label='Message', num_top_classes=0)
with gr.Tab(label='1'):
ard_cnf_multi_output_0 = gr.HighlightedText(label='Document', show_legend=False, color_map={"-": "red", "0": "green", "1": "cyan", "2": "blue", "3": "magenta"})
with gr.Tab(label='2'):
ard_cnf_multi_output_1 = gr.HighlightedText(label='Document', show_legend=False, color_map={"-": "red", "0": "green", "1": "cyan", "2": "blue", "3": "magenta"})
with gr.Tab(label='3'):
ard_cnf_multi_output_2 = gr.HighlightedText(label='Document', show_legend=False, color_map={"-": "red", "0": "green", "1": "cyan", "2": "blue", "3": "magenta"})
with gr.Tab(label='4'):
ard_cnf_multi_output_3 = gr.HighlightedText(label='Document', show_legend=False, color_map={"-": "red", "0": "green", "1": "cyan", "2": "blue", "3": "magenta"})
with gr.Tab(label='5'):
ard_cnf_multi_output_4 = gr.HighlightedText(label='Document', show_legend=False, color_map={"-": "red", "0": "green", "1": "cyan", "2": "blue", "3": "magenta"})
with gr.Tab(label='6'):
ard_cnf_multi_output_5 = gr.HighlightedText(label='Document', show_legend=False, color_map={"-": "red", "0": "green", "1": "cyan", "2": "blue", "3": "magenta"})
with gr.Tab(label='7'):
ard_cnf_multi_output_6 = gr.HighlightedText(label='Document', show_legend=False, color_map={"-": "red", "0": "green", "1": "cyan", "2": "blue", "3": "magenta"})
with gr.Tab(label='8'):
ard_cnf_multi_output_7 = gr.HighlightedText(label='Document', show_legend=False, color_map={"-": "red", "0": "green", "1": "cyan", "2": "blue", "3": "magenta"})
with gr.Tab(label='9'):
ard_cnf_multi_output_8 = gr.HighlightedText(label='Document', show_legend=False, color_map={"-": "red", "0": "green", "1": "cyan", "2": "blue", "3": "magenta"})
with gr.Tab(label='10'):
ard_cnf_multi_output_9 = gr.HighlightedText(label='Document', show_legend=False, color_map={"-": "red", "0": "green", "1": "cyan", "2": "blue", "3": "magenta"})
with gr.Row(visible=False) as row_7:
with gr.Column():
gr.HTML('<h2>7. Analyze an (AI-generated) document using ∞-gram</h2>')
gr.HTML('<p style="font-size: 16px;">This analyzes the document you entered using the ∞-gram. Each token is highlighted where (1) the color represents its ∞-gram probability (red is 0.0, blue is 1.0), and (2) the alpha represents the effective n (higher alpha means higher n).</p>')
gr.HTML('<p style="font-size: 16px;">If you hover over a token, the tokens preceding it are each highlighted where (1) the color represents the n-gram probability of your selected token, with the n-gram starting from that highlighted token (red is 0.0, blue is 1.0), and (2) the alpha represents the count of the (n-1)-gram starting from that highlighted token (and up to but excluding your selected token) (higher alpha means higher count).</p>')
with gr.Row():
with gr.Column(scale=1):
doc_analysis_input = gr.Textbox(placeholder='Enter a document here', label='Query', interactive=True, lines=10)
with gr.Row():
doc_analysis_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True)
doc_analysis_submit = gr.Button(value='Submit', variant='primary', visible=True)
with gr.Column(scale=1):
doc_analysis_output = gr.HTML(value='', label='Analysis')
with gr.Row():
gr.Markdown('''
If you find this tool useful, please kindly cite our paper:
```bibtex
@article{Liu2024InfiniGram,
title={Infini-gram: Scaling Unbounded n-gram Language Models to a Trillion Tokens},
author={Liu, Jiacheng and Min, Sewon and Zettlemoyer, Luke and Choi, Yejin and Hajishirzi, Hannaneh},
journal={arXiv preprint arXiv:2401.17377},
year={2024}
}
```
''')
count_clear.add([count_input, count_output, count_output_tokens])
ngram_clear.add([ngram_input, ngram_output, ngram_output_tokens])
