Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,622 Bytes
ce3fda6 aef6027 ce3fda6 aef6027 ce3fda6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
import spaces
import os
import re
import torch
import gradio as gr
import sys
sys.path.append('./videollama2')
from videollama2 import model_init, mm_infer
from videollama2.utils import disable_torch_init
title_markdown = ("""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href="https://github.com/DAMO-NLP-SG/VideoLLaMA2" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
<img src="https://s2.loli.net/2024/06/03/D3NeXHWy5az9tmT.png" alt="VideoLLaMA 2 π₯ππ₯" style="max-width: 120px; height: auto;">
</a>
<div>
<h1 >VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs</h1>
<h5 style="margin: 0;">If this demo please you, please give us a star β on Github or π on this space.</h5>
</div>
</div>
<div align="center">
<div style="display:flex; gap: 0.25rem; margin-top: 10px;" align="center">
<a href="https://github.com/DAMO-NLP-SG/VideoLLaMA2"><img src='https://img.shields.io/badge/Github-VideoLLaMA2-9C276A'></a>
<a href="https://arxiv.org/pdf/2406.07476.pdf"><img src="https://img.shields.io/badge/Arxiv-2406.07476-AD1C18"></a>
<a href="https://github.com/DAMO-NLP-SG/VideoLLaMA2/stargazers"><img src="https://img.shields.io/github/stars/DAMO-NLP-SG/VideoLLaMA2.svg?style=social"></a>
</div>
</div>
""")
block_css = """
#buttons button {
min-width: min(120px,100%);
color: #9C276A
}
"""
tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
""")
learn_more_markdown = ("""
### License
This project is released under the Apache 2.0 license as found in the LICENSE file. The service is a research preview intended for non-commercial use ONLY, subject to the model Licenses of LLaMA and Mistral, Terms of Use of the data generated by OpenAI, and Privacy Practices of ShareGPT. Please get in touch with us if you find any potential violations.
""")
plum_color = gr.themes.colors.Color(
name='plum',
c50='#F8E4EF',
c100='#E9D0DE',
c200='#DABCCD',
c300='#CBA8BC',
c400='#BC94AB',
c500='#AD809A',
c600='#9E6C89',
c700='#8F5878',
c800='#804467',
c900='#713056',
c950='#662647',
)
class Chat:
def __init__(self, model_path, load_8bit=False, load_4bit=False):
disable_torch_init()
self.model, self.processor, self.tokenizer = model_init(model_path, load_8bit=load_8bit, load_4bit=load_4bit)
@spaces.GPU(duration=120)
@torch.inference_mode()
def generate(self, data: list, message, temperature, top_p, max_output_tokens):
# TODO: support multiple turns of conversation.
assert len(data) == 1
tensor, modal = data[0]
response = mm_infer(tensor, message, self.model, self.tokenizer, modal=modal.strip('<>'),
do_sample=True if temperature > 0.0 else False,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_output_tokens)
return response
@spaces.GPU(duration=120)
def generate(image, video, audio, message, chatbot, va_tag, textbox_in, temperature, top_p, max_output_tokens, dtype=torch.float16):
data = []
processor = handler.processor
try:
if image is not None:
data.append((processor['image'](image).to(handler.model.device, dtype=dtype), '<image>'))
elif video is not None:
video_audio = processor['video'](video, va=va_tag=="Audio Vision")
if va_tag=="Audio Vision":
for k,v in video_audio.items():
video_audio[k] = v.to(handler.model.device, dtype=dtype)
else:
video_audio = video_audio.to(handler.model.device, dtype=dtype)
data.append((video_audio, '<video>'))
elif audio is not None:
data.append((processor['audio'](audio).to(handler.model.device, dtype=dtype), '<audio>'))
elif image is None and video is None:
data.append((None, '<text>'))
else:
raise NotImplementedError("Not support image and video at the same time")
except Exception as e:
traceback.print_exc()
return gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), message, chatbot
assert len(message) % 2 == 0, "The message should be a pair of user and system message."
show_images = ""
if image is not None:
show_images += f'<img src="./file={image}" style="display: inline-block;width: 250px;max-height: 400px;">'
if video is not None:
show_images += f'<video controls playsinline width="500" style="display: inline-block;" src="./file={video}"></video>'
if audio is not None:
show_images += f'<audio controls style="display: inline-block;" src="./file={audio}"></audio>'
one_turn_chat = [textbox_in, None]
# 1. first run case
if len(chatbot) == 0:
one_turn_chat[0] += "\n" + show_images
# 2. not first run case
else:
previous_image = re.findall(r'<img src="./file=(.+?)"', chatbot[0][0])
previous_video = re.findall(r'<video controls playsinline width="500" style="display: inline-block;" src="./file=(.+?)"', chatbot[0][0])
previous_audio = re.findall(r'<audio controls style="display: inline-block;" src="./file=(.+?)"', chatbot[0][0])
if len(previous_image) > 0:
previous_image = previous_image[0]
# 2.1 new image append or pure text input will start a new conversation
if image is not None and os.path.basename(previous_image) != os.path.basename(image):
message.clear()
one_turn_chat[0] += "\n" + show_images
elif len(previous_video) > 0:
previous_video = previous_video[0]
# 2.2 new video append or pure text input will start a new conversation
if video is not None and os.path.basename(previous_video) != os.path.basename(video):
message.clear()
one_turn_chat[0] += "\n" + show_images
elif len(previous_audio) > 0:
previous_audio = previous_audio[0]
# 2.3 new audio append or pure text input will start a new conversation
if audio is not None and os.path.basename(previous_audio) != os.path.basename(video):
message.clear()
one_turn_chat[0] += "\n" + show_images
message.append({'role': 'user', 'content': textbox_in})
if va_tag == "Vision Only":
audio_tower = handler.model.model.audio_tower
handler.model.model.audio_tower = None
elif va_tag == "Audio Only":
vision_tower = handler.model.model.vision_tower
handler.model.model.vision_tower = None
text_en_out = handler.generate(data, message, temperature=temperature, top_p=top_p, max_output_tokens=max_output_tokens)
if va_tag == "Vision Only":
handler.model.model.audio_tower = audio_tower
elif va_tag == "Audio Only":
handler.model.model.vision_tower = vision_tower
message.append({'role': 'assistant', 'content': text_en_out})
one_turn_chat[1] = text_en_out
chatbot.append(one_turn_chat)
return gr.update(value=image, interactive=True), gr.update(value=video, interactive=True), gr.update(value=audio, interactive=True), message, chatbot
def regenerate(message, chatbot):
message.pop(-1), message.pop(-1)
chatbot.pop(-1)
return message, chatbot
def clear_history(message, chatbot):
message.clear(), chatbot.clear()
return (gr.update(value=None, interactive=True),
gr.update(value=None, interactive=True),
gr.update(value=None, interactive=True),
message, chatbot,
gr.update(value=None, interactive=True))
