liujch1998 commited on
Commit
26b368d
1 Parent(s): 4641d03

Sync Q6 updates

Browse files
Files changed (2) hide show
  1. app.py +118 -32
  2. constants.py +12 -11
app.py CHANGED
@@ -15,23 +15,53 @@ def process(corpus_desc, query_desc, query):
15
  corpus = CORPUS_BY_DESC[corpus_desc]
16
  query_type = QUERY_TYPE_BY_DESC[query_desc]
17
  timestamp = datetime.datetime.now().strftime('%Y%m%d-%H%M%S')
18
- print(json.dumps({'timestamp': timestamp, 'corpus': corpus, 'query_type': query_type, 'query': query}))
19
  data = {
 
20
  'corpus': corpus,
21
  'query_type': query_type,
22
  'query': query,
23
  }
 
24
  if API_IPADDR is None:
25
  raise ValueError(f'API_IPADDR envvar is not set!')
26
  response = requests.post(f'http://{API_IPADDR}:5000/', json=data)
27
  if response.status_code == 200:
28
  result = response.json()
29
  else:
30
- raise ValueError(f'Invalid response: {response.status_code}')
31
  if debug:
32
  print(result)
33
  return result
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  with gr.Blocks() as demo:
36
  with gr.Column():
37
  gr.HTML(
@@ -88,13 +118,13 @@ with gr.Blocks() as demo:
88
  gr.HTML(f'<p style="font-size: 16px;">Note: The (n-1)-gram needs to exist in the corpus. If the (n-1)-gram is not found in the corpus, an error message will appear. If the (n-1)-gram appears more than {MAX_CNT_FOR_NTD} times in the corpus, the result will be approximate.</p>')
89
  with gr.Row():
90
  with gr.Column(scale=1):
91
- a_ntd_input = gr.Textbox(placeholder='Enter a string (an (n-1)-gram) here', label='Query', interactive=True)
92
  with gr.Row():
93
- a_ntd_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True)
94
- a_ntd_submit = gr.Button(value='Submit', variant='primary', visible=True)
95
- a_ntd_output_tokens = gr.Textbox(label='Tokenized', lines=2, interactive=False)
96
  with gr.Column(scale=1):
97
- a_ntd_output = gr.Label(label='Distribution', num_top_classes=10)
98
 
99
  with gr.Row(visible=False) as row_4:
100
  with gr.Column():
@@ -120,46 +150,98 @@ with gr.Blocks() as demo:
120
  gr.HTML('<p style="font-size: 16px;">Example query: <b>I love natural language</b> (the output is P(* | natural language), for the top-10 tokens *)</p>')
121
  with gr.Row():
122
  with gr.Column(scale=1):
123
- a_infntd_input = gr.Textbox(placeholder='Enter a string here', label='Query', interactive=True)
124
  with gr.Row():
125
- a_infntd_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True)
126
- a_infntd_submit = gr.Button(value='Submit', variant='primary', visible=True)
127
- a_infntd_output_tokens = gr.Textbox(label='Tokenized', lines=2, interactive=False)
128
- a_infntd_longest_suffix = gr.Textbox(label='Longest Found Suffix', interactive=False)
129
  with gr.Column(scale=1):
130
- a_infntd_output = gr.Label(label='Distribution', num_top_classes=10)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
 
