File size: 76,640 Bytes
122057f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Integrations with other Python libraries.
"""
import functools
import importlib.metadata
import importlib.util
import json
import numbers
import os
import pickle
import shutil
import sys
import tempfile
from dataclasses import asdict
from pathlib import Path
from typing import TYPE_CHECKING, Any, Dict, Literal, Optional, Union

import numpy as np

from .. import __version__ as version
from ..utils import flatten_dict, is_datasets_available, is_pandas_available, is_torch_available, logging


logger = logging.get_logger(__name__)

if is_torch_available():
    import torch

# comet_ml requires to be imported before any ML frameworks
_has_comet = importlib.util.find_spec("comet_ml") is not None and os.getenv("COMET_MODE", "").upper() != "DISABLED"
if _has_comet:
    try:
        import comet_ml  # noqa: F401

        if hasattr(comet_ml, "config") and comet_ml.config.get_config("comet.api_key"):
            _has_comet = True
        else:
            if os.getenv("COMET_MODE", "").upper() != "DISABLED":
                logger.warning("comet_ml is installed but `COMET_API_KEY` is not set.")
            _has_comet = False
    except (ImportError, ValueError):
        _has_comet = False

_has_neptune = (
    importlib.util.find_spec("neptune") is not None or importlib.util.find_spec("neptune-client") is not None
)
if TYPE_CHECKING and _has_neptune:
    try:
        _neptune_version = importlib.metadata.version("neptune")
        logger.info(f"Neptune version {_neptune_version} available.")
    except importlib.metadata.PackageNotFoundError:
        try:
            _neptune_version = importlib.metadata.version("neptune-client")
            logger.info(f"Neptune-client version {_neptune_version} available.")
        except importlib.metadata.PackageNotFoundError:
            _has_neptune = False

from ..trainer_callback import ProgressCallback, TrainerCallback  # noqa: E402
from ..trainer_utils import PREFIX_CHECKPOINT_DIR, BestRun, IntervalStrategy  # noqa: E402
from ..training_args import ParallelMode  # noqa: E402
from ..utils import ENV_VARS_TRUE_VALUES, is_torch_tpu_available  # noqa: E402


# Integration functions:
def is_wandb_available():
    # any value of WANDB_DISABLED disables wandb
    if os.getenv("WANDB_DISABLED", "").upper() in ENV_VARS_TRUE_VALUES:
        logger.warning(
            "Using the `WANDB_DISABLED` environment variable is deprecated and will be removed in v5. Use the "
            "--report_to flag to control the integrations used for logging result (for instance --report_to none)."
        )
        return False
    return importlib.util.find_spec("wandb") is not None


def is_clearml_available():
    return importlib.util.find_spec("clearml") is not None


def is_comet_available():
    return _has_comet


def is_tensorboard_available():
    return importlib.util.find_spec("tensorboard") is not None or importlib.util.find_spec("tensorboardX") is not None


def is_optuna_available():
    return importlib.util.find_spec("optuna") is not None


def is_ray_available():
    return importlib.util.find_spec("ray") is not None


def is_ray_tune_available():
    if not is_ray_available():
        return False
    return importlib.util.find_spec("ray.tune") is not None


def is_sigopt_available():
    return importlib.util.find_spec("sigopt") is not None


def is_azureml_available():
    if importlib.util.find_spec("azureml") is None:
        return False
    if importlib.util.find_spec("azureml.core") is None:
        return False
    return importlib.util.find_spec("azureml.core.run") is not None


def is_mlflow_available():
    if os.getenv("DISABLE_MLFLOW_INTEGRATION", "FALSE").upper() == "TRUE":
        return False
    return importlib.util.find_spec("mlflow") is not None


def is_dagshub_available():
    return None not in [importlib.util.find_spec("dagshub"), importlib.util.find_spec("mlflow")]


def is_neptune_available():
    return _has_neptune


def is_codecarbon_available():
    return importlib.util.find_spec("codecarbon") is not None


def is_flytekit_available():
    return importlib.util.find_spec("flytekit") is not None


def is_flyte_deck_standard_available():
    if not is_flytekit_available():
        return False
    return importlib.util.find_spec("flytekitplugins.deck") is not None


def is_dvclive_available():
    return importlib.util.find_spec("dvclive") is not None


def hp_params(trial):
    if is_optuna_available():
        import optuna

        if isinstance(trial, optuna.Trial):
            return trial.params
    if is_ray_tune_available():
        if isinstance(trial, dict):
            return trial

    if is_sigopt_available():
        if isinstance(trial, dict):
            return trial

    if is_wandb_available():
        if isinstance(trial, dict):
            return trial

    raise RuntimeError(f"Unknown type for trial {trial.__class__}")


def run_hp_search_optuna(trainer, n_trials: int, direction: str, **kwargs) -> BestRun:
    import optuna

    if trainer.args.process_index == 0:

        def _objective(trial, checkpoint_dir=None):
            checkpoint = None
            if checkpoint_dir:
                for subdir in os.listdir(checkpoint_dir):
                    if subdir.startswith(PREFIX_CHECKPOINT_DIR):
                        checkpoint = os.path.join(checkpoint_dir, subdir)
            trainer.objective = None
            if trainer.args.world_size > 1:
                if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED:
                    raise RuntimeError("only support DDP optuna HPO for ParallelMode.DISTRIBUTED currently.")
                trainer._hp_search_setup(trial)
                torch.distributed.broadcast_object_list(pickle.dumps(trainer.args), src=0)
                trainer.train(resume_from_checkpoint=checkpoint)
            else:
                trainer.train(resume_from_checkpoint=checkpoint, trial=trial)
            # If there hasn't been any evaluation during the training loop.
            if getattr(trainer, "objective", None) is None:
                metrics = trainer.evaluate()
                trainer.objective = trainer.compute_objective(metrics)
            return trainer.objective