# BUG of Zero Environment
# 1. The environment is fixed to torch>=2.0,<=2.2, gradio>=4.x.x
# 2. The operation or tensor which requires cuda are limited in those functions wrapped via spaces.GPU
# 3. The function can't return tensor or other cuda objects.
model_path = 'DAMO-NLP-SG/VideoLLaMA2.1-7B-AV'
handler = Chat(model_path, load_8bit=False, load_4bit=False)
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
theme = gr.themes.Default(primary_hue=plum_color)
# theme.update_color("primary", plum_color.c500)
theme.set(slider_color="#9C276A")
theme.set(block_title_text_color="#9C276A")
theme.set(block_label_text_color="#9C276A")
theme.set(button_primary_text_color="#9C276A")
# theme.set(button_secondary_text_color="*neutral_800")
with gr.Blocks(title='VideoLLaMA 2 π₯ππ₯', theme=theme, css=block_css) as demo:
gr.Markdown(title_markdown)
message = gr.State([])
with gr.Row():
with gr.Column(scale=3):
image = gr.Image(label="Input Image", type="filepath")
video = gr.Video(label="Input Video")
audio = gr.Audio(label="Input Audio", type="filepath")
with gr.Accordion("Parameters", open=True) as parameter_row:
# num_beams = gr.Slider(
# minimum=1,
# maximum=10,
# value=1,
# step=1,
# interactive=True,
# label="beam search numbers",
# )
va_tag = gr.Radio(choices=["Audio Vision", "Vision Only", "Audio Only"], value="Audio Vision", label="Select one")
temperature = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.2,
step=0.1,
interactive=True,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
interactive=True,
label="Top P",
)
max_output_tokens = gr.Slider(
minimum=64,
maximum=1024,
value=512,
step=64,
interactive=True,
label="Max output tokens",
)
with gr.Column(scale=7):
chatbot = gr.Chatbot(label="VideoLLaMA 2", bubble_full_width=True, height=750)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(value="Send", variant="primary", interactive=True)
with gr.Row(elem_id="buttons") as button_row:
upvote_btn = gr.Button(value="π Upvote", interactive=True)
downvote_btn = gr.Button(value="π Downvote", interactive=True)
# flag_btn = gr.Button(value="β οΈ Flag", interactive=True)
# stop_btn = gr.Button(value="βΉοΈ Stop Generation", interactive=False)
regenerate_btn = gr.Button(value="π Regenerate", interactive=True)
clear_btn = gr.Button(value="ποΈ Clear history", interactive=True)
with gr.Row():
cur_dir = os.path.dirname(os.path.abspath(__file__))
with gr.Column():
gr.Examples(
examples=[
[
f"{cur_dir}/examples/extreme_ironing.jpg",
"What happens in this image?",
],
[
f"{cur_dir}/examples/waterview.jpg",
"What are the things I should be cautious about when I visit here?",
],
],
inputs=[image, textbox],
)
with gr.Column():
gr.Examples(
examples=[
[
f"{cur_dir}/examples/WBS4I.mp4",
"Please describe the video:",
],
[
f"{cur_dir}/examples/sample_demo_1.mp4",
"Please describe the video:",
],
],
inputs=[video, textbox],
)
with gr.Column():
gr.Examples(
examples=[
[
f"{cur_dir}/examples/00000368.mp4",
"Please describe the video with audio information:",
],
[
f"{cur_dir}/examples/00003491.mp4",
"Where is the loudest instrument?",
],
],
inputs=[video, textbox],
)
with gr.Column():
# audio
gr.Examples(
examples=[
[
f"{cur_dir}/examples/Y--ZHUMfueO0.flac",
"Please describe the audio:",
],
[
f"{cur_dir}/examples/Traffic and pedestrians.wav",
"Please describe the audio:",
],
],
inputs=[audio, textbox],
)
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
submit_btn.click(
generate,
[image, video, audio, message, chatbot, va_tag, textbox, temperature, top_p, max_output_tokens],
[image, video, audio, message, chatbot])
regenerate_btn.click(
regenerate,
[message, chatbot],
[message, chatbot]).then(
generate,
[image, video, audio, message, chatbot, va_tag, textbox, temperature, top_p, max_output_tokens],
[image, video, audio, message, chatbot])
clear_btn.click(
clear_history,
[message, chatbot],
[image, video, audio, message, chatbot, textbox])
demo.launch(share=False)
|