"""Blender script to render images of 3D models. This script is used to render images of 3D models. It takes in a list of paths to .glb files and renders images of each model. The images are from rotating the object around the origin. The images are saved to the output directory. Example usage: blender -b -P blender_script.py -- \ --object_path my_object.glb \ --output_dir ./views \ --engine CYCLES \ --scale 0.8 \ --num_images 12 \ --camera_dist 1.2 Here, input_model_paths.json is a json file containing a list of paths to .glb. """ import argparse import json import math import os import random import sys import time import urllib.request from pathlib import Path from mathutils import Vector, Matrix import numpy as np import bpy from mathutils import Vector import pickle def read_pickle(pkl_path): with open(pkl_path, 'rb') as f: return pickle.load(f) def save_pickle(data, pkl_path): # os.system('mkdir -p {}'.format(os.path.dirname(pkl_path))) with open(pkl_path, 'wb') as f: pickle.dump(data, f) parser = argparse.ArgumentParser() parser.add_argument("--object_path", type=str, required=True) parser.add_argument("--output_dir", type=str, required=True) parser.add_argument("--engine", type=str, default="CYCLES", choices=["CYCLES", "BLENDER_EEVEE"]) parser.add_argument("--camera_type", type=str, default='even') parser.add_argument("--num_images", type=int, default=16) parser.add_argument("--elevation", type=float, default=30) parser.add_argument("--elevation_start", type=float, default=-10) parser.add_argument("--elevation_end", type=float, default=40) parser.add_argument("--device", type=str, default='CUDA') argv = sys.argv[sys.argv.index("--") + 1 :] args = parser.parse_args(argv) print('===================', args.engine, '===================') context = bpy.context scene = context.scene render = scene.render cam = scene.objects["Camera"] cam.location = (0, 1.2, 0) cam.data.lens = 35 cam.data.sensor_width = 32 cam_constraint = cam.constraints.new(type="TRACK_TO") cam_constraint.track_axis = "TRACK_NEGATIVE_Z" cam_constraint.up_axis = "UP_Y" render.engine = args.engine render.image_settings.file_format = "PNG" render.image_settings.color_mode = "RGBA" render.resolution_x = 256 render.resolution_y = 256 render.resolution_percentage = 100 scene.cycles.device = "GPU" scene.cycles.samples = 128 scene.cycles.diffuse_bounces = 1 scene.cycles.glossy_bounces = 1 scene.cycles.transparent_max_bounces = 3 scene.cycles.transmission_bounces = 3 scene.cycles.filter_width = 0.01 scene.cycles.use_denoising = True scene.render.film_transparent = True bpy.context.preferences.addons["cycles"].preferences.get_devices() # Set the device_type bpy.context.preferences.addons["cycles"].preferences.compute_device_type = args.device # or "OPENCL" bpy.context.scene.cycles.tile_size = 8192 def az_el_to_points(azimuths, elevations): x = np.cos(azimuths)*np.cos(elevations) y = np.sin(azimuths)*np.cos(elevations) z = np.sin(elevations) return np.stack([x,y,z],-1) # def set_camera_location(cam_pt): # from https://blender.stackexchange.com/questions/18530/ x, y, z = cam_pt # sample_spherical(radius_min=1.5, radius_max=2.2, maxz=2.2, minz=-2.2) camera = bpy.data.objects["Camera"] camera.location = x, y, z return camera def get_calibration_matrix_K_from_blender(camera): f_in_mm = camera.data.lens scene = bpy.context.scene resolution_x_in_px = scene.render.resolution_x resolution_y_in_px = scene.render.resolution_y scale = scene.render.resolution_percentage / 100 sensor_width_in_mm = camera.data.sensor_width sensor_height_in_mm = camera.data.sensor_height pixel_aspect_ratio = scene.render.pixel_aspect_x / scene.render.pixel_aspect_y if camera.data.sensor_fit == 'VERTICAL': # the sensor height is fixed (sensor fit is horizontal), # the sensor width is effectively changed with the pixel aspect ratio s_u = resolution_x_in_px * scale / sensor_width_in_mm / pixel_aspect_ratio s_v = resolution_y_in_px * scale / sensor_height_in_mm else: # 'HORIZONTAL' and 'AUTO' # the sensor width is fixed (sensor fit is horizontal), # the sensor height is effectively changed with the pixel aspect ratio s_u = resolution_x_in_px * scale / sensor_width_in_mm s_v = resolution_y_in_px * scale * pixel_aspect_ratio / sensor_height_in_mm # Parameters of intrinsic calibration matrix K alpha_u = f_in_mm * s_u alpha_v = f_in_mm * s_u u_0 = resolution_x_in_px * scale / 2 v_0 = resolution_y_in_px * scale / 2 skew = 0 # only use rectangular pixels K = np.asarray(((alpha_u, skew, u_0), (0, alpha_v, v_0), (0, 0, 1)),np.float32) return K def reset_scene() -> None: """Resets