        timeout = kwargs.pop("timeout", None)
        n_jobs = kwargs.pop("n_jobs", 1)
        directions = direction if isinstance(direction, list) else None
        direction = None if directions is not None else direction
        study = optuna.create_study(direction=direction, directions=directions, **kwargs)
        study.optimize(_objective, n_trials=n_trials, timeout=timeout, n_jobs=n_jobs)
        if not study._is_multi_objective():
            best_trial = study.best_trial
            return BestRun(str(best_trial.number), best_trial.value, best_trial.params)
        else:
            best_trials = study.best_trials
            return [BestRun(str(best.number), best.values, best.params) for best in best_trials]
    else:
        for i in range(n_trials):
            trainer.objective = None
            args_main_rank = list(pickle.dumps(trainer.args))
            if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED:
                raise RuntimeError("only support DDP optuna HPO for ParallelMode.DISTRIBUTED currently.")
            torch.distributed.broadcast_object_list(args_main_rank, src=0)
            args = pickle.loads(bytes(args_main_rank))
            for key, value in asdict(args).items():
                if key != "local_rank":
                    setattr(trainer.args, key, value)
            trainer.train(resume_from_checkpoint=None)
            # If there hasn't been any evaluation during the training loop.
            if getattr(trainer, "objective", None) is None:
                metrics = trainer.evaluate()
                trainer.objective = trainer.compute_objective(metrics)
        return None


def run_hp_search_ray(trainer, n_trials: int, direction: str, **kwargs) -> BestRun:
    import ray
    import ray.train

    def _objective(trial: dict, local_trainer):
        try:
            from transformers.utils.notebook import NotebookProgressCallback

            if local_trainer.pop_callback(NotebookProgressCallback):
                local_trainer.add_callback(ProgressCallback)
        except ModuleNotFoundError:
            pass

        local_trainer.objective = None

        checkpoint = ray.train.get_checkpoint()
        if checkpoint:
            # Upon trial resume, the local_trainer's objective gets reset to None.
            # If `local_trainer.train` is a noop (training has already reached
            # the target number of epochs/steps), then this would
            # trigger an unnecessary extra checkpoint at the end of training.
            # -> Set the objective to a dummy value upon resume as a workaround.
            local_trainer.objective = "objective"

            with checkpoint.as_directory() as checkpoint_dir:
                checkpoint_path = next(Path(checkpoint_dir).glob(f"{PREFIX_CHECKPOINT_DIR}*")).as_posix()
                local_trainer.train(resume_from_checkpoint=checkpoint_path, trial=trial)
        else:
            local_trainer.train(trial=trial)

        # If there hasn't been any evaluation during the training loop.
        if getattr(local_trainer, "objective", None) is None:
            metrics = local_trainer.evaluate()
            local_trainer.objective = local_trainer.compute_objective(metrics)

            metrics.update({"objective": local_trainer.objective, "done": True})

            with tempfile.TemporaryDirectory() as temp_checkpoint_dir:
                local_trainer._tune_save_checkpoint(checkpoint_dir=temp_checkpoint_dir)
                checkpoint = ray.train.Checkpoint.from_directory(temp_checkpoint_dir)
                ray.train.report(metrics, checkpoint=checkpoint)

    if not trainer._memory_tracker.skip_memory_metrics:
        from ..trainer_utils import TrainerMemoryTracker

        logger.warning(
            "Memory tracking for your Trainer is currently "
            "enabled. Automatically disabling the memory tracker "
            "since the memory tracker is not serializable."
        )
        trainer._memory_tracker = TrainerMemoryTracker(skip_memory_metrics=True)

    # The model and TensorBoard writer do not pickle so we have to remove them (if they exists)
    # while doing the ray hp search.
    _tb_writer = trainer.pop_callback(TensorBoardCallback)
    trainer.model = None

    # Setup default `resources_per_trial`.
    if "resources_per_trial" not in kwargs:
        # Default to 1 CPU and 1 GPU (if applicable) per trial.
        kwargs["resources_per_trial"] = {"cpu": 1}
        if trainer.args.n_gpu > 0:
            kwargs["resources_per_trial"]["gpu"] = 1
        resource_msg = "1 CPU" + (" and 1 GPU" if trainer.args.n_gpu > 0 else "")
        logger.info(
            "No `resources_per_trial` arg was passed into "
            "`hyperparameter_search`. Setting it to a default value "
            f"of {resource_msg} for each trial."
        )
    # Make sure each trainer only uses GPUs that were allocated per trial.
    gpus_per_trial = kwargs["resources_per_trial"].get("gpu", 0)
    trainer.args._n_gpu = gpus_per_trial

    # Setup default `progress_reporter`.
    if "progress_reporter" not in kwargs:
        from ray.tune import CLIReporter

        kwargs["progress_reporter"] = CLIReporter(metric_columns=["objective"])

    if "scheduler" in kwargs:
        from ray.tune.schedulers import ASHAScheduler, HyperBandForBOHB, MedianStoppingRule, PopulationBasedTraining

        # Check for `do_eval` and `eval_during_training` for schedulers that require intermediate reporting.
        if isinstance(
            kwargs["scheduler"], (ASHAScheduler, MedianStoppingRule, HyperBandForBOHB, PopulationBasedTraining)
        ) and (not trainer.args.do_eval or trainer.args.evaluation_strategy == IntervalStrategy.NO):
            raise RuntimeError(
                "You are using {cls} as a scheduler but you haven't enabled evaluation during training. "
                "This means your trials will not report intermediate results to Ray Tune, and "
                "can thus not be stopped early or used to exploit other trials parameters. "
                "If this is what you want, do not use {cls}. If you would like to use {cls}, "
                "make sure you pass `do_eval=True` and `evaluation_strategy='steps'` in the "
                "Trainer `args`.".format(cls=type(kwargs["scheduler"]).__name__)
            )

    trainable = ray.tune.with_parameters(_objective, local_trainer=trainer)

    @functools.wraps(trainable)
    def dynamic_modules_import_trainable(*args, **kwargs):
        """
        Wrapper around `tune.with_parameters` to ensure datasets_modules are loaded on each Actor.

        Without this, an ImportError will be thrown. See https://github.com/huggingface/transformers/issues/11565.

