File size: 5,064 Bytes
327d8ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc9c6a7
327d8ca
dc9c6a7
327d8ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55eb0b3
 
72d2368
327d8ca
 
 
 
 
 
 
 
 
72d2368
327d8ca
55eb0b3
327d8ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# -*- coding: utf-8 -*-
"""Fujisaki_CPU.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1Damnr0Ha4zZAlKFvne9cu76uuElLNYus

李萌萌的电子骨灰盒
----

这是一个通过ChatGLM模型训练的李萌萌的数字分身,你可以在问题栏目填入内容,或者什么都不填,来观察李萌萌到底会说些什么。
T4级别的GPU已经可以很胜任这个任务了。

### 安装依赖
"""

import torch
import sys

from transformers import AutoTokenizer, GenerationConfig, AutoModel

model = AutoModel.from_pretrained("ljsabc/Fujisaki-int4", trust_remote_code=True).float()
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)

# We have to use full precision, as some tokens are >65535
model.eval()

torch.set_default_tensor_type(torch.FloatTensor)
def evaluate(context, temperature, top_p, top_k):
    generation_config = GenerationConfig(
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        #repetition_penalty=1.1,
        num_beams=1,
        do_sample=True,
    )
    with torch.no_grad():
        input_text = f"Context: {context}Answer: " 
        ids = tokenizer.encode(input_text)
        input_ids = torch.LongTensor([ids]).to('cpu')
        out = model.generate(
            input_ids=input_ids,
            max_length=160,
            generation_config=generation_config
        )
        out_text = tokenizer.decode(out[0]).split("Answer: ")[1]
        return out_text
    
def evaluate_stream(msg, history, temperature, top_p):
    generation_config = GenerationConfig(
        temperature=temperature,
        top_p=top_p,
        #repetition_penalty=1.1,
        num_beams=1,
        do_sample=True,
    )

    history.append([msg, None])

    context = ""
    if len(history) > 4:
        history.pop(0)

    for j in range(len(history)):
        history[j][0] = history[j][0].replace("<br>", "")

    # concatenate context
    for h in history[:-1]:
        context += h[0] + "||" + h[1] + "||"

    context += history[-1][0]
    context = context.replace(r'<br>', '')

    # TODO: Avoid the tokens are too long.
    CUTOFF = 224
    while len(tokenizer.encode(context)) > CUTOFF:
        # save 15 token size for the answer
        context = context[15:]

    h = []
    print("History:", history)
    print("Context:", context)
    for response, h in model.stream_chat(tokenizer, context, h, max_length=CUTOFF, top_p=top_p, temperature=temperature):
        history[-1][1] = response
        yield history, ""

    #return response

import gradio as gr

title = """<h1 align="center">李萌萌(长期供养版)</h1>
<h3 align="center">这是一个通过ChatGLM模型训练的李萌萌的数字分身,你可以与她聊天,或者直接在文本框按下Enter,来观察李萌萌到底会说些什么。</h3>
<p align="center">因为经过了int4量化,所以可以在很低内存的设备上跑起来,这样大概就真的成盒了(确信)。慢,非常慢,像石头一样慢。</p>"""

footer =  """<p align='center'>项目在<a href='https://github.com/ljsabc/Fujisaki' target='_blank'>GitHub</a>上托管,基于清华的<a href='https://huggingface.co/THUDM/chatglm-6b' target='_blank'>THUDM/chatglm-6b</a>项目。</p>
<p align='center'><em>"I'm... a boy." --Chihiro Fujisaki</em></p>"""

with gr.Blocks() as demo:
    gr.HTML(title)
    state = gr.State()
    with gr.Row():
        with gr.Column(scale=2):
            temp = gr.components.Slider(minimum=0, maximum=1.1, value=0.7, label="Temperature",
                info="温度参数,越高的温度生成的内容越丰富,但是有可能出现语法问题。小的温度也能帮助生成更相关的回答。")
            top_p = gr.components.Slider(minimum=0.5, maximum=1.0, value=0.95, label="Top-p",
                info="top-p参数,只输出前p>top-p的文字,越大生成的内容越丰富,但也可能出现语法问题。数字越小似乎上下文的衔接性越好。")
            #code = gr.Textbox(label="temp_output", info="解码器输出")
            #top_k = gr.components.Slider(minimum=1, maximum=200, step=1, value=25, label="Top k",
            #    info="top-k参数,下一个输出的文字会从top-k个文字中进行选择,越大生成的内容越丰富,但也可能出现语法问题。数字越小似乎上下文的衔接性越好。")
            
        with gr.Column(scale=3):
            chatbot = gr.Chatbot(label="聊天框", info="")
            msg = gr.Textbox(label="输入框", placeholder="最近过得怎么样?",
                info="输入你的内容,按[Enter]发送。也可以什么都不填写生成随机数据。对话一般不能太长,否则就复读机了,建议清除数据。")
            clear = gr.Button("清除聊天")

    msg.submit(evaluate_stream, [msg, chatbot, temp, top_p], [chatbot, msg])
    clear.click(lambda: None, None, chatbot, queue=False)
    gr.HTML(footer)

demo.queue()
demo.launch(debug=False)