ntd_clear.add([ntd_input, ntd_output, ntd_output_tokens])
infgram_clear.add([infgram_input, infgram_output, infgram_output_tokens])
infntd_clear.add([infntd_input, infntd_output, infntd_output_tokens, infntd_longest_suffix])
# ard_cnf_clear.add([ard_cnf_input, ard_cnf_output, ard_cnf_output_tokens, ard_cnf_output_message])
ard_cnf_multi_clear.add([ard_cnf_multi_input, ard_cnf_multi_output_tokens, ard_cnf_multi_output_message, ard_cnf_multi_output_0, ard_cnf_multi_output_1, ard_cnf_multi_output_2, ard_cnf_multi_output_3, ard_cnf_multi_output_4, ard_cnf_multi_output_5, ard_cnf_multi_output_6, ard_cnf_multi_output_7, ard_cnf_multi_output_8, ard_cnf_multi_output_9])
doc_analysis_clear.add([doc_analysis_input, doc_analysis_output])
count_submit.click(process_2, inputs=[corpus_desc, query_desc, count_input], outputs=[count_output, count_output_tokens], api_name=False)
ngram_submit.click(process_2, inputs=[corpus_desc, query_desc, ngram_input], outputs=[ngram_output, ngram_output_tokens], api_name=False)
ntd_submit.click(process_2, inputs=[corpus_desc, query_desc, ntd_input], outputs=[ntd_output, ntd_output_tokens], api_name=False)
infgram_submit.click(process_3, inputs=[corpus_desc, query_desc, infgram_input], outputs=[infgram_output, infgram_output_tokens, infgram_longest_suffix], api_name=False)
infntd_submit.click(process_3, inputs=[corpus_desc, query_desc, infntd_input], outputs=[infntd_output, infntd_output_tokens, infntd_longest_suffix], api_name=False)
# ard_cnf_submit.click(process, inputs=[corpus_desc, query_desc, ard_cnf_input], outputs=[ard_cnf_output, ard_cnf_output_tokens, ard_cnf_output_message], api_name=False)
ard_cnf_multi_submit.click(process_ard_cnf_multi, inputs=[corpus_desc, query_desc, ard_cnf_multi_input, ard_cnf_multi_maxnum], outputs=[ard_cnf_multi_output_message, ard_cnf_multi_output_tokens, ard_cnf_multi_output_0, ard_cnf_multi_output_1, ard_cnf_multi_output_2, ard_cnf_multi_output_3, ard_cnf_multi_output_4, ard_cnf_multi_output_5, ard_cnf_multi_output_6, ard_cnf_multi_output_7, ard_cnf_multi_output_8, ard_cnf_multi_output_9], api_name=False)
doc_analysis_submit.click(process_1, inputs=[corpus_desc, query_desc, doc_analysis_input], outputs=[doc_analysis_output], api_name=False)
def update_query_desc(selection):
return {
row_1: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['count'])),
row_2: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['compute_prob'])),
row_3: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['get_next_token_distribution_approx'])),
row_4: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['compute_infgram_prob'])),
row_5: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['get_infgram_next_token_distribution_approx'])),
# row_6: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['get_a_random_document_from_cnf_query_fast_approx'])),
row_6a: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['get_random_documents_from_cnf_query_fast_approx'])),
# row_7: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['analyze_document'])),
}
query_desc.change(fn=update_query_desc, inputs=query_desc, outputs=[
row_1,
row_2,
row_3,
row_4,
row_5,
# row_6,
row_6a,
# row_7,
])
for d in demo.dependencies:
d['api_name'] = False
for d in demo.config['dependencies']:
d['api_name'] = False
if debug:
print(demo.dependencies)
print(demo.config['dependencies'])
demo.queue(
default_concurrency_limit=default_concurrency_limit,
max_size=max_size,
api_open=False,
).launch(
max_threads=max_threads,
debug=debug,
show_api=False,
)
for d in gr.context.Context.root_block.dependencies:
d['api_name'] = False
if debug:
print(gr.context.Context.root_block.dependencies)