        Assumes that `_objective`, defined above, is a function.
        """
        if is_datasets_available():
            import datasets.load

            dynamic_modules_path = os.path.join(datasets.load.init_dynamic_modules(), "__init__.py")
            # load dynamic_modules from path
            spec = importlib.util.spec_from_file_location("datasets_modules", dynamic_modules_path)
            datasets_modules = importlib.util.module_from_spec(spec)
            sys.modules[spec.name] = datasets_modules
            spec.loader.exec_module(datasets_modules)
        return trainable(*args, **kwargs)

    # special attr set by tune.with_parameters
    if hasattr(trainable, "__mixins__"):
        dynamic_modules_import_trainable.__mixins__ = trainable.__mixins__

    analysis = ray.tune.run(
        dynamic_modules_import_trainable,
        config=trainer.hp_space(None),
        num_samples=n_trials,
        **kwargs,
    )
    best_trial = analysis.get_best_trial(metric="objective", mode=direction[:3], scope=trainer.args.ray_scope)
    best_run = BestRun(best_trial.trial_id, best_trial.last_result["objective"], best_trial.config, analysis)
    if _tb_writer is not None:
        trainer.add_callback(_tb_writer)
    return best_run


def run_hp_search_sigopt(trainer, n_trials: int, direction: str, **kwargs) -> BestRun:
    import sigopt

    if trainer.args.process_index == 0:
        if importlib.metadata.version("sigopt") >= "8.0.0":
            sigopt.set_project("huggingface")

            experiment = sigopt.create_experiment(
                name="huggingface-tune",
                type="offline",
                parameters=trainer.hp_space(None),
                metrics=[{"name": "objective", "objective": direction, "strategy": "optimize"}],
                parallel_bandwidth=1,
                budget=n_trials,
            )

            logger.info(f"created experiment: https://app.sigopt.com/experiment/{experiment.id}")

            for run in experiment.loop():
                with run:
                    trainer.objective = None
                    if trainer.args.world_size > 1:
                        if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED:
                            raise RuntimeError("only support DDP Sigopt HPO for ParallelMode.DISTRIBUTED currently.")
                        trainer._hp_search_setup(run.run)
                        torch.distributed.broadcast_object_list(pickle.dumps(trainer.args), src=0)
                        trainer.train(resume_from_checkpoint=None)
                    else:
                        trainer.train(resume_from_checkpoint=None, trial=run.run)
                    # If there hasn't been any evaluation during the training loop.
                    if getattr(trainer, "objective", None) is None:
                        metrics = trainer.evaluate()
                        trainer.objective = trainer.compute_objective(metrics)
                    run.log_metric("objective", trainer.objective)

            best = list(experiment.get_best_runs())[0]
            best_run = BestRun(best.id, best.values["objective"].value, best.assignments)
        else:
            from sigopt import Connection

            conn = Connection()
            proxies = kwargs.pop("proxies", None)
            if proxies is not None:
                conn.set_proxies(proxies)

            experiment = conn.experiments().create(
                name="huggingface-tune",
                parameters=trainer.hp_space(None),
                metrics=[{"name": "objective", "objective": direction, "strategy": "optimize"}],
                parallel_bandwidth=1,
                observation_budget=n_trials,
                project="huggingface",
            )
            logger.info(f"created experiment: https://app.sigopt.com/experiment/{experiment.id}")

            while experiment.progress.observation_count < experiment.observation_budget:
                suggestion = conn.experiments(experiment.id).suggestions().create()
                trainer.objective = None
                if trainer.args.world_size > 1:
                    if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED:
                        raise RuntimeError("only support DDP Sigopt HPO for ParallelMode.DISTRIBUTED currently.")
                    trainer._hp_search_setup(suggestion)
                    torch.distributed.broadcast_object_list(pickle.dumps(trainer.args), src=0)
                    trainer.train(resume_from_checkpoint=None)
                else:
                    trainer.train(resume_from_checkpoint=None, trial=suggestion)
                # If there hasn't been any evaluation during the training loop.
                if getattr(trainer, "objective", None) is None:
                    metrics = trainer.evaluate()
                    trainer.objective = trainer.compute_objective(metrics)

                values = [{"name": "objective", "value": trainer.objective}]
                obs = conn.experiments(experiment.id).observations().create(suggestion=suggestion.id, values=values)
                logger.info(f"[suggestion_id, observation_id]: [{suggestion.id}, {obs.id}]")
                experiment = conn.experiments(experiment.id).fetch()

            best = list(conn.experiments(experiment.id).best_assignments().fetch().iterate_pages())[0]
            best_run = BestRun(best.id, best.value, best.assignments)
        return best_run
    else:
        for i in range(n_trials):
            trainer.objective = None
            args_main_rank = list(pickle.dumps(trainer.args))
            if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED:
                raise RuntimeError("only support DDP Sigopt HPO for ParallelMode.DISTRIBUTED currently.")
            torch.distributed.broadcast_object_list(args_main_rank, src=0)
            args = pickle.loads(bytes(args_main_rank))
            for key, value in asdict(args).items():
                if key != "local_rank":
                    setattr(trainer.args, key, value)
            trainer.train(resume_from_checkpoint=None)
            # If there hasn't been any evaluation during the training loop.
            if getattr(trainer, "objective", None) is None:
                metrics = trainer.evaluate()
                trainer.objective = trainer.compute_objective(metrics)
        return None


def run_hp_search_wandb(trainer, n_trials: int, direction: str, **kwargs) -> BestRun:
    from ..integrations import is_wandb_available

    if not is_wandb_available():
        raise ImportError("This function needs wandb installed: `pip install wandb`")
    import wandb

