Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import numpy as np | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from torch.nn import Conv1d | |
from torch.nn.utils import weight_norm, remove_weight_norm | |
from module import commons | |
from module.commons import init_weights, get_padding | |
from module.transforms import piecewise_rational_quadratic_transform | |
import torch.distributions as D | |
LRELU_SLOPE = 0.1 | |
class LayerNorm(nn.Module): | |
def __init__(self, channels, eps=1e-5): | |
super().__init__() | |
self.channels = channels | |
self.eps = eps | |
self.gamma = nn.Parameter(torch.ones(channels)) | |
self.beta = nn.Parameter(torch.zeros(channels)) | |
def forward(self, x): | |
x = x.transpose(1, -1) | |
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) | |
return x.transpose(1, -1) | |
class ConvReluNorm(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
hidden_channels, | |
out_channels, | |
kernel_size, | |
n_layers, | |
p_dropout, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.hidden_channels = hidden_channels | |
self.out_channels = out_channels | |
self.kernel_size = kernel_size | |
self.n_layers = n_layers | |
self.p_dropout = p_dropout | |
assert n_layers > 1, "Number of layers should be larger than 0." | |
self.conv_layers = nn.ModuleList() | |
self.norm_layers = nn.ModuleList() | |
self.conv_layers.append( | |
nn.Conv1d( | |
in_channels, hidden_channels, kernel_size, padding=kernel_size // 2 | |
) | |
) | |
self.norm_layers.append(LayerNorm(hidden_channels)) | |
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout)) | |
for _ in range(n_layers - 1): | |
self.conv_layers.append( | |
nn.Conv1d( | |
hidden_channels, | |
hidden_channels, | |
kernel_size, | |
padding=kernel_size // 2, | |
) | |
) | |
self.norm_layers.append(LayerNorm(hidden_channels)) | |
self.proj = nn.Conv1d(hidden_channels, out_channels, 1) | |
self.proj.weight.data.zero_() | |
self.proj.bias.data.zero_() | |
def forward(self, x, x_mask): | |
x_org = x | |
for i in range(self.n_layers): | |
x = self.conv_layers[i](x * x_mask) | |
x = self.norm_layers[i](x) | |
x = self.relu_drop(x) | |
x = x_org + self.proj(x) | |
return x * x_mask | |
class DDSConv(nn.Module): | |
""" | |
Dialted and Depth-Separable Convolution | |
""" | |
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0): | |
super().__init__() | |
self.channels = channels | |
self.kernel_size = kernel_size | |
self.n_layers = n_layers | |
self.p_dropout = p_dropout | |
self.drop = nn.Dropout(p_dropout) | |
self.convs_sep = nn.ModuleList() | |
self.convs_1x1 = nn.ModuleList() | |
self.norms_1 = nn.ModuleList() | |
self.norms_2 = nn.ModuleList() | |
for i in range(n_layers): | |
dilation = kernel_size**i | |
padding = (kernel_size * dilation - dilation) // 2 | |
self.convs_sep.append( | |
nn.Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
groups=channels, | |
dilation=dilation, | |
padding=padding, | |
) | |
) | |
self.convs_1x1.append(nn.Conv1d(channels, channels, 1)) | |
self.norms_1.append(LayerNorm(channels)) | |
self.norms_2.append(LayerNorm(channels)) | |
def forward(self, x, x_mask, g=None): | |
if g is not None: | |
x = x + g | |
for i in range(self.n_layers): | |
y = self.convs_sep[i](x * x_mask) | |
y = self.norms_1[i](y) | |
y = F.gelu(y) | |
y = self.convs_1x1[i](y) | |
y = self.norms_2[i](y) | |
y = F.gelu(y) | |
y = self.drop(y) | |
x = x + y | |
return x * x_mask | |
class WN(torch.nn.Module): | |
def __init__( | |
self, | |
hidden_channels, | |
kernel_size, | |
dilation_rate, | |
n_layers, | |
gin_channels=0, | |
p_dropout=0, | |
): | |
super(WN, self).__init__() | |
assert kernel_size % 2 == 1 | |
self.hidden_channels = hidden_channels | |
self.kernel_size = (kernel_size,) | |
self.dilation_rate = dilation_rate | |
self.n_layers = n_layers | |
self.gin_channels = gin_channels | |