132
- with gr.Row(visible=False) as row_6:
133
  with gr.Column():
134
- gr.HTML(f'''<h2>6. Searching for document containing n-gram(s)</h2>
135
- <p style="font-size: 16px;">This displays a random document in the corpus that satisfies your query. You can simply enter an n-gram, in which case the document displayed would contain your n-gram. You can also connect multiple n-gram terms with the AND/OR operators, in the <a href="https://en.wikipedia.org/wiki/Conjunctive_normal_form">CNF format</a>, in which case the displayed document contains n-grams such that it satisfies this logical constraint.</p>
136
  <p style="font-size: 16px;">Example queries:</p>
137
  <ul style="font-size: 16px;">
138
  <li><b>natural language processing</b> (the displayed document would contain "natural language processing")</li>
139
  <li><b>natural language processing AND deep learning</b> (the displayed document would contain both "natural language processing" and "deep learning")</li>
140
  <li><b>natural language processing OR artificial intelligence AND deep learning OR machine learning</b> (the displayed document would contain at least one of "natural language processing" / "artificial intelligence", and also at least one of "deep learning" / "machine learning")</li>
141
  </ul>
142
- <p style="font-size: 16px;">If you want another random document, simply hit the Submit button again :)</p>
143
  <p style="font-size: 16px;">A few notes:</p>
144
  <ul style="font-size: 16px;">
145
  <li>When you write a query in CNF, note that <b>OR has higher precedence than AND</b> (which is contrary to conventions in boolean algebra).</li>
146
  <li>If the document is too long, it will be truncated to {MAX_OUTPUT_DOC_TOKENS} tokens.</li>
147
  <li>We can only include documents where all terms (or clauses) are separated by no more than {MAX_DIFF_TOKENS} tokens.</li>
148
- <li>If you query for two or more clauses, and a clause has more than {MAX_CLAUSE_FREQ_FAST_APPROX_PER_SHARD} matches (per shard), we will search within a random subset of all documents containing that clause.</li>
149
  <li>The number of found documents may contain duplicates (e.g., if a document contains your query term twice, it may be counted twice).</li>
150
  </ul>
151
  <p style="font-size: 16px;">❗️WARNING: Corpus may contain problematic contents such as PII, toxicity, hate speech, and NSFW text. This tool is merely presenting selected text from the corpus, without any post-hoc safety filtering. It is NOT creating new text. This is a research prototype through which we can expose and examine existing problems with massive text corpora. Please use with caution. Don't be evil :)</p>
152
  ''')
153
  with gr.Row():
154
  with gr.Column(scale=1):
155
- a_ard_cnf_input = gr.Textbox(placeholder='Enter a query here', label='Query', interactive=True)
 
156
  with gr.Row():
157
- a_ard_cnf_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True)
158
- a_ard_cnf_submit = gr.Button(value='Submit', variant='primary', visible=True)
159
- a_ard_cnf_output_tokens = gr.Textbox(label='Tokenized', lines=2, interactive=False)
160
  with gr.Column(scale=1):
161
- a_ard_cnf_output_message = gr.Label(label='Message', num_top_classes=0)
162
- a_ard_cnf_output = gr.HighlightedText(label='Document', show_legend=False, color_map={"-": "red", "0": "green", "1": "cyan", "2": "blue", "3": "magenta"})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
163
 
164
  with gr.Row(visible=False) as row_7:
165
  with gr.Column():
@@ -185,18 +267,20 @@ If you find this tool useful, please kindly cite our paper:
185
 
186
  count_clear.add([count_input, count_output, count_output_tokens])
187
  ngram_clear.add([ngram_input, ngram_output, ngram_output_tokens])
188
- a_ntd_clear.add([a_ntd_input, a_ntd_output, a_ntd_output_tokens])
189
  infgram_clear.add([infgram_input, infgram_output, infgram_output_tokens])
190
- a_infntd_clear.add([a_infntd_input, a_infntd_output, a_infntd_output_tokens, a_infntd_longest_suffix])
191
- a_ard_cnf_clear.add([a_ard_cnf_input, a_ard_cnf_output, a_ard_cnf_output_tokens, a_ard_cnf_output_message])
 