    # add WandbCallback if not already added in trainer callbacks
    reporting_to_wandb = False
    for callback in trainer.callback_handler.callbacks:
        if isinstance(callback, WandbCallback):
            reporting_to_wandb = True
            break
    if not reporting_to_wandb:
        trainer.add_callback(WandbCallback())
    trainer.args.report_to = ["wandb"]
    best_trial = {"run_id": None, "objective": None, "hyperparameters": None}
    sweep_id = kwargs.pop("sweep_id", None)
    project = kwargs.pop("project", None)
    name = kwargs.pop("name", None)
    entity = kwargs.pop("entity", None)
    metric = kwargs.pop("metric", "eval/loss")

    sweep_config = trainer.hp_space(None)
    sweep_config["metric"]["goal"] = direction
    sweep_config["metric"]["name"] = metric
    if name:
        sweep_config["name"] = name

    def _objective():
        run = wandb.run if wandb.run else wandb.init()
        trainer.state.trial_name = run.name
        run.config.update({"assignments": {}, "metric": metric})
        config = wandb.config

        trainer.objective = None

        trainer.train(resume_from_checkpoint=None, trial=vars(config)["_items"])
        # If there hasn't been any evaluation during the training loop.
        if getattr(trainer, "objective", None) is None:
            metrics = trainer.evaluate()
            trainer.objective = trainer.compute_objective(metrics)
            format_metrics = rewrite_logs(metrics)
            if metric not in format_metrics:
                logger.warning(
                    f"Provided metric {metric} not found. This might result in unexpected sweeps charts. The available"
                    f" metrics are {format_metrics.keys()}"
                )
        best_score = False
        if best_trial["run_id"] is not None:
            if direction == "minimize":
                best_score = trainer.objective < best_trial["objective"]
            elif direction == "maximize":
                best_score = trainer.objective > best_trial["objective"]

        if best_score or best_trial["run_id"] is None:
            best_trial["run_id"] = run.id
            best_trial["objective"] = trainer.objective
            best_trial["hyperparameters"] = dict(config)

        return trainer.objective

    sweep_id = wandb.sweep(sweep_config, project=project, entity=entity) if not sweep_id else sweep_id
    logger.info(f"wandb sweep id - {sweep_id}")
    wandb.agent(sweep_id, function=_objective, count=n_trials)

    return BestRun(best_trial["run_id"], best_trial["objective"], best_trial["hyperparameters"])


def get_available_reporting_integrations():
    integrations = []
    if is_azureml_available() and not is_mlflow_available():
        integrations.append("azure_ml")
    if is_comet_available():
        integrations.append("comet_ml")
    if is_dagshub_available():
        integrations.append("dagshub")
    if is_dvclive_available():
        integrations.append("dvclive")
    if is_mlflow_available():
        integrations.append("mlflow")
    if is_neptune_available():
        integrations.append("neptune")
    if is_tensorboard_available():
        integrations.append("tensorboard")
    if is_wandb_available():
        integrations.append("wandb")
    if is_codecarbon_available():
        integrations.append("codecarbon")
    if is_clearml_available():
        integrations.append("clearml")
    return integrations


def rewrite_logs(d):
    new_d = {}
    eval_prefix = "eval_"
    eval_prefix_len = len(eval_prefix)
    test_prefix = "test_"
    test_prefix_len = len(test_prefix)
    for k, v in d.items():
        if k.startswith(eval_prefix):
            new_d["eval/" + k[eval_prefix_len:]] = v
        elif k.startswith(test_prefix):
            new_d["test/" + k[test_prefix_len:]] = v
        else:
            new_d["train/" + k] = v
    return new_d


class TensorBoardCallback(TrainerCallback):
    """
    A [`TrainerCallback`] that sends the logs to [TensorBoard](https://www.tensorflow.org/tensorboard).

    Args:
        tb_writer (`SummaryWriter`, *optional*):
            The writer to use. Will instantiate one if not set.
    """

    def __init__(self, tb_writer=None):
        has_tensorboard = is_tensorboard_available()
        if not has_tensorboard:
            raise RuntimeError(
                "TensorBoardCallback requires tensorboard to be installed. Either update your PyTorch version or"
                " install tensorboardX."
            )
        if has_tensorboard:
            try:
                from torch.utils.tensorboard import SummaryWriter  # noqa: F401

                self._SummaryWriter = SummaryWriter
            except ImportError:
                try:
                    from tensorboardX import SummaryWriter

                    self._SummaryWriter = SummaryWriter
                except ImportError:
                    self._SummaryWriter = None
        else:
            self._SummaryWriter = None
        self.tb_writer = tb_writer

    def _init_summary_writer(self, args, log_dir=None):
        log_dir = log_dir or args.logging_dir
        if self._SummaryWriter is not None:
            self.tb_writer = self._SummaryWriter(log_dir=log_dir)

    def on_train_begin(self, args, state, control, **kwargs):
        if not state.is_world_process_zero:
            return

        log_dir = None

        if state.is_hyper_param_search:
            trial_name = state.trial_name
            if trial_name is not None:
                log_dir = os.path.join(args.logging_dir, trial_name)

        if self.tb_writer is None:
            self._init_summary_writer(args, log_dir)

        if self.tb_writer is not None:
            self.tb_writer.add_text("args", args.to_json_string())
            if "model" in kwargs:
                model = kwargs["model"]
                if hasattr(model, "config") and model.config is not None:
                    model_config_json = model.config.to_json_string()
                    self.tb_writer.add_text("model_config", model_config_json)

    def on_log(self, args, state, control, logs=None, **kwargs):
        if not state.is_world_process_zero:
            return

        if self.tb_writer is None:
            self._init_summary_writer(args)

        if self.tb_writer is not None:
            logs = rewrite_logs(logs)
            for k, v in logs.items():
                if isinstance(v, (int, float)):
                    self.tb_writer.add_scalar(k, v, state.global_step)
                else:
                    logger.warning(
                        "Trainer is attempting to log a value of "
                        f'"{v}" of type {type(v)} for key "{k}" as a scalar. '
                        "This invocation of Tensorboard's writer.add_scalar() "
                        "is incorrect so we dropped this attribute."
                    )
            self.tb_writer.flush()

    def on_train_end(self, args, state, control, **kwargs):
        if self.tb_writer:
            self.tb_writer.close()
            self.tb_writer = None


class WandbCallback(TrainerCallback):
    """
    A [`TrainerCallback`] that logs metrics, media, model checkpoints to [Weight and Biases](https://www.wandb.com/).
    """

    def __init__(self):
        has_wandb = is_wandb_available()
        if not has_wandb:
            raise RuntimeError("WandbCallback requires wandb to be installed. Run `pip install wandb`.")
        if has_wandb:
            import wandb

            self._wandb = wandb
        self._initialized = False
        # log model
        if os.getenv("WANDB_LOG_MODEL", "FALSE").upper() in ENV_VARS_TRUE_VALUES.union({"TRUE"}):
            DeprecationWarning(
                f"Setting `WANDB_LOG_MODEL` as {os.getenv('WANDB_LOG_MODEL')} is deprecated and will be removed in "
                "version 5 of transformers. Use one of `'end'` or `'checkpoint'` instead."
            )
            logger.info(f"Setting `WANDB_LOG_MODEL` from {os.getenv('WANDB_LOG_MODEL')} to `end` instead")
            self._log_model = "end"
        else:
            self._log_model = os.getenv("WANDB_LOG_MODEL", "false").lower()

    def setup(self, args, state, model, **kwargs):
        """
        Setup the optional Weights & Biases (*wandb*) integration.