self.p_dropout = p_dropout | |
self.in_layers = torch.nn.ModuleList() | |
self.res_skip_layers = torch.nn.ModuleList() | |
self.drop = nn.Dropout(p_dropout) | |
if gin_channels != 0: | |
cond_layer = torch.nn.Conv1d( | |
gin_channels, 2 * hidden_channels * n_layers, 1 | |
) | |
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight") | |
for i in range(n_layers): | |
dilation = dilation_rate**i | |
padding = int((kernel_size * dilation - dilation) / 2) | |
in_layer = torch.nn.Conv1d( | |
hidden_channels, | |
2 * hidden_channels, | |
kernel_size, | |
dilation=dilation, | |
padding=padding, | |
) | |
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight") | |
self.in_layers.append(in_layer) | |
# last one is not necessary | |
if i < n_layers - 1: | |
res_skip_channels = 2 * hidden_channels | |
else: | |
res_skip_channels = hidden_channels | |
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1) | |
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight") | |
self.res_skip_layers.append(res_skip_layer) | |
def forward(self, x, x_mask, g=None, **kwargs): | |
output = torch.zeros_like(x) | |
n_channels_tensor = torch.IntTensor([self.hidden_channels]) | |
if g is not None: | |
g = self.cond_layer(g) | |
for i in range(self.n_layers): | |
x_in = self.in_layers[i](x) | |
if g is not None: | |
cond_offset = i * 2 * self.hidden_channels | |
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :] | |
else: | |
g_l = torch.zeros_like(x_in) | |
acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor) | |
acts = self.drop(acts) | |
res_skip_acts = self.res_skip_layers[i](acts) | |
if i < self.n_layers - 1: | |
res_acts = res_skip_acts[:, : self.hidden_channels, :] | |
x = (x + res_acts) * x_mask | |
output = output + res_skip_acts[:, self.hidden_channels :, :] | |
else: | |
output = output + res_skip_acts | |
return output * x_mask | |
def remove_weight_norm(self): | |
if self.gin_channels != 0: | |
torch.nn.utils.remove_weight_norm(self.cond_layer) | |
for l in self.in_layers: | |
torch.nn.utils.remove_weight_norm(l) | |
for l in self.res_skip_layers: | |
torch.nn.utils.remove_weight_norm(l) | |
class ResBlock1(torch.nn.Module): | |
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): | |
super(ResBlock1, self).__init__() | |
self.convs1 = nn.ModuleList( | |
[ | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation[0], | |
padding=get_padding(kernel_size, dilation[0]), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation[1], | |
padding=get_padding(kernel_size, dilation[1]), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation[2], | |
padding=get_padding(kernel_size, dilation[2]), | |
) | |
), | |
] | |
) | |
self.convs1.apply(init_weights) | |
self.convs2 = nn.ModuleList( | |
[ | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=1, | |
padding=get_padding(kernel_size, 1), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=1, | |
padding=get_padding(kernel_size, 1), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=1, | |
padding=get_padding(kernel_size, 1), | |
) | |
), | |
] | |
) | |
self.convs2.apply(init_weights) | |
def forward(self, x, x_mask=None): | |
for c1, c2 in zip(self.convs1, self.convs2): | |
xt = F.leaky_relu(x, LRELU_SLOPE) | |
if x_mask is not None: | |
xt = xt * x_mask | |
xt = c1(xt) | |
xt = F.leaky_relu(xt, LRELU_SLOPE) | |
if x_mask is not None: | |
xt = xt * x_mask | |
xt = c2(xt) | |
x = xt + x | |
if x_mask is not None: | |
x = x * x_mask | |
return x | |
def remove_weight_norm(self): | |
for l in self.convs1: | |
remove_weight_norm(l) | |
for l in self.convs2: | |
remove_weight_norm(l) | |
class ResBlock2(torch.nn.Module): | |
def __init__(self, channels, kernel_size=3, dilation=(1, 3)): | |
super(ResBlock2, self).__init__() | |
self.convs = nn.ModuleList( | |
[ | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation[0], | |
