from threading import Thread
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
TITLE = "
Chat with Gemma-2-27B-Chinese-Chat
"
DESCRIPTION = ""
DEFAULT_SYSTEM = "You are a helpful assistant."
TOOL_EXAMPLE = '''You have access to the following tools:
```python
def generate_password(length: int, include_symbols: Optional[bool]):
"""
Generate a random password.
Args:
length (int): The length of the password
include_symbols (Optional[bool]): Include symbols in the password
"""
pass
```
Write "Action:" followed by a list of actions in JSON that you want to call, e.g.
Action:
```json
[
{
"name": "tool name (one of [generate_password])",
"arguments": "the input to the tool"
}
]
```
'''
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
"""
tokenizer = AutoTokenizer.from_pretrained("shenzhi-wang/Gemma-2-27B-Chinese-Chat")
model = AutoModelForCausalLM.from_pretrained("shenzhi-wang/Gemma-2-27B-Chinese-Chat", device_map="auto", torch_dtype="auto")
@spaces.GPU(duration=360)
def stream_chat(message: str, history: list, system: str, temperature: float, max_new_tokens: int):
conversation = [{"role": "system", "content": system or DEFAULT_SYSTEM}]
for prompt, answer in history:
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(
model.device
)
streamer = TextIteratorStreamer(tokenizer, timeout=360.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
temperature=temperature,
do_sample=True,
)
if temperature == 0:
generate_kwargs["do_sample"] = False
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
output = ""
for new_token in streamer:
output += new_token
yield output
chatbot = gr.Chatbot(height=450)
with gr.Blocks(css=CSS) as demo:
gr.HTML(TITLE)
gr.HTML(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Text(
value="",
label="System",
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=4096,
step=1,
value=1024,
label="Max new tokens",
render=False,
),
],
examples=[
["我的蓝牙耳机坏了,我该去看牙科还是耳鼻喉科?", ""],
["7年前,妈妈年龄是儿子的6倍,儿子今年12岁,妈妈今年多少岁?", ""],
["我的笔记本找不到了。", "扮演诸葛亮和我对话。"],
["我想要一个新的密码,长度为8位,包含特殊符号。", TOOL_EXAMPLE],
["How are you today?", "You are Taylor Swift, use beautiful lyrics to answer questions."],
["用C++实现KMP算法,并加上中文注释", ""],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()