        One can subclass and override this method to customize the setup if needed. Find more information
        [here](https://docs.wandb.ai/guides/integrations/huggingface). You can also override the following environment
        variables:

        Environment:
        - **WANDB_LOG_MODEL** (`str`, *optional*, defaults to `"false"`):
            Whether to log model and checkpoints during training. Can be `"end"`, `"checkpoint"` or `"false"`. If set
            to `"end"`, the model will be uploaded at the end of training. If set to `"checkpoint"`, the checkpoint
            will be uploaded every `args.save_steps` . If set to `"false"`, the model will not be uploaded. Use along
            with [`~transformers.TrainingArguments.load_best_model_at_end`] to upload best model.

            <Deprecated version="5.0">

            Setting `WANDB_LOG_MODEL` as `bool` will be deprecated in version 5 of 🤗 Transformers.

            </Deprecated>
        - **WANDB_WATCH** (`str`, *optional* defaults to `"false"`):
            Can be `"gradients"`, `"all"`, `"parameters"`, or `"false"`. Set to `"all"` to log gradients and
            parameters.
        - **WANDB_PROJECT** (`str`, *optional*, defaults to `"huggingface"`):
            Set this to a custom string to store results in a different project.
        - **WANDB_DISABLED** (`bool`, *optional*, defaults to `False`):
            Whether to disable wandb entirely. Set `WANDB_DISABLED=true` to disable.
        """
        if self._wandb is None:
            return
        self._initialized = True
        if state.is_world_process_zero:
            logger.info(
                'Automatic Weights & Biases logging enabled, to disable set os.environ["WANDB_DISABLED"] = "true"'
            )
            combined_dict = {**args.to_dict()}

            if hasattr(model, "config") and model.config is not None:
                model_config = model.config.to_dict()
                combined_dict = {**model_config, **combined_dict}
            trial_name = state.trial_name
            init_args = {}
            if trial_name is not None:
                init_args["name"] = trial_name
                init_args["group"] = args.run_name
            else:
                if not (args.run_name is None or args.run_name == args.output_dir):
                    init_args["name"] = args.run_name

            if self._wandb.run is None:
                self._wandb.init(
                    project=os.getenv("WANDB_PROJECT", "huggingface"),
                    **init_args,
                )
            # add config parameters (run may have been created manually)
            self._wandb.config.update(combined_dict, allow_val_change=True)

            # define default x-axis (for latest wandb versions)
            if getattr(self._wandb, "define_metric", None):
                self._wandb.define_metric("train/global_step")
                self._wandb.define_metric("*", step_metric="train/global_step", step_sync=True)

            # keep track of model topology and gradients, unsupported on TPU
            _watch_model = os.getenv("WANDB_WATCH", "false")
            if not is_torch_tpu_available() and _watch_model in ("all", "parameters", "gradients"):
                self._wandb.watch(model, log=_watch_model, log_freq=max(100, state.logging_steps))
            self._wandb.run._label(code="transformers_trainer")

    def on_train_begin(self, args, state, control, model=None, **kwargs):
        if self._wandb is None:
            return
        hp_search = state.is_hyper_param_search
        if hp_search:
            self._wandb.finish()
            self._initialized = False
            args.run_name = None
        if not self._initialized:
            self.setup(args, state, model, **kwargs)

    def on_train_end(self, args, state, control, model=None, tokenizer=None, **kwargs):
        if self._wandb is None:
            return
        if self._log_model in ("end", "checkpoint") and self._initialized and state.is_world_process_zero:
            from ..trainer import Trainer

            fake_trainer = Trainer(args=args, model=model, tokenizer=tokenizer)
            with tempfile.TemporaryDirectory() as temp_dir:
                fake_trainer.save_model(temp_dir)
                metadata = (
                    {
                        k: v
                        for k, v in dict(self._wandb.summary).items()
                        if isinstance(v, numbers.Number) and not k.startswith("_")
                    }
                    if not args.load_best_model_at_end
                    else {
                        f"eval/{args.metric_for_best_model}": state.best_metric,
                        "train/total_floss": state.total_flos,
                    }
                )
                logger.info("Logging model artifacts. ...")
                model_name = (
                    f"model-{self._wandb.run.id}"
                    if (args.run_name is None or args.run_name == args.output_dir)
                    else f"model-{self._wandb.run.name}"
                )
                artifact = self._wandb.Artifact(name=model_name, type="model", metadata=metadata)
                for f in Path(temp_dir).glob("*"):
                    if f.is_file():
                        with artifact.new_file(f.name, mode="wb") as fa:
                            fa.write(f.read_bytes())
                self._wandb.run.log_artifact(artifact)

    def on_log(self, args, state, control, model=None, logs=None, **kwargs):
        if self._wandb is None:
            return
        if not self._initialized:
            self.setup(args, state, model)
        if state.is_world_process_zero:
            logs = rewrite_logs(logs)
            self._wandb.log({**logs, "train/global_step": state.global_step})

    def on_save(self, args, state, control, **kwargs):
        if self._log_model == "checkpoint" and self._initialized and state.is_world_process_zero:
            checkpoint_metadata = {
                k: v
                for k, v in dict(self._wandb.summary).items()
                if isinstance(v, numbers.Number) and not k.startswith("_")
            }

            ckpt_dir = f"checkpoint-{state.global_step}"
            artifact_path = os.path.join(args.output_dir, ckpt_dir)
            logger.info(f"Logging checkpoint artifacts in {ckpt_dir}. ...")
            checkpoint_name = (
                f"checkpoint-{self._wandb.run.id}"
                if (args.run_name is None or args.run_name == args.output_dir)
                else f"checkpoint-{self._wandb.run.name}"
            )
            artifact = self._wandb.Artifact(name=checkpoint_name, type="model", metadata=checkpoint_metadata)
            artifact.add_dir(artifact_path)
            self._wandb.log_artifact(artifact, aliases=[f"checkpoint-{state.global_step}"])


class CometCallback(TrainerCallback):
    """
    A [`TrainerCallback`] that sends the logs to [Comet ML](https://www.comet.ml/site/).
    """

    def __init__(self):
        if not _has_comet:
            raise RuntimeError("CometCallback requires comet-ml to be installed. Run `pip install comet-ml`.")
        self._initialized = False
        self._log_assets = False

    def setup(self, args, state, model):
        """
        Setup the optional Comet.ml integration.