padding=get_padding(kernel_size, dilation[0]), | |
) | |
), | |
weight_norm( | |
Conv1d( | |
channels, | |
channels, | |
kernel_size, | |
1, | |
dilation=dilation[1], | |
padding=get_padding(kernel_size, dilation[1]), | |
) | |
), | |
] | |
) | |
self.convs.apply(init_weights) | |
def forward(self, x, x_mask=None): | |
for c in self.convs: | |
xt = F.leaky_relu(x, LRELU_SLOPE) | |
if x_mask is not None: | |
xt = xt * x_mask | |
xt = c(xt) | |
x = xt + x | |
if x_mask is not None: | |
x = x * x_mask | |
return x | |
def remove_weight_norm(self): | |
for l in self.convs: | |
remove_weight_norm(l) | |
class Log(nn.Module): | |
def forward(self, x, x_mask, reverse=False, **kwargs): | |
if not reverse: | |
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask | |
logdet = torch.sum(-y, [1, 2]) | |
return y, logdet | |
else: | |
x = torch.exp(x) * x_mask | |
return x | |
class Flip(nn.Module): | |
def forward(self, x, *args, reverse=False, **kwargs): | |
x = torch.flip(x, [1]) | |
if not reverse: | |
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) | |
return x, logdet | |
else: | |
return x | |
class ElementwiseAffine(nn.Module): | |
def __init__(self, channels): | |
super().__init__() | |
self.channels = channels | |
self.m = nn.Parameter(torch.zeros(channels, 1)) | |
self.logs = nn.Parameter(torch.zeros(channels, 1)) | |
def forward(self, x, x_mask, reverse=False, **kwargs): | |
if not reverse: | |
y = self.m + torch.exp(self.logs) * x | |
y = y * x_mask | |
logdet = torch.sum(self.logs * x_mask, [1, 2]) | |
return y, logdet | |
else: | |
x = (x - self.m) * torch.exp(-self.logs) * x_mask | |
return x | |
class ResidualCouplingLayer(nn.Module): | |
def __init__( | |
self, | |
channels, | |
hidden_channels, | |
kernel_size, | |
dilation_rate, | |
n_layers, | |
p_dropout=0, | |
gin_channels=0, | |
mean_only=False, | |
): | |
assert channels % 2 == 0, "channels should be divisible by 2" | |
super().__init__() | |
self.channels = channels | |
self.hidden_channels = hidden_channels | |
self.kernel_size = kernel_size | |
self.dilation_rate = dilation_rate | |
self.n_layers = n_layers | |
self.half_channels = channels // 2 | |
self.mean_only = mean_only | |
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) | |
self.enc = WN( | |
hidden_channels, | |
kernel_size, | |
dilation_rate, | |
n_layers, | |
p_dropout=p_dropout, | |
gin_channels=gin_channels, | |
) | |
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) | |
self.post.weight.data.zero_() | |
self.post.bias.data.zero_() | |
def forward(self, x, x_mask, g=None, reverse=False): | |
x0, x1 = torch.split(x, [self.half_channels] * 2, 1) | |
h = self.pre(x0) * x_mask | |
h = self.enc(h, x_mask, g=g) | |
stats = self.post(h) * x_mask | |
if not self.mean_only: | |
m, logs = torch.split(stats, [self.half_channels] * 2, 1) | |
else: | |
m = stats | |
logs = torch.zeros_like(m) | |
if not reverse: | |
x1 = m + x1 * torch.exp(logs) * x_mask | |
x = torch.cat([x0, x1], 1) | |
logdet = torch.sum(logs, [1, 2]) | |
return x, logdet | |
else: | |
x1 = (x1 - m) * torch.exp(-logs) * x_mask | |
x = torch.cat([x0, x1], 1) | |
return x | |
class ConvFlow(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
filter_channels, | |
kernel_size, | |
n_layers, | |
num_bins=10, | |
tail_bound=5.0, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.filter_channels = filter_channels | |
self.kernel_size = kernel_size | |
self.n_layers = n_layers | |
self.num_bins = num_bins | |
self.tail_bound = tail_bound | |
self.half_channels = in_channels // 2 | |
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1) | |
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0) | |
self.proj = nn.Conv1d( | |
filter_channels, self.half_channels * (num_bins * 3 - 1), 1 | |
) | |
self.proj.weight.data.zero_() | |
self.proj.bias.data.zero_() | |
def forward(self, x, x_mask, g=None, reverse=False): | |
