Spaces:
Build error
Build error
File size: 5,064 Bytes
327d8ca dc9c6a7 327d8ca dc9c6a7 327d8ca 55eb0b3 72d2368 327d8ca 72d2368 327d8ca 55eb0b3 327d8ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
# -*- coding: utf-8 -*-
"""Fujisaki_CPU.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1Damnr0Ha4zZAlKFvne9cu76uuElLNYus
李萌萌的电子骨灰盒
----
这是一个通过ChatGLM模型训练的李萌萌的数字分身,你可以在问题栏目填入内容,或者什么都不填,来观察李萌萌到底会说些什么。
T4级别的GPU已经可以很胜任这个任务了。
### 安装依赖
"""
import torch
import sys
from transformers import AutoTokenizer, GenerationConfig, AutoModel
model = AutoModel.from_pretrained("ljsabc/Fujisaki-int4", trust_remote_code=True).float()
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
# We have to use full precision, as some tokens are >65535
model.eval()
torch.set_default_tensor_type(torch.FloatTensor)
def evaluate(context, temperature, top_p, top_k):
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
#repetition_penalty=1.1,
num_beams=1,
do_sample=True,
)
with torch.no_grad():
input_text = f"Context: {context}Answer: "
ids = tokenizer.encode(input_text)
input_ids = torch.LongTensor([ids]).to('cpu')
out = model.generate(
input_ids=input_ids,
max_length=160,
generation_config=generation_config
)
out_text = tokenizer.decode(out[0]).split("Answer: ")[1]
return out_text
def evaluate_stream(msg, history, temperature, top_p):
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
#repetition_penalty=1.1,
num_beams=1,
do_sample=True,
)
history.append([msg, None])
context = ""
if len(history) > 4:
history.pop(0)
for j in range(len(history)):
history[j][0] = history[j][0].replace("<br>", "")
# concatenate context
for h in history[:-1]:
context += h[0] + "||" + h[1] + "||"
context += history[-1][0]
context = context.replace(r'<br>', '')
# TODO: Avoid the tokens are too long.
CUTOFF = 224
while len(tokenizer.encode(context)) > CUTOFF:
# save 15 token size for the answer
context = context[15:]
h = []
print("History:", history)
print("Context:", context)
for response, h in model.stream_chat(tokenizer, context, h, max_length=CUTOFF, top_p=top_p, temperature=temperature):
history[-1][1] = response
yield history, ""
#return response
import gradio as gr
title = """<h1 align="center">李萌萌(长期供养版)</h1>
<h3 align="center">这是一个通过ChatGLM模型训练的李萌萌的数字分身,你可以与她聊天,或者直接在文本框按下Enter,来观察李萌萌到底会说些什么。</h3>
<p align="center">因为经过了int4量化,所以可以在很低内存的设备上跑起来,这样大概就真的成盒了(确信)。慢,非常慢,像石头一样慢。</p>"""
footer = """<p align='center'>项目在<a href='https://github.com/ljsabc/Fujisaki' target='_blank'>GitHub</a>上托管,基于清华的<a href='https://huggingface.co/THUDM/chatglm-6b' target='_blank'>THUDM/chatglm-6b</a>项目。</p>
<p align='center'><em>"I'm... a boy." --Chihiro Fujisaki</em></p>"""
with gr.Blocks() as demo:
gr.HTML(title)
state = gr.State()
with gr.Row():
with gr.Column(scale=2):
temp = gr.components.Slider(minimum=0, maximum=1.1, value=0.7, label="Temperature",
info="温度参数,越高的温度生成的内容越丰富,但是有可能出现语法问题。小的温度也能帮助生成更相关的回答。")
top_p = gr.components.Slider(minimum=0.5, maximum=1.0, value=0.95, label="Top-p",
info="top-p参数,只输出前p>top-p的文字,越大生成的内容越丰富,但也可能出现语法问题。数字越小似乎上下文的衔接性越好。")
#code = gr.Textbox(label="temp_output", info="解码器输出")
#top_k = gr.components.Slider(minimum=1, maximum=200, step=1, value=25, label="Top k",
# info="top-k参数,下一个输出的文字会从top-k个文字中进行选择,越大生成的内容越丰富,但也可能出现语法问题。数字越小似乎上下文的衔接性越好。")
with gr.Column(scale=3):
chatbot = gr.Chatbot(label="聊天框", info="")
msg = gr.Textbox(label="输入框", placeholder="最近过得怎么样?",
info="输入你的内容,按[Enter]发送。也可以什么都不填写生成随机数据。对话一般不能太长,否则就复读机了,建议清除数据。")
clear = gr.Button("清除聊天")
msg.submit(evaluate_stream, [msg, chatbot, temp, top_p], [chatbot, msg])
clear.click(lambda: None, None, chatbot, queue=False)
gr.HTML(footer)
demo.queue()
demo.launch(debug=False)
|