        Environment:
        - **COMET_MODE** (`str`, *optional*, defaults to `ONLINE`):
            Whether to create an online, offline experiment or disable Comet logging. Can be `OFFLINE`, `ONLINE`, or
            `DISABLED`.
        - **COMET_PROJECT_NAME** (`str`, *optional*):
            Comet project name for experiments.
        - **COMET_OFFLINE_DIRECTORY** (`str`, *optional*):
            Folder to use for saving offline experiments when `COMET_MODE` is `OFFLINE`.
        - **COMET_LOG_ASSETS** (`str`, *optional*, defaults to `TRUE`):
            Whether or not to log training assets (tf event logs, checkpoints, etc), to Comet. Can be `TRUE`, or
            `FALSE`.

        For a number of configurable items in the environment, see
        [here](https://www.comet.ml/docs/python-sdk/advanced/#comet-configuration-variables).
        """
        self._initialized = True
        log_assets = os.getenv("COMET_LOG_ASSETS", "FALSE").upper()
        if log_assets in {"TRUE", "1"}:
            self._log_assets = True
        if state.is_world_process_zero:
            comet_mode = os.getenv("COMET_MODE", "ONLINE").upper()
            experiment = None
            experiment_kwargs = {"project_name": os.getenv("COMET_PROJECT_NAME", "huggingface")}
            if comet_mode == "ONLINE":
                experiment = comet_ml.Experiment(**experiment_kwargs)
                experiment.log_other("Created from", "transformers")
                logger.info("Automatic Comet.ml online logging enabled")
            elif comet_mode == "OFFLINE":
                experiment_kwargs["offline_directory"] = os.getenv("COMET_OFFLINE_DIRECTORY", "./")
                experiment = comet_ml.OfflineExperiment(**experiment_kwargs)
                experiment.log_other("Created from", "transformers")
                logger.info("Automatic Comet.ml offline logging enabled; use `comet upload` when finished")
            if experiment is not None:
                experiment._set_model_graph(model, framework="transformers")
                experiment._log_parameters(args, prefix="args/", framework="transformers")
                if hasattr(model, "config"):
                    experiment._log_parameters(model.config, prefix="config/", framework="transformers")

    def on_train_begin(self, args, state, control, model=None, **kwargs):
        if not self._initialized:
            self.setup(args, state, model)

    def on_log(self, args, state, control, model=None, logs=None, **kwargs):
        if not self._initialized:
            self.setup(args, state, model)
        if state.is_world_process_zero:
            experiment = comet_ml.config.get_global_experiment()
            if experiment is not None:
                experiment._log_metrics(logs, step=state.global_step, epoch=state.epoch, framework="transformers")

    def on_train_end(self, args, state, control, **kwargs):
        if self._initialized and state.is_world_process_zero:
            experiment = comet_ml.config.get_global_experiment()
            if experiment is not None:
                if self._log_assets is True:
                    logger.info("Logging checkpoints. This may take time.")
                    experiment.log_asset_folder(
                        args.output_dir, recursive=True, log_file_name=True, step=state.global_step
                    )
                experiment.end()


class AzureMLCallback(TrainerCallback):
    """
    A [`TrainerCallback`] that sends the logs to [AzureML](https://pypi.org/project/azureml-sdk/).
    """

    def __init__(self, azureml_run=None):
        if not is_azureml_available():
            raise RuntimeError("AzureMLCallback requires azureml to be installed. Run `pip install azureml-sdk`.")
        self.azureml_run = azureml_run

    def on_init_end(self, args, state, control, **kwargs):
        from azureml.core.run import Run

        if self.azureml_run is None and state.is_world_process_zero:
            self.azureml_run = Run.get_context()

    def on_log(self, args, state, control, logs=None, **kwargs):
        if self.azureml_run and state.is_world_process_zero:
            for k, v in logs.items():
                if isinstance(v, (int, float)):
                    self.azureml_run.log(k, v, description=k)


class MLflowCallback(TrainerCallback):
    """
    A [`TrainerCallback`] that sends the logs to [MLflow](https://www.mlflow.org/). Can be disabled by setting
    environment variable `DISABLE_MLFLOW_INTEGRATION = TRUE`.
    """

    def __init__(self):
        if not is_mlflow_available():
            raise RuntimeError("MLflowCallback requires mlflow to be installed. Run `pip install mlflow`.")
        import mlflow

        self._MAX_PARAM_VAL_LENGTH = mlflow.utils.validation.MAX_PARAM_VAL_LENGTH
        self._MAX_PARAMS_TAGS_PER_BATCH = mlflow.utils.validation.MAX_PARAMS_TAGS_PER_BATCH

        self._initialized = False
        self._auto_end_run = False
        self._log_artifacts = False
        self._ml_flow = mlflow

    def setup(self, args, state, model):
        """
        Setup the optional MLflow integration.