x0, x1 = torch.split(x, [self.half_channels] * 2, 1) | |
h = self.pre(x0) | |
h = self.convs(h, x_mask, g=g) | |
h = self.proj(h) * x_mask | |
b, c, t = x0.shape | |
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?] | |
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels) | |
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt( | |
self.filter_channels | |
) | |
unnormalized_derivatives = h[..., 2 * self.num_bins :] | |
x1, logabsdet = piecewise_rational_quadratic_transform( | |
x1, | |
unnormalized_widths, | |
unnormalized_heights, | |
unnormalized_derivatives, | |
inverse=reverse, | |
tails="linear", | |
tail_bound=self.tail_bound, | |
) | |
x = torch.cat([x0, x1], 1) * x_mask | |
logdet = torch.sum(logabsdet * x_mask, [1, 2]) | |
if not reverse: | |
return x, logdet | |
else: | |
return x | |
class LinearNorm(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
bias=True, | |
spectral_norm=False, | |
): | |
super(LinearNorm, self).__init__() | |
self.fc = nn.Linear(in_channels, out_channels, bias) | |
if spectral_norm: | |
self.fc = nn.utils.spectral_norm(self.fc) | |
def forward(self, input): | |
out = self.fc(input) | |
return out | |
class Mish(nn.Module): | |
def __init__(self): | |
super(Mish, self).__init__() | |
def forward(self, x): | |
return x * torch.tanh(F.softplus(x)) | |
class Conv1dGLU(nn.Module): | |
""" | |
Conv1d + GLU(Gated Linear Unit) with residual connection. | |
For GLU refer to https://arxiv.org/abs/1612.08083 paper. | |
""" | |
def __init__(self, in_channels, out_channels, kernel_size, dropout): | |
super(Conv1dGLU, self).__init__() | |
self.out_channels = out_channels | |
self.conv1 = ConvNorm(in_channels, 2 * out_channels, kernel_size=kernel_size) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
residual = x | |
x = self.conv1(x) | |
x1, x2 = torch.split(x, split_size_or_sections=self.out_channels, dim=1) | |
x = x1 * torch.sigmoid(x2) | |
x = residual + self.dropout(x) | |
return x | |
class ConvNorm(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size=1, | |
stride=1, | |
padding=None, | |
dilation=1, | |
bias=True, | |
spectral_norm=False, | |
): | |
super(ConvNorm, self).__init__() | |
if padding is None: | |
assert kernel_size % 2 == 1 | |
padding = int(dilation * (kernel_size - 1) / 2) | |
self.conv = torch.nn.Conv1d( | |
in_channels, | |
out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
bias=bias, | |
) | |
if spectral_norm: | |
self.conv = nn.utils.spectral_norm(self.conv) | |
def forward(self, input): | |
out = self.conv(input) | |
return out | |
class MultiHeadAttention(nn.Module): | |
"""Multi-Head Attention module""" | |
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.0, spectral_norm=False): | |
super().__init__() | |
self.n_head = n_head | |
self.d_k = d_k | |
self.d_v = d_v | |
self.w_qs = nn.Linear(d_model, n_head * d_k) | |
self.w_ks = nn.Linear(d_model, n_head * d_k) | |
self.w_vs = nn.Linear(d_model, n_head * d_v) | |
self.attention = ScaledDotProductAttention( | |
temperature=np.power(d_model, 0.5), dropout=dropout | |
) | |
self.fc = nn.Linear(n_head * d_v, d_model) | |
self.dropout = nn.Dropout(dropout) | |
if spectral_norm: | |
self.w_qs = nn.utils.spectral_norm(self.w_qs) | |
self.w_ks = nn.utils.spectral_norm(self.w_ks) | |
self.w_vs = nn.utils.spectral_norm(self.w_vs) | |
self.fc = nn.utils.spectral_norm(self.fc) | |
def forward(self, x, mask=None): | |
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head | |
sz_b, len_x, _ = x.size() | |
residual = x | |
q = self.w_qs(x).view(sz_b, len_x, n_head, d_k) | |
k = self.w_ks(x).view(sz_b, len_x, n_head, d_k) | |
v = self.w_vs(x).view(sz_b, len_x, n_head, d_v) | |
q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_x, d_k) # (n*b) x lq x dk | |
k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_x, d_k) # (n*b) x lk x dk | |