192
  doc_analysis_clear.add([doc_analysis_input, doc_analysis_output])
193
 
194
  count_submit.click(process, inputs=[corpus_desc, query_desc, count_input], outputs=[count_output, count_output_tokens])
195
  ngram_submit.click(process, inputs=[corpus_desc, query_desc, ngram_input], outputs=[ngram_output, ngram_output_tokens])
196
- a_ntd_submit.click(process, inputs=[corpus_desc, query_desc, a_ntd_input], outputs=[a_ntd_output, a_ntd_output_tokens])
197
  infgram_submit.click(process, inputs=[corpus_desc, query_desc, infgram_input], outputs=[infgram_output, infgram_output_tokens, infgram_longest_suffix])
198
- a_infntd_submit.click(process, inputs=[corpus_desc, query_desc, a_infntd_input], outputs=[a_infntd_output, a_infntd_output_tokens, a_infntd_longest_suffix])
199
- a_ard_cnf_submit.click(process, inputs=[corpus_desc, query_desc, a_ard_cnf_input], outputs=[a_ard_cnf_output, a_ard_cnf_output_tokens, a_ard_cnf_output_message])
 
200
  doc_analysis_submit.click(process, inputs=[corpus_desc, query_desc, doc_analysis_input], outputs=[doc_analysis_output])
201
 
202
  def update_query_desc(selection):
@@ -206,7 +290,8 @@ If you find this tool useful, please kindly cite our paper:
206
  row_3: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['get_next_token_distribution_approx'])),
207
  row_4: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['compute_infgram_prob'])),
208
  row_5: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['get_infgram_next_token_distribution_approx'])),
209
- row_6: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['get_a_random_document_from_cnf_query_fast_approx'])),
 
210
  # row_7: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['analyze_document'])),
211
  }
212
  query_desc.change(fn=update_query_desc, inputs=query_desc, outputs=[
@@ -215,7 +300,8 @@ If you find this tool useful, please kindly cite our paper:
215
  row_3,
216
  row_4,
217
  row_5,
218
- row_6,
 
219
  # row_7,
220
  ])
221
 
 
15
  corpus = CORPUS_BY_DESC[corpus_desc]
16
  query_type = QUERY_TYPE_BY_DESC[query_desc]
17
  timestamp = datetime.datetime.now().strftime('%Y%m%d-%H%M%S')
 
18
  data = {
19
+ 'timestamp': timestamp,
20
  'corpus': corpus,
21
  'query_type': query_type,
22
  'query': query,
23
  }
24
+ print(json.dumps(data))
25
  if API_IPADDR is None:
26
  raise ValueError(f'API_IPADDR envvar is not set!')
27
  response = requests.post(f'http://{API_IPADDR}:5000/', json=data)
28
  if response.status_code == 200:
29
  result = response.json()
30
  else:
31
+ raise ValueError(f'HTTP error {response.status_code}: {response.json()}')
32
  if debug:
33
  print(result)
34
  return result
35
 
36
+ def process_ard_cnf_multi(corpus_desc, query_desc, query, maxnum):
37
+ corpus = CORPUS_BY_DESC[corpus_desc]
38
+ query_type = QUERY_TYPE_BY_DESC[query_desc]
39
+ timestamp = datetime.datetime.now().strftime('%Y%m%d-%H%M%S')
40
+ data = {
41
+ 'timestamp': timestamp,
42
+ 'corpus': corpus,
43
+ 'query_type': query_type,
44
+ 'query': query,
45
+ 'maxnum': maxnum,
46
+ }
47
+ print(json.dumps(data))
48
+ if API_IPADDR is None:
49
+ raise ValueError(f'API_IPADDR envvar is not set!')
50
+ response = requests.post(f'http://{API_IPADDR}:5000/', json=data)
51
+ if response.status_code == 200:
52
+ result = response.json()
53
+ else:
54
+ raise ValueError(f'HTTP error {response.status_code}: {response.json()}')
55
+ if debug:
56
+ print(result)
57
+ if len(result) != 3:
58
+ raise ValueError(f'Invalid result: {result}')
59
+ outputs, output_tokens, message = result[0], result[1], result[2]
60
+ outputs = outputs[:maxnum]
61
+ while len(outputs) < 10:
62
+ outputs.append([])
63
+ return output_tokens, message, outputs[0], outputs[1], outputs[2], outputs[3], outputs[4], outputs[5], outputs[6], outputs[7], outputs[8], outputs[9]
64
+
65
  with gr.Blocks() as demo:
66
  with gr.Column():
67
  gr.HTML(
 