        Environment:
        - **HF_MLFLOW_LOG_ARTIFACTS** (`str`, *optional*):
            Whether to use MLflow `.log_artifact()` facility to log artifacts. This only makes sense if logging to a
            remote server, e.g. s3 or GCS. If set to `True` or *1*, will copy each saved checkpoint on each save in
            [`TrainingArguments`]'s `output_dir` to the local or remote artifact storage. Using it without a remote
            storage will just copy the files to your artifact location.
        - **MLFLOW_EXPERIMENT_NAME** (`str`, *optional*, defaults to `None`):
            Whether to use an MLflow experiment_name under which to launch the run. Default to `None` which will point
            to the `Default` experiment in MLflow. Otherwise, it is a case sensitive name of the experiment to be
            activated. If an experiment with this name does not exist, a new experiment with this name is created.
        - **MLFLOW_TAGS** (`str`, *optional*):
            A string dump of a dictionary of key/value pair to be added to the MLflow run as tags. Example:
            `os.environ['MLFLOW_TAGS']='{"release.candidate": "RC1", "release.version": "2.2.0"}'`.
        - **MLFLOW_NESTED_RUN** (`str`, *optional*):
            Whether to use MLflow nested runs. If set to `True` or *1*, will create a nested run inside the current
            run.
        - **MLFLOW_RUN_ID** (`str`, *optional*):
            Allow to reattach to an existing run which can be usefull when resuming training from a checkpoint. When
            `MLFLOW_RUN_ID` environment variable is set, `start_run` attempts to resume a run with the specified run ID
            and other parameters are ignored.
        - **MLFLOW_FLATTEN_PARAMS** (`str`, *optional*, defaults to `False`):
            Whether to flatten the parameters dictionary before logging.
        """
        self._log_artifacts = os.getenv("HF_MLFLOW_LOG_ARTIFACTS", "FALSE").upper() in ENV_VARS_TRUE_VALUES
        self._nested_run = os.getenv("MLFLOW_NESTED_RUN", "FALSE").upper() in ENV_VARS_TRUE_VALUES
        self._experiment_name = os.getenv("MLFLOW_EXPERIMENT_NAME", None)
        self._flatten_params = os.getenv("MLFLOW_FLATTEN_PARAMS", "FALSE").upper() in ENV_VARS_TRUE_VALUES
        self._run_id = os.getenv("MLFLOW_RUN_ID", None)
        logger.debug(
            f"MLflow experiment_name={self._experiment_name}, run_name={args.run_name}, nested={self._nested_run},"
            f" tags={self._nested_run}"
        )
        if state.is_world_process_zero:
            if self._ml_flow.active_run() is None or self._nested_run or self._run_id:
                if self._experiment_name:
                    # Use of set_experiment() ensure that Experiment is created if not exists
                    self._ml_flow.set_experiment(self._experiment_name)
                self._ml_flow.start_run(run_name=args.run_name, nested=self._nested_run)
                logger.debug(f"MLflow run started with run_id={self._ml_flow.active_run().info.run_id}")
                self._auto_end_run = True
            combined_dict = args.to_dict()
            if hasattr(model, "config") and model.config is not None:
                model_config = model.config.to_dict()
                combined_dict = {**model_config, **combined_dict}
            combined_dict = flatten_dict(combined_dict) if self._flatten_params else combined_dict
            # remove params that are too long for MLflow
            for name, value in list(combined_dict.items()):
                # internally, all values are converted to str in MLflow
                if len(str(value)) > self._MAX_PARAM_VAL_LENGTH:
                    logger.warning(
                        f'Trainer is attempting to log a value of "{value}" for key "{name}" as a parameter. MLflow\'s'
                        " log_param() only accepts values no longer than 250 characters so we dropped this attribute."
                        " You can use `MLFLOW_FLATTEN_PARAMS` environment variable to flatten the parameters and"
                        " avoid this message."
                    )
                    del combined_dict[name]
            # MLflow cannot log more than 100 values in one go, so we have to split it
            combined_dict_items = list(combined_dict.items())
            for i in range(0, len(combined_dict_items), self._MAX_PARAMS_TAGS_PER_BATCH):
                self._ml_flow.log_params(dict(combined_dict_items[i : i + self._MAX_PARAMS_TAGS_PER_BATCH]))
            mlflow_tags = os.getenv("MLFLOW_TAGS", None)
            if mlflow_tags:
                mlflow_tags = json.loads(mlflow_tags)
                self._ml_flow.set_tags(mlflow_tags)
        self._initialized = True

    def on_train_begin(self, args, state, control, model=None, **kwargs):
        if not self._initialized:
            self.setup(args, state, model)

    def on_log(self, args, state, control, logs, model=None, **kwargs):
        if not self._initialized:
            self.setup(args, state, model)
        if state.is_world_process_zero:
            metrics = {}
            for k, v in logs.items():
                if isinstance(v, (int, float)):
                    metrics[k] = v
                else:
                    logger.warning(
                        f'Trainer is attempting to log a value of "{v}" of type {type(v)} for key "{k}" as a metric. '
                        "MLflow's log_metric() only accepts float and int types so we dropped this attribute."
                    )
            self._ml_flow.log_metrics(metrics=metrics, step=state.global_step)

    def on_train_end(self, args, state, control, **kwargs):
        if self._initialized and state.is_world_process_zero:
            if self._auto_end_run and self._ml_flow.active_run():
                self._ml_flow.end_run()

    def on_save(self, args, state, control, **kwargs):
        if self._initialized and state.is_world_process_zero and self._log_artifacts:
            ckpt_dir = f"checkpoint-{state.global_step}"
            artifact_path = os.path.join(args.output_dir, ckpt_dir)
            logger.info(f"Logging checkpoint artifacts in {ckpt_dir}. This may take time.")
            self._ml_flow.pyfunc.log_model(
                ckpt_dir,
                artifacts={"model_path": artifact_path},
                python_model=self._ml_flow.pyfunc.PythonModel(),
            )

    def __del__(self):
        # if the previous run is not terminated correctly, the fluent API will
        # not let you start a new run before the previous one is killed
        if (
            self._auto_end_run
            and callable(getattr(self._ml_flow, "active_run", None))
            and self._ml_flow.active_run() is not None
        ):
            self._ml_flow.end_run()


class DagsHubCallback(MLflowCallback):
    """
    A [`TrainerCallback`] that logs to [DagsHub](https://dagshub.com/). Extends [`MLflowCallback`]
    """

    def __init__(self):
        super().__init__()
        if not is_dagshub_available():
            raise ImportError("DagsHubCallback requires dagshub to be installed. Run `pip install dagshub`.")

        from dagshub.upload import Repo

        self.Repo = Repo

    def setup(self, *args, **kwargs):
        """
        Setup the DagsHub's Logging integration.

