SyncDreamer / blender_script.py
liuyuan-pal's picture
init
8bb8404
raw
history blame
10.1 kB
"""Blender script to render images of 3D models.
This script is used to render images of 3D models. It takes in a list of paths
to .glb files and renders images of each model. The images are from rotating the
object around the origin. The images are saved to the output directory.
Example usage:
blender -b -P blender_script.py -- \
--object_path my_object.glb \
--output_dir ./views \
--engine CYCLES \
--scale 0.8 \
--num_images 12 \
--camera_dist 1.2
Here, input_model_paths.json is a json file containing a list of paths to .glb.
"""
import argparse
import json
import math
import os
import random
import sys
import time
import urllib.request
from pathlib import Path
from mathutils import Vector, Matrix
import numpy as np
import bpy
from mathutils import Vector
import pickle
def read_pickle(pkl_path):
with open(pkl_path, 'rb') as f:
return pickle.load(f)
def save_pickle(data, pkl_path):
# os.system('mkdir -p {}'.format(os.path.dirname(pkl_path)))
with open(pkl_path, 'wb') as f:
pickle.dump(data, f)
parser = argparse.ArgumentParser()
parser.add_argument("--object_path", type=str, required=True)
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument("--engine", type=str, default="CYCLES", choices=["CYCLES", "BLENDER_EEVEE"])
parser.add_argument("--camera_type", type=str, default='even')
parser.add_argument("--num_images", type=int, default=16)
parser.add_argument("--elevation", type=float, default=30)
parser.add_argument("--elevation_start", type=float, default=-10)
parser.add_argument("--elevation_end", type=float, default=40)
parser.add_argument("--device", type=str, default='CUDA')
argv = sys.argv[sys.argv.index("--") + 1 :]
args = parser.parse_args(argv)
print('===================', args.engine, '===================')
context = bpy.context
scene = context.scene
render = scene.render
cam = scene.objects["Camera"]
cam.location = (0, 1.2, 0)
cam.data.lens = 35
cam.data.sensor_width = 32
cam_constraint = cam.constraints.new(type="TRACK_TO")
cam_constraint.track_axis = "TRACK_NEGATIVE_Z"
cam_constraint.up_axis = "UP_Y"
render.engine = args.engine
render.image_settings.file_format = "PNG"
render.image_settings.color_mode = "RGBA"
render.resolution_x = 256
render.resolution_y = 256
render.resolution_percentage = 100
scene.cycles.device = "GPU"
scene.cycles.samples = 128
scene.cycles.diffuse_bounces = 1
scene.cycles.glossy_bounces = 1
scene.cycles.transparent_max_bounces = 3
scene.cycles.transmission_bounces = 3
scene.cycles.filter_width = 0.01
scene.cycles.use_denoising = True
scene.render.film_transparent = True
bpy.context.preferences.addons["cycles"].preferences.get_devices()
# Set the device_type
bpy.context.preferences.addons["cycles"].preferences.compute_device_type = args.device # or "OPENCL"
bpy.context.scene.cycles.tile_size = 8192
def az_el_to_points(azimuths, elevations):
x = np.cos(azimuths)*np.cos(elevations)
y = np.sin(azimuths)*np.cos(elevations)
z = np.sin(elevations)
return np.stack([x,y,z],-1) #
def set_camera_location(cam_pt):
# from https://blender.stackexchange.com/questions/18530/
x, y, z = cam_pt # sample_spherical(radius_min=1.5, radius_max=2.2, maxz=2.2, minz=-2.2)
camera = bpy.data.objects["Camera"]
camera.location = x, y, z
return camera
def get_calibration_matrix_K_from_blender(camera):
f_in_mm = camera.data.lens
scene = bpy.context.scene
resolution_x_in_px = scene.render.resolution_x
resolution_y_in_px = scene.render.resolution_y
scale = scene.render.resolution_percentage / 100
sensor_width_in_mm = camera.data.sensor_width
sensor_height_in_mm = camera.data.sensor_height
pixel_aspect_ratio = scene.render.pixel_aspect_x / scene.render.pixel_aspect_y
if camera.data.sensor_fit == 'VERTICAL':
# the sensor height is fixed (sensor fit is horizontal),
# the sensor width is effectively changed with the pixel aspect ratio
s_u = resolution_x_in_px * scale / sensor_width_in_mm / pixel_aspect_ratio
s_v = resolution_y_in_px * scale / sensor_height_in_mm
else: # 'HORIZONTAL' and 'AUTO'
# the sensor width is fixed (sensor fit is horizontal),
# the sensor height is effectively changed with the pixel aspect ratio
s_u = resolution_x_in_px * scale / sensor_width_in_mm
s_v = resolution_y_in_px * scale * pixel_aspect_ratio / sensor_height_in_mm
# Parameters of intrinsic calibration matrix K
alpha_u = f_in_mm * s_u
alpha_v = f_in_mm * s_u
u_0 = resolution_x_in_px * scale / 2
v_0 = resolution_y_in_px * scale / 2
skew = 0 # only use rectangular pixels
K = np.asarray(((alpha_u, skew, u_0),
(0, alpha_v, v_0),
(0, 0, 1)),np.float32)
return K
def reset_scene() -> None:
"""Resets the scene to a clean state."""
