import pandas as pd import streamlit as st from utils_casemaker import CaseMaker, format_casemaker_data st.title("Juni Health Patient Casemaker") casemaker = CaseMaker("terms.json") uploaded_file = st.file_uploader("Choose a file") if uploaded_file is not None: # Can be used wherever a "file-like" object is accepted: df = pd.read_csv(uploaded_file) reports = format_casemaker_data( df=df, patient_id_column="patient_id", date_column="report_id", text_column="text", ) patient_options = { f"Patient {patient_id} ({len(reports[patient_id])} reports)": patient_id for patient_id in reports.keys() } selected_patient_string = st.radio( "Select a Patient ID", list(patient_options.keys()), key = "patient_select_button" ) if st.button("Generate Case", key = "task_begin_button"): selected_patient_id = patient_options[selected_patient_string] summary_by_organ = casemaker.parse_records(reports[selected_patient_id]) summary_by_organ = casemaker.format_reports(summary_by_organ) # Display the report col1, col2 = st.columns(2) with col1: st.subheader("Original") for report in reports[selected_patient_id]: st.write(f"**Report {report.date}**") st.write(report.text) with col2: st.subheader("With Casemaker") for chosen_organ in summary_by_organ.keys(): if summary_by_organ[chosen_organ]: st.header(chosen_organ.capitalize()) st.write(summary_by_organ[chosen_organ])