        Environment:
        - **HF_DAGSHUB_LOG_ARTIFACTS** (`str`, *optional*):
                Whether to save the data and model artifacts for the experiment. Default to `False`.
        """

        self.log_artifacts = os.getenv("HF_DAGSHUB_LOG_ARTIFACTS", "FALSE").upper() in ENV_VARS_TRUE_VALUES
        self.name = os.getenv("HF_DAGSHUB_MODEL_NAME") or "main"
        self.remote = os.getenv("MLFLOW_TRACKING_URI")
        self.repo = self.Repo(
            owner=self.remote.split(os.sep)[-2],
            name=self.remote.split(os.sep)[-1].split(".")[0],
            branch=os.getenv("BRANCH") or "main",
        )
        self.path = Path("artifacts")

        if self.remote is None:
            raise RuntimeError(
                "DagsHubCallback requires the `MLFLOW_TRACKING_URI` environment variable to be set. Did you run"
                " `dagshub.init()`?"
            )

        super().setup(*args, **kwargs)

    def on_train_end(self, args, state, control, **kwargs):
        if self.log_artifacts:
            if getattr(self, "train_dataloader", None):
                torch.save(self.train_dataloader.dataset, os.path.join(args.output_dir, "dataset.pt"))

            self.repo.directory(str(self.path)).add_dir(args.output_dir)


class NeptuneMissingConfiguration(Exception):
    def __init__(self):
        super().__init__(
            """
        ------ Unsupported ---- We were not able to create new runs. You provided a custom Neptune run to
        `NeptuneCallback` with the `run` argument. For the integration to work fully, provide your `api_token` and
        `project` by saving them as environment variables or passing them to the callback.
        """
        )


class NeptuneCallback(TrainerCallback):
    """TrainerCallback that sends the logs to [Neptune](https://app.neptune.ai).

    Args:
        api_token (`str`, *optional*): Neptune API token obtained upon registration.
            You can leave this argument out if you have saved your token to the `NEPTUNE_API_TOKEN` environment
            variable (strongly recommended). See full setup instructions in the
            [docs](https://docs.neptune.ai/setup/installation).
        project (`str`, *optional*): Name of an existing Neptune project, in the form "workspace-name/project-name".
            You can find and copy the name in Neptune from the project settings -> Properties. If None (default), the
            value of the `NEPTUNE_PROJECT` environment variable is used.
        name (`str`, *optional*): Custom name for the run.
        base_namespace (`str`, optional, defaults to "finetuning"): In the Neptune run, the root namespace
            that will contain all of the metadata logged by the callback.
        log_parameters (`bool`, *optional*, defaults to `True`):
            If True, logs all Trainer arguments and model parameters provided by the Trainer.
        log_checkpoints (`str`, *optional*): If "same", uploads checkpoints whenever they are saved by the Trainer.
            If "last", uploads only the most recently saved checkpoint. If "best", uploads the best checkpoint (among
            the ones saved by the Trainer). If `None`, does not upload checkpoints.
        run (`Run`, *optional*): Pass a Neptune run object if you want to continue logging to an existing run.
            Read more about resuming runs in the [docs](https://docs.neptune.ai/logging/to_existing_object).
        **neptune_run_kwargs (*optional*):
            Additional keyword arguments to be passed directly to the
            [`neptune.init_run()`](https://docs.neptune.ai/api/neptune#init_run) function when a new run is created.

    For instructions and examples, see the [Transformers integration
    guide](https://docs.neptune.ai/integrations/transformers) in the Neptune documentation.
    """

    integration_version_key = "source_code/integrations/transformers"
    model_parameters_key = "model_parameters"
    trial_name_key = "trial"
    trial_params_key = "trial_params"
    trainer_parameters_key = "trainer_parameters"
    flat_metrics = {"train/epoch"}

    def __init__(
        self,
        *,
        api_token: Optional[str] = None,
        project: Optional[str] = None,
        name: Optional[str] = None,
        base_namespace: str = "finetuning",
        run=None,
        log_parameters: bool = True,
        log_checkpoints: Optional[str] = None,
        **neptune_run_kwargs,
    ):
        if not is_neptune_available():
            raise ValueError(
                "NeptuneCallback requires the Neptune client library to be installed. "
                "To install the library, run `pip install neptune`."
            )

        try:
            from neptune import Run
            from neptune.internal.utils import verify_type
        except ImportError:
            from neptune.new.internal.utils import verify_type
            from neptune.new.metadata_containers.run import Run

        verify_type("api_token", api_token, (str, type(None)))
        verify_type("project", project, (str, type(None)))
        verify_type("name", name, (str, type(None)))
        verify_type("base_namespace", base_namespace, str)
        verify_type("run", run, (Run, type(None)))
        verify_type("log_parameters", log_parameters, bool)
        verify_type("log_checkpoints", log_checkpoints, (str, type(None)))

        self._base_namespace_path = base_namespace
        self._log_parameters = log_parameters
        self._log_checkpoints = log_checkpoints
        self._initial_run: Optional[Run] = run

        self._run = None
        self._is_monitoring_run = False
        self._run_id = None
        self._force_reset_monitoring_run = False
        self._init_run_kwargs = {"api_token": api_token, "project": project, "name": name, **neptune_run_kwargs}

        self._volatile_checkpoints_dir = None
        self._should_upload_checkpoint = self._log_checkpoints is not None
        self._recent_checkpoint_path = None

        if self._log_checkpoints in {"last", "best"}:
            self._target_checkpoints_namespace = f"checkpoints/{self._log_checkpoints}"
            self._should_clean_recently_uploaded_checkpoint = True
        else:
            self._target_checkpoints_namespace = "checkpoints"
            self._should_clean_recently_uploaded_checkpoint = False

    def _stop_run_if_exists(self):
        if self._run:
            self._run.stop()
            del self._run
            self._run = None

    def _initialize_run(self, **additional_neptune_kwargs):
        try:
            from neptune import init_run
            from neptune.exceptions import NeptuneMissingApiTokenException, NeptuneMissingProjectNameException
        except ImportError:
            from neptune.new import init_run