118
  gr.HTML(f'<p style="font-size: 16px;">Note: The (n-1)-gram needs to exist in the corpus. If the (n-1)-gram is not found in the corpus, an error message will appear. If the (n-1)-gram appears more than {MAX_CNT_FOR_NTD} times in the corpus, the result will be approximate.</p>')
119
  with gr.Row():
120
  with gr.Column(scale=1):
121
+ ntd_input = gr.Textbox(placeholder='Enter a string (an (n-1)-gram) here', label='Query', interactive=True)
122
  with gr.Row():
123
+ ntd_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True)
124
+ ntd_submit = gr.Button(value='Submit', variant='primary', visible=True)
125
+ ntd_output_tokens = gr.Textbox(label='Tokenized', lines=2, interactive=False)
126
  with gr.Column(scale=1):
127
+ ntd_output = gr.Label(label='Distribution', num_top_classes=10)
128
 
129
  with gr.Row(visible=False) as row_4:
130
  with gr.Column():
 
150
  gr.HTML('<p style="font-size: 16px;">Example query: <b>I love natural language</b> (the output is P(* | natural language), for the top-10 tokens *)</p>')
151
  with gr.Row():
152
  with gr.Column(scale=1):
153
+ infntd_input = gr.Textbox(placeholder='Enter a string here', label='Query', interactive=True)
154
  with gr.Row():
155
+ infntd_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True)
156
+ infntd_submit = gr.Button(value='Submit', variant='primary', visible=True)
157
+ infntd_output_tokens = gr.Textbox(label='Tokenized', lines=2, interactive=False)
158
+ infntd_longest_suffix = gr.Textbox(label='Longest Found Suffix', interactive=False)
159
  with gr.Column(scale=1):
160
+ infntd_output = gr.Label(label='Distribution', num_top_classes=10)
161
+
162
+ # with gr.Row(visible=False) as row_6:
163
+ # with gr.Column():
164
+ # gr.HTML(f'''<h2>6. Searching for document containing n-gram(s)</h2>
165
+ # <p style="font-size: 16px;">This displays a random document in the corpus that satisfies your query. You can simply enter an n-gram, in which case the document displayed would contain your n-gram. You can also connect multiple n-gram terms with the AND/OR operators, in the <a href="https://en.wikipedia.org/wiki/Conjunctive_normal_form">CNF format</a>, in which case the displayed document contains n-grams such that it satisfies this logical constraint.</p>
166
+ # <p style="font-size: 16px;">Example queries:</p>
167
+ # <ul style="font-size: 16px;">
168
+ # <li><b>natural language processing</b> (the displayed document would contain "natural language processing")</li>
169
+ # <li><b>natural language processing AND deep learning</b> (the displayed document would contain both "natural language processing" and "deep learning")</li>
170
+ # <li><b>natural language processing OR artificial intelligence AND deep learning OR machine learning</b> (the displayed document would contain at least one of "natural language processing" / "artificial intelligence", and also at least one of "deep learning" / "machine learning")</li>
171
+ # </ul>
172
+ # <p style="font-size: 16px;">If you want another random document, simply hit the Submit button again :)</p>
173
+ # <p style="font-size: 16px;">A few notes:</p>
174
+ # <ul style="font-size: 16px;">
175
+ # <li>When you write a query in CNF, note that <b>OR has higher precedence than AND</b> (which is contrary to conventions in boolean algebra).</li>
176
+ # <li>If the document is too long, it will be truncated to {MAX_OUTPUT_DOC_TOKENS} tokens.</li>
177
+ # <li>We can only include documents where all terms (or clauses) are separated by no more than {MAX_DIFF_TOKENS} tokens.</li>
178
+ # <li>If you query for two or more clauses, and a clause has more than {MAX_CLAUSE_FREQ_FAST_APPROX_PER_SHARD} matches (per shard), we will estimate the count from a random subset of all documents containing that clause. This might cause a zero count on conjuction of some simple n-grams (e.g., <b>birds AND oil</b>).</li>
179
+ # <li>The number of found documents may contain duplicates (e.g., if a document contains your query term twice, it may be counted twice).</li>
180
+ # </ul>
181
+ # <p style="font-size: 16px;">❗️WARNING: Corpus may contain problematic contents such as PII, toxicity, hate speech, and NSFW text. This tool is merely presenting selected text from the corpus, without any post-hoc safety filtering. It is NOT creating new text. This is a research prototype through which we can expose and examine existing problems with massive text corpora. Please use with caution. Don't be evil :)</p>
182
+ # ''')
183
+ # with gr.Row():
184
+ # with gr.Column(scale=1):
185
+ # ard_cnf_input = gr.Textbox(placeholder='Enter a query here', label='Query', interactive=True)
186
+ # with gr.Row():
187
+ # ard_cnf_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True)
188
+ # ard_cnf_submit = gr.Button(value='Submit', variant='primary', visible=True)
189
+ # ard_cnf_output_tokens = gr.Textbox(label='Tokenized', lines=2, interactive=False)
190
+ # with gr.Column(scale=1):
191
+ # ard_cnf_output_message = gr.Label(label='Message', num_top_classes=0)
192
+ # ard_cnf_output = gr.HighlightedText(label='Document', show_legend=False, color_map={"-": "red", "0": "green", "1": "cyan", "2": "blue", "3": "magenta"})
193
 