the scene to a clean state.""" # delete everything that isn't part of a camera or a light for obj in bpy.data.objects: if obj.type not in {"CAMERA", "LIGHT"}: bpy.data.objects.remove(obj, do_unlink=True) # delete all the materials for material in bpy.data.materials: bpy.data.materials.remove(material, do_unlink=True) # delete all the textures for texture in bpy.data.textures: bpy.data.textures.remove(texture, do_unlink=True) # delete all the images for image in bpy.data.images: bpy.data.images.remove(image, do_unlink=True) # load the glb model def load_object(object_path: str) -> None: """Loads a glb model into the scene.""" if object_path.endswith(".glb"): bpy.ops.import_scene.gltf(filepath=object_path, merge_vertices=True) elif object_path.endswith(".fbx"): bpy.ops.import_scene.fbx(filepath=object_path) else: raise ValueError(f"Unsupported file type: {object_path}") def scene_bbox(single_obj=None, ignore_matrix=False): bbox_min = (math.inf,) * 3 bbox_max = (-math.inf,) * 3 found = False for obj in scene_meshes() if single_obj is None else [single_obj]: found = True for coord in obj.bound_box: coord = Vector(coord) if not ignore_matrix: coord = obj.matrix_world @ coord bbox_min = tuple(min(x, y) for x, y in zip(bbox_min, coord)) bbox_max = tuple(max(x, y) for x, y in zip(bbox_max, coord)) if not found: raise RuntimeError("no objects in scene to compute bounding box for") return Vector(bbox_min), Vector(bbox_max) def scene_root_objects(): for obj in bpy.context.scene.objects.values(): if not obj.parent: yield obj def scene_meshes(): for obj in bpy.context.scene.objects.values(): if isinstance(obj.data, (bpy.types.Mesh)): yield obj # function from https://github.com/panmari/stanford-shapenet-renderer/blob/master/render_blender.py def get_3x4_RT_matrix_from_blender(cam): bpy.context.view_layer.update() location, rotation = cam.matrix_world.decompose()[0:2] R = np.asarray(rotation.to_matrix()) t = np.asarray(location) cam_rec = np.asarray([[1, 0, 0], [0, -1, 0], [0, 0, -1]], np.float32) R = R.T t = -R @ t R_world2cv = cam_rec @ R t_world2cv = cam_rec @ t RT = np.concatenate([R_world2cv,t_world2cv[:,None]],1) return RT def normalize_scene(): bbox_min, bbox_max = scene_bbox() scale = 1 / max(bbox_max - bbox_min) for obj in scene_root_objects(): obj.scale = obj.scale * scale # Apply scale to matrix_world. bpy.context.view_layer.update() bbox_min, bbox_max = scene_bbox() offset = -(bbox_min + bbox_max) / 2 for obj in scene_root_objects(): obj.matrix_world.translation += offset bpy.ops.object.select_all(action="DESELECT") def save_images(object_file: str) -> None: object_uid = os.path.basename(object_file).split(".")[0] os.makedirs(args.output_dir, exist_ok=True) reset_scene() # load the object load_object(object_file) # object_uid = os.path.basename(object_file).split(".")[0] normalize_scene() # create an empty object to track empty = bpy.data.objects.new("Empty", None) scene.collection.objects.link(empty) cam_constraint.target = empty world_tree = bpy.context.scene.world.node_tree back_node = world_tree.nodes['Background'] env_light = 0.5 back_node.inputs['Color'].default_value = Vector([env_light, env_light, env_light, 1.0]) back_node.inputs['Strength'].default_value = 1.0 distances = np.asarray([1.5 for _ in range(args.num_images)]) if args.camera_type=='fixed': azimuths = (np.arange(args.num_images)/args.num_images*np.pi*2).astype(np.float32) elevations = np.deg2rad(np.asarray([args.elevation] * args.num_images).astype(np.float32)) elif args.camera_type=='random': azimuths = (np.arange(args.num_images) / args.num_images * np.pi * 2).astype(np.float32) elevations = np.random.uniform(args.elevation_start, args.elevation_end, args.num_images) elevations = np.deg2rad(elevations) else: raise NotImplementedError cam_pts = az_el_to_points(azimuths, elevations) * distances[:,None] cam_poses = [] (Path(args.output_dir) / object_uid).mkdir(exist_ok=True, parents=True) for i in range(args.num_images): # set camera camera = set_camera_location(cam_pts[i]) RT = get_3x4_RT_matrix_from_blender(camera) cam_poses.append(RT) render_path = os.path.join(args.output_dir, object_uid, f"{i:03d}.png") if os.path.exists(render_path): continue scene.render.filepath = os.path.abspath(render_path) bpy.ops.render.render(write_still=True) if args.camera_type=='random': K = get_calibration_matrix_K_from_blender(camera) cam_poses = np.stack(cam_poses, 0) save_pickle([K, azimuths, elevations, distances, cam_poses], os.path.join(args.output_dir, object_uid, "meta.pkl")) if __name__ == "__main__": save_images(args.object_path)