# delete everything that isn't part of a camera or a light
for obj in bpy.data.objects:
if obj.type not in {"CAMERA", "LIGHT"}:
bpy.data.objects.remove(obj, do_unlink=True)
# delete all the materials
for material in bpy.data.materials:
bpy.data.materials.remove(material, do_unlink=True)
# delete all the textures
for texture in bpy.data.textures:
bpy.data.textures.remove(texture, do_unlink=True)
# delete all the images
for image in bpy.data.images:
bpy.data.images.remove(image, do_unlink=True)
# load the glb model
def load_object(object_path: str) -> None:
"""Loads a glb model into the scene."""
if object_path.endswith(".glb"):
bpy.ops.import_scene.gltf(filepath=object_path, merge_vertices=True)
elif object_path.endswith(".fbx"):
bpy.ops.import_scene.fbx(filepath=object_path)
else:
raise ValueError(f"Unsupported file type: {object_path}")
def scene_bbox(single_obj=None, ignore_matrix=False):
bbox_min = (math.inf,) * 3
bbox_max = (-math.inf,) * 3
found = False
for obj in scene_meshes() if single_obj is None else [single_obj]:
found = True
for coord in obj.bound_box:
coord = Vector(coord)
if not ignore_matrix:
coord = obj.matrix_world @ coord
bbox_min = tuple(min(x, y) for x, y in zip(bbox_min, coord))
bbox_max = tuple(max(x, y) for x, y in zip(bbox_max, coord))
if not found:
raise RuntimeError("no objects in scene to compute bounding box for")
return Vector(bbox_min), Vector(bbox_max)
def scene_root_objects():
for obj in bpy.context.scene.objects.values():
if not obj.parent:
yield obj
def scene_meshes():
for obj in bpy.context.scene.objects.values():
if isinstance(obj.data, (bpy.types.Mesh)):
yield obj
# function from https://github.com/panmari/stanford-shapenet-renderer/blob/master/render_blender.py
def get_3x4_RT_matrix_from_blender(cam):
bpy.context.view_layer.update()
location, rotation = cam.matrix_world.decompose()[0:2]
R = np.asarray(rotation.to_matrix())
t = np.asarray(location)
cam_rec = np.asarray([[1, 0, 0], [0, -1, 0], [0, 0, -1]], np.float32)
R = R.T
t = -R @ t
R_world2cv = cam_rec @ R
t_world2cv = cam_rec @ t
RT = np.concatenate([R_world2cv,t_world2cv[:,None]],1)
return RT
def normalize_scene():
bbox_min, bbox_max = scene_bbox()
scale = 1 / max(bbox_max - bbox_min)
for obj in scene_root_objects():
obj.scale = obj.scale * scale
# Apply scale to matrix_world.
bpy.context.view_layer.update()
bbox_min, bbox_max = scene_bbox()
offset = -(bbox_min + bbox_max) / 2
for obj in scene_root_objects():
obj.matrix_world.translation += offset
bpy.ops.object.select_all(action="DESELECT")
def save_images(object_file: str) -> None:
object_uid = os.path.basename(object_file).split(".")[0]
os.makedirs(args.output_dir, exist_ok=True)
reset_scene()
# load the object
load_object(object_file)
# object_uid = os.path.basename(object_file).split(".")[0]
normalize_scene()
# create an empty object to track
empty = bpy.data.objects.new("Empty", None)
scene.collection.objects.link(empty)
cam_constraint.target = empty
world_tree = bpy.context.scene.world.node_tree
back_node = world_tree.nodes['Background']
env_light = 0.5
back_node.inputs['Color'].default_value = Vector([env_light, env_light, env_light, 1.0])
back_node.inputs['Strength'].default_value = 1.0
distances = np.asarray([1.5 for _ in range(args.num_images)])
if args.camera_type=='fixed':
azimuths = (np.arange(args.num_images)/args.num_images*np.pi*2).astype(np.float32)
elevations = np.deg2rad(np.asarray([args.elevation] * args.num_images).astype(np.float32))
elif args.camera_type=='random':
azimuths = (np.arange(args.num_images) / args.num_images * np.pi * 2).astype(np.float32)
elevations = np.random.uniform(args.elevation_start, args.elevation_end, args.num_images)
elevations = np.deg2rad(elevations)
else:
raise NotImplementedError
cam_pts = az_el_to_points(azimuths, elevations) * distances[:,None]
cam_poses = []
(Path(args.output_dir) / object_uid).mkdir(exist_ok=True, parents=True)
for i in range(args.num_images):
# set camera
camera = set_camera_location(cam_pts[i])
RT = get_3x4_RT_matrix_from_blender(camera)
cam_poses.append(RT)
render_path = os.path.join(args.output_dir, object_uid, f"{i:03d}.png")
if os.path.exists(render_path): continue
scene.render.filepath = os.path.abspath(render_path)
bpy.ops.render.render(write_still=True)
if args.camera_type=='random':
K = get_calibration_matrix_K_from_blender(camera)
cam_poses = np.stack(cam_poses, 0)
save_pickle([K, azimuths, elevations, distances, cam_poses], os.path.join(args.output_dir, object_uid, "meta.pkl"))
if __name__ == "__main__":
save_images(args.object_path)