194
+ with gr.Row(visible=False) as row_6a:
195
  with gr.Column():
196
+ gr.HTML(f'''<h2>6. Searching for documents containing n-gram(s)</h2>
197
+ <p style="font-size: 16px;">This displays a few random documents in the corpus that satisfies your query. You can simply enter an n-gram, in which case the document displayed would contain your n-gram. You can also connect multiple n-gram terms with the AND/OR operators, in the <a href="https://en.wikipedia.org/wiki/Conjunctive_normal_form">CNF format</a>, in which case the displayed document contains n-grams such that it satisfies this logical constraint.</p>
198
  <p style="font-size: 16px;">Example queries:</p>
199
  <ul style="font-size: 16px;">
200
  <li><b>natural language processing</b> (the displayed document would contain "natural language processing")</li>
201
  <li><b>natural language processing AND deep learning</b> (the displayed document would contain both "natural language processing" and "deep learning")</li>
202
  <li><b>natural language processing OR artificial intelligence AND deep learning OR machine learning</b> (the displayed document would contain at least one of "natural language processing" / "artificial intelligence", and also at least one of "deep learning" / "machine learning")</li>
203
  </ul>
204
+ <p style="font-size: 16px;">If you want another batch of random documents, simply hit the Submit button again :)</p>
205
  <p style="font-size: 16px;">A few notes:</p>
206
  <ul style="font-size: 16px;">
207
  <li>When you write a query in CNF, note that <b>OR has higher precedence than AND</b> (which is contrary to conventions in boolean algebra).</li>
208
  <li>If the document is too long, it will be truncated to {MAX_OUTPUT_DOC_TOKENS} tokens.</li>
209
  <li>We can only include documents where all terms (or clauses) are separated by no more than {MAX_DIFF_TOKENS} tokens.</li>
210
+ <li>If you query for two or more clauses, and a clause has more than {MAX_CLAUSE_FREQ_FAST_APPROX_PER_SHARD} matches (per shard), we will estimate the count from a random subset of all documents containing that clause. This might cause a zero count on conjuction of some simple n-grams (e.g., <b>birds AND oil</b>).</li>
211
  <li>The number of found documents may contain duplicates (e.g., if a document contains your query term twice, it may be counted twice).</li>
212
  </ul>
213
  <p style="font-size: 16px;">❗️WARNING: Corpus may contain problematic contents such as PII, toxicity, hate speech, and NSFW text. This tool is merely presenting selected text from the corpus, without any post-hoc safety filtering. It is NOT creating new text. This is a research prototype through which we can expose and examine existing problems with massive text corpora. Please use with caution. Don't be evil :)</p>