v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_x, d_v) # (n*b) x lv x dv | |
if mask is not None: | |
slf_mask = mask.repeat(n_head, 1, 1) # (n*b) x .. x .. | |
else: | |
slf_mask = None | |
output, attn = self.attention(q, k, v, mask=slf_mask) | |
output = output.view(n_head, sz_b, len_x, d_v) | |
output = ( | |
output.permute(1, 2, 0, 3).contiguous().view(sz_b, len_x, -1) | |
) # b x lq x (n*dv) | |
output = self.fc(output) | |
output = self.dropout(output) + residual | |
return output, attn | |
class ScaledDotProductAttention(nn.Module): | |
"""Scaled Dot-Product Attention""" | |
def __init__(self, temperature, dropout): | |
super().__init__() | |
self.temperature = temperature | |
self.softmax = nn.Softmax(dim=2) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, q, k, v, mask=None): | |
attn = torch.bmm(q, k.transpose(1, 2)) | |
attn = attn / self.temperature | |
if mask is not None: | |
attn = attn.masked_fill(mask, -np.inf) | |
attn = self.softmax(attn) | |
p_attn = self.dropout(attn) | |
output = torch.bmm(p_attn, v) | |
return output, attn | |
class MelStyleEncoder(nn.Module): | |
"""MelStyleEncoder""" | |
def __init__( | |
self, | |
n_mel_channels=80, | |
style_hidden=128, | |
style_vector_dim=256, | |
style_kernel_size=5, | |
style_head=2, | |
dropout=0.1, | |
): | |
super(MelStyleEncoder, self).__init__() | |
self.in_dim = n_mel_channels | |
self.hidden_dim = style_hidden | |
self.out_dim = style_vector_dim | |
self.kernel_size = style_kernel_size | |
self.n_head = style_head | |
self.dropout = dropout | |
self.spectral = nn.Sequential( | |
LinearNorm(self.in_dim, self.hidden_dim), | |
Mish(), | |
nn.Dropout(self.dropout), | |
LinearNorm(self.hidden_dim, self.hidden_dim), | |
Mish(), | |
nn.Dropout(self.dropout), | |
) | |
self.temporal = nn.Sequential( | |
Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout), | |
Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout), | |
) | |
self.slf_attn = MultiHeadAttention( | |
self.n_head, | |
self.hidden_dim, | |
self.hidden_dim // self.n_head, | |
self.hidden_dim // self.n_head, | |
self.dropout, | |
) | |
self.fc = LinearNorm(self.hidden_dim, self.out_dim) | |
def temporal_avg_pool(self, x, mask=None): | |
if mask is None: | |
out = torch.mean(x, dim=1) | |
else: | |
len_ = (~mask).sum(dim=1).unsqueeze(1) | |
x = x.masked_fill(mask.unsqueeze(-1), 0) | |
x = x.sum(dim=1) | |
out = torch.div(x, len_) | |
return out | |
def forward(self, x, mask=None): | |
x = x.transpose(1, 2) | |
if mask is not None: | |
mask = (mask.int() == 0).squeeze(1) | |
max_len = x.shape[1] | |
slf_attn_mask = ( | |
mask.unsqueeze(1).expand(-1, max_len, -1) if mask is not None else None | |
) | |
# spectral | |
x = self.spectral(x) | |
# temporal | |
x = x.transpose(1, 2) | |
x = self.temporal(x) | |
x = x.transpose(1, 2) | |
# self-attention | |
if mask is not None: | |
x = x.masked_fill(mask.unsqueeze(-1), 0) | |
x, _ = self.slf_attn(x, mask=slf_attn_mask) | |
# fc | |
x = self.fc(x) | |
# temoral average pooling | |
w = self.temporal_avg_pool(x, mask=mask) | |
return w.unsqueeze(-1) | |
class MelStyleEncoderVAE(nn.Module): | |
def __init__(self, spec_channels, z_latent_dim, emb_dim): | |
super().__init__() | |
self.ref_encoder = MelStyleEncoder(spec_channels, style_vector_dim=emb_dim) | |
self.fc1 = nn.Linear(emb_dim, z_latent_dim) | |
self.fc2 = nn.Linear(emb_dim, z_latent_dim) | |
self.fc3 = nn.Linear(z_latent_dim, emb_dim) | |
self.z_latent_dim = z_latent_dim | |
def reparameterize(self, mu, logvar): | |
if self.training: | |
std = torch.exp(0.5 * logvar) | |
eps = torch.randn_like(std) | |
return eps.mul(std).add_(mu) | |
else: | |
return mu | |
def forward(self, inputs, mask=None): | |
enc_out = self.ref_encoder(inputs.squeeze(-1), mask).squeeze(-1) | |
mu = self.fc1(enc_out) | |
logvar = self.fc2(enc_out) | |
posterior = D.Normal(mu, torch.exp(logvar)) | |
