Spaces:
Runtime error
Runtime error
import torch | |
import numpy as np | |
from PIL import Image | |
from skimage.io import imsave | |
from sam_utils import sam_out_nosave, sam_init | |
class BackgroundRemoval: | |
def __init__(self, device='cuda'): | |
from carvekit.api.high import HiInterface | |
self.interface = HiInterface( | |
object_type="object", # Can be "object" or "hairs-like". | |
batch_size_seg=5, | |
batch_size_matting=1, | |
device=device, | |
seg_mask_size=640, # Use 640 for Tracer B7 and 320 for U2Net | |
matting_mask_size=2048, | |
trimap_prob_threshold=231, | |
trimap_dilation=30, | |
trimap_erosion_iters=5, | |
fp16=True, | |
) | |
def __call__(self, image): | |
# image: [H, W, 3] array in [0, 255]. | |
# image = Image.fromarray(image) | |
image = self.interface([image])[0] | |
# image = np.array(image) | |
return image | |
raw_im = Image.open('hf_demo/examples/flower.png') | |
predictor = sam_init() | |
raw_im.thumbnail([512, 512], Image.Resampling.LANCZOS) | |
width, height = raw_im.size | |
image_nobg = BackgroundRemoval()(raw_im.convert('RGB')) | |
arr = np.asarray(image_nobg)[:, :, -1] | |
x_nonzero = np.nonzero(arr.sum(axis=0)) | |
y_nonzero = np.nonzero(arr.sum(axis=1)) | |
x_min = int(x_nonzero[0].min()) | |
y_min = int(y_nonzero[0].min()) | |
x_max = int(x_nonzero[0].max()) | |
y_max = int(y_nonzero[0].max()) | |
image_nobg.save('./nobg.png') | |
image_nobg.thumbnail([512, 512], Image.Resampling.LANCZOS) | |
image_sam = sam_out_nosave(predictor, image_nobg.convert("RGB"), (x_min, y_min, x_max, y_max)) | |
imsave('./mask.png', np.asarray(image_sam)[:,:,3]) | |
image_sam = np.asarray(image_sam, np.float32) / 255 | |
out_mask = image_sam[:, :, 3:] | |
out_rgb = image_sam[:, :, :3] * out_mask + 1 - out_mask | |
out_img = (np.concatenate([out_rgb, out_mask], 2) * 255).astype(np.uint8) | |
image_sam = Image.fromarray(out_img, mode='RGBA') | |
image_sam.save('./output.png') | |