214
  ''')
215
  with gr.Row():
216
  with gr.Column(scale=1):
217
+ ard_cnf_multi_input = gr.Textbox(placeholder='Enter a query here', label='Query', interactive=True)
218
+ ard_cnf_multi_maxnum = gr.Slider(minimum=1, maximum=10, value=1, step=1, label='Number of documents to Display')
219
  with gr.Row():
220
+ ard_cnf_multi_clear = gr.ClearButton(value='Clear', variant='secondary', visible=True)
221
+ ard_cnf_multi_submit = gr.Button(value='Submit', variant='primary', visible=True)
222
+ ard_cnf_multi_output_tokens = gr.Textbox(label='Tokenized', lines=2, interactive=False)
223
  with gr.Column(scale=1):
224
+ ard_cnf_multi_output_message = gr.Label(label='Message', num_top_classes=0)
225
+ with gr.Tab(label='1'):
226
+ ard_cnf_multi_output_0 = gr.HighlightedText(label='Document', show_legend=False, color_map={"-": "red", "0": "green", "1": "cyan", "2": "blue", "3": "magenta"})
227
+ with gr.Tab(label='2'):
228
+ ard_cnf_multi_output_1 = gr.HighlightedText(label='Document', show_legend=False, color_map={"-": "red", "0": "green", "1": "cyan", "2": "blue", "3": "magenta"})
229
+ with gr.Tab(label='3'):
230
+ ard_cnf_multi_output_2 = gr.HighlightedText(label='Document', show_legend=False, color_map={"-": "red", "0": "green", "1": "cyan", "2": "blue", "3": "magenta"})
231
+ with gr.Tab(label='4'):
232
+ ard_cnf_multi_output_3 = gr.HighlightedText(label='Document', show_legend=False, color_map={"-": "red", "0": "green", "1": "cyan", "2": "blue", "3": "magenta"})
233
+ with gr.Tab(label='5'):
234
+ ard_cnf_multi_output_4 = gr.HighlightedText(label='Document', show_legend=False, color_map={"-": "red", "0": "green", "1": "cyan", "2": "blue", "3": "magenta"})
235
+ with gr.Tab(label='6'):
236
+ ard_cnf_multi_output_5 = gr.HighlightedText(label='Document', show_legend=False, color_map={"-": "red", "0": "green", "1": "cyan", "2": "blue", "3": "magenta"})
237
+ with gr.Tab(label='7'):
238
+ ard_cnf_multi_output_6 = gr.HighlightedText(label='Document', show_legend=False, color_map={"-": "red", "0": "green", "1": "cyan", "2": "blue", "3": "magenta"})
239
+ with gr.Tab(label='8'):
240
+ ard_cnf_multi_output_7 = gr.HighlightedText(label='Document', show_legend=False, color_map={"-": "red", "0": "green", "1": "cyan", "2": "blue", "3": "magenta"})
241
+ with gr.Tab(label='9'):
242
+ ard_cnf_multi_output_8 = gr.HighlightedText(label='Document', show_legend=False, color_map={"-": "red", "0": "green", "1": "cyan", "2": "blue", "3": "magenta"})
243
+ with gr.Tab(label='10'):
244
+ ard_cnf_multi_output_9 = gr.HighlightedText(label='Document', show_legend=False, color_map={"-": "red", "0": "green", "1": "cyan", "2": "blue", "3": "magenta"})
245
 