kl_divergence = D.kl_divergence( | |
posterior, D.Normal(torch.zeros_like(mu), torch.ones_like(logvar)) | |
) | |
loss_kl = kl_divergence.mean() | |
z = posterior.rsample() | |
style_embed = self.fc3(z) | |
return style_embed.unsqueeze(-1), loss_kl | |
def infer(self, inputs=None, random_sample=False, manual_latent=None): | |
if manual_latent is None: | |
if random_sample: | |
dev = next(self.parameters()).device | |
posterior = D.Normal( | |
torch.zeros(1, self.z_latent_dim, device=dev), | |
torch.ones(1, self.z_latent_dim, device=dev), | |
) | |
z = posterior.rsample() | |
else: | |
enc_out = self.ref_encoder(inputs.transpose(1, 2)) | |
mu = self.fc1(enc_out) | |
z = mu | |
else: | |
z = manual_latent | |
style_embed = self.fc3(z) | |
return style_embed.unsqueeze(-1), z | |
class ActNorm(nn.Module): | |
def __init__(self, channels, ddi=False, **kwargs): | |
super().__init__() | |
self.channels = channels | |
self.initialized = not ddi | |
self.logs = nn.Parameter(torch.zeros(1, channels, 1)) | |
self.bias = nn.Parameter(torch.zeros(1, channels, 1)) | |
def forward(self, x, x_mask=None, g=None, reverse=False, **kwargs): | |
if x_mask is None: | |
x_mask = torch.ones(x.size(0), 1, x.size(2)).to( | |
device=x.device, dtype=x.dtype | |
) | |
x_len = torch.sum(x_mask, [1, 2]) | |
if not self.initialized: | |
self.initialize(x, x_mask) | |
self.initialized = True | |
if reverse: | |
z = (x - self.bias) * torch.exp(-self.logs) * x_mask | |
logdet = None | |
return z | |
else: | |
z = (self.bias + torch.exp(self.logs) * x) * x_mask | |
logdet = torch.sum(self.logs) * x_len # [b] | |
return z, logdet | |
def store_inverse(self): | |
pass | |
def set_ddi(self, ddi): | |
self.initialized = not ddi | |
def initialize(self, x, x_mask): | |
with torch.no_grad(): | |
denom = torch.sum(x_mask, [0, 2]) | |
m = torch.sum(x * x_mask, [0, 2]) / denom | |
m_sq = torch.sum(x * x * x_mask, [0, 2]) / denom | |
v = m_sq - (m**2) | |
logs = 0.5 * torch.log(torch.clamp_min(v, 1e-6)) | |
bias_init = ( | |
(-m * torch.exp(-logs)).view(*self.bias.shape).to(dtype=self.bias.dtype) | |
) | |
logs_init = (-logs).view(*self.logs.shape).to(dtype=self.logs.dtype) | |
self.bias.data.copy_(bias_init) | |
self.logs.data.copy_(logs_init) | |
class InvConvNear(nn.Module): | |
def __init__(self, channels, n_split=4, no_jacobian=False, **kwargs): | |
super().__init__() | |
assert n_split % 2 == 0 | |
self.channels = channels | |
self.n_split = n_split | |
self.no_jacobian = no_jacobian | |
w_init = torch.linalg.qr( | |
torch.FloatTensor(self.n_split, self.n_split).normal_() | |
)[0] | |
if torch.det(w_init) < 0: | |
w_init[:, 0] = -1 * w_init[:, 0] | |
self.weight = nn.Parameter(w_init) | |
def forward(self, x, x_mask=None, g=None, reverse=False, **kwargs): | |
b, c, t = x.size() | |
assert c % self.n_split == 0 | |
if x_mask is None: | |
x_mask = 1 | |
x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t | |
else: | |
x_len = torch.sum(x_mask, [1, 2]) | |
x = x.view(b, 2, c // self.n_split, self.n_split // 2, t) | |
x = ( | |
x.permute(0, 1, 3, 2, 4) | |
.contiguous() | |
.view(b, self.n_split, c // self.n_split, t) | |
) | |
if reverse: | |
if hasattr(self, "weight_inv"): | |
weight = self.weight_inv | |
else: | |
weight = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype) | |
logdet = None | |
else: | |
weight = self.weight | |
if self.no_jacobian: | |
logdet = 0 | |
else: | |
logdet = torch.logdet(self.weight) * (c / self.n_split) * x_len # [b] | |
weight = weight.view(self.n_split, self.n_split, 1, 1) | |
z = F.conv2d(x, weight) | |
z = z.view(b, 2, self.n_split // 2, c // self.n_split, t) | |
z = z.permute(0, 1, 3, 2, 4).contiguous().view(b, c, t) * x_mask | |
if reverse: | |
return z | |
else: | |
return z, logdet | |
def store_inverse(self): | |
self.weight_inv = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype) | |