246
  with gr.Row(visible=False) as row_7:
247
  with gr.Column():
 
267
 
268
  count_clear.add([count_input, count_output, count_output_tokens])
269
  ngram_clear.add([ngram_input, ngram_output, ngram_output_tokens])
270
+ ntd_clear.add([ntd_input, ntd_output, ntd_output_tokens])
271
  infgram_clear.add([infgram_input, infgram_output, infgram_output_tokens])
272
+ infntd_clear.add([infntd_input, infntd_output, infntd_output_tokens, infntd_longest_suffix])
273
+ # ard_cnf_clear.add([ard_cnf_input, ard_cnf_output, ard_cnf_output_tokens, ard_cnf_output_message])
274
+ ard_cnf_multi_clear.add([ard_cnf_multi_input, ard_cnf_multi_output_tokens, ard_cnf_multi_output_message, ard_cnf_multi_output_0, ard_cnf_multi_output_1, ard_cnf_multi_output_2, ard_cnf_multi_output_3, ard_cnf_multi_output_4, ard_cnf_multi_output_5, ard_cnf_multi_output_6, ard_cnf_multi_output_7, ard_cnf_multi_output_8, ard_cnf_multi_output_9])
275
  doc_analysis_clear.add([doc_analysis_input, doc_analysis_output])
276
 
277
  count_submit.click(process, inputs=[corpus_desc, query_desc, count_input], outputs=[count_output, count_output_tokens])
278
  ngram_submit.click(process, inputs=[corpus_desc, query_desc, ngram_input], outputs=[ngram_output, ngram_output_tokens])
279
+ ntd_submit.click(process, inputs=[corpus_desc, query_desc, ntd_input], outputs=[ntd_output, ntd_output_tokens])
280
  infgram_submit.click(process, inputs=[corpus_desc, query_desc, infgram_input], outputs=[infgram_output, infgram_output_tokens, infgram_longest_suffix])
281
+ infntd_submit.click(process, inputs=[corpus_desc, query_desc, infntd_input], outputs=[infntd_output, infntd_output_tokens, infntd_longest_suffix])
282
+ # ard_cnf_submit.click(process, inputs=[corpus_desc, query_desc, ard_cnf_input], outputs=[ard_cnf_output, ard_cnf_output_tokens, ard_cnf_output_message])
283
+ ard_cnf_multi_submit.click(process_ard_cnf_multi, inputs=[corpus_desc, query_desc, ard_cnf_multi_input, ard_cnf_multi_maxnum], outputs=[ard_cnf_multi_output_tokens, ard_cnf_multi_output_message, ard_cnf_multi_output_0, ard_cnf_multi_output_1, ard_cnf_multi_output_2, ard_cnf_multi_output_3, ard_cnf_multi_output_4, ard_cnf_multi_output_5, ard_cnf_multi_output_6, ard_cnf_multi_output_7, ard_cnf_multi_output_8, ard_cnf_multi_output_9])
284
  doc_analysis_submit.click(process, inputs=[corpus_desc, query_desc, doc_analysis_input], outputs=[doc_analysis_output])
285
 
286
  def update_query_desc(selection):
 
290
  row_3: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['get_next_token_distribution_approx'])),
291
  row_4: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['compute_infgram_prob'])),
292
  row_5: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['get_infgram_next_token_distribution_approx'])),
293
+ # row_6: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['get_a_random_document_from_cnf_query_fast_approx'])),
294
+ row_6a: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['get_random_documents_from_cnf_query_fast_approx'])),
295
  # row_7: gr.Row(visible=(selection == QUERY_DESC_BY_TYPE['analyze_document'])),
296
  }
297
  query_desc.change(fn=update_query_desc, inputs=query_desc, outputs=[
 
300
  row_3,
301
  row_4,
302
  row_5,
303
+ # row_6,
304
+ row_6a,
305
  # row_7,
306
  ])
307
 
constants.py CHANGED
@@ -12,20 +12,21 @@ QUERY_TYPE_BY_DESC = {
12
  '3. Compute the next-token distribution of an (n-1)-gram': 'get_next_token_distribution_approx',
13
  '4. Compute the ∞-gram probability of the last token': 'compute_infgram_prob',
14
  '5. Compute the ∞-gram next-token distribution': 'get_infgram_next_token_distribution_approx',
15
- '6. Searching for document containing n-gram(s)': 'get_a_random_document_from_cnf_query_fast_approx',
 
16
  # '7. Analyze an (AI-generated) document using ∞-gram': 'analyze_document',
17
  }
18
  QUERY_DESC_BY_TYPE = {v: k for k, v in QUERY_TYPE_BY_DESC.items()}
19
  QUERY_DESCS = list(QUERY_TYPE_BY_DESC.keys())
20
 
21
- MAX_QUERY_CHARS = os.environ.get('MAX_QUERY_CHARS', 1000)
22
- MAX_INPUT_DOC_TOKENS = os.environ.get('MAX_INPUT_DOC_TOKENS', 1000)
23
- MAX_OUTPUT_DOC_TOKENS = os.environ.get('MAX_OUTPUT_DOC_TOKENS', 5000)
24
- MAX_CNT_FOR_NTD = os.environ.get('MAX_CNT_FOR_NTD', 1000)
25
- MAX_CLAUSE_FREQ = os.environ.get('MAX_CLAUSE_FREQ', 10000)
26
- MAX_CLAUSE_FREQ_FAST = os.environ.get('MAX_CLAUSE_FREQ_FAST', 1000000)
27
- MAX_CLAUSE_FREQ_FAST_APPROX_PER_SHARD = os.environ.get('MAX_CLAUSE_FREQ_FAST_APPROX_PER_SHARD', 50000)
28
- MAX_DIFF_TOKENS = os.environ.get('MAX_DIFF_TOKENS', 100)
29
  MAX_DIFF_BYTES = 2 * MAX_DIFF_TOKENS
30
- MAX_CLAUSES_IN_CNF = os.environ.get('MAX_CLAUSES_IN_CNF', 4)
31
- MAX_TERMS_IN_DISJ_CLAUSE = os.environ.get('MAX_TERMS_IN_DISJ_CLAUSE', 4)
 
12
  '3. Compute the next-token distribution of an (n-1)-gram': 'get_next_token_distribution_approx',
13
  '4. Compute the ∞-gram probability of the last token': 'compute_infgram_prob',
14
  '5. Compute the ∞-gram next-token distribution': 'get_infgram_next_token_distribution_approx',
15
+ # '6. Searching for document containing n-gram(s)': 'get_a_random_document_from_cnf_query_fast_approx',
16
+ '6. Searching for documents containing n-gram(s)': 'get_random_documents_from_cnf_query_fast_approx',
17
  # '7. Analyze an (AI-generated) document using ∞-gram': 'analyze_document',
18
  }
19
  QUERY_DESC_BY_TYPE = {v: k for k, v in QUERY_TYPE_BY_DESC.items()}
20
  QUERY_DESCS = list(QUERY_TYPE_BY_DESC.keys())
21
 
22
+ MAX_QUERY_CHARS = int(os.environ.get('MAX_QUERY_CHARS', 1000))
23
+ MAX_INPUT_DOC_TOKENS = int(os.environ.get('MAX_INPUT_DOC_TOKENS', 1000))
24
+ MAX_OUTPUT_DOC_TOKENS = int(os.environ.get('MAX_OUTPUT_DOC_TOKENS', 5000))
25
+ MAX_CNT_FOR_NTD = int(os.environ.get('MAX_CNT_FOR_NTD', 1000))
26
+ MAX_CLAUSE_FREQ = int(os.environ.get('MAX_CLAUSE_FREQ', 10000))
27
+ MAX_CLAUSE_FREQ_FAST = int(os.environ.get('MAX_CLAUSE_FREQ_FAST', 1000000))
28
+ MAX_CLAUSE_FREQ_FAST_APPROX_PER_SHARD = int(os.environ.get('MAX_CLAUSE_FREQ_FAST_APPROX_PER_SHARD', 50000))
29
+ MAX_DIFF_TOKENS = int(os.environ.get('MAX_DIFF_TOKENS', 100))
30
  MAX_DIFF_BYTES = 2 * MAX_DIFF_TOKENS
31
+ MAX_CLAUSES_IN_CNF = int(os.environ.get('MAX_CLAUSES_IN_CNF', 4))
32
+ MAX_TERMS_IN_DISJ_CLAUSE = int(os.environ.get('MAX_TERMS_IN_DISJ_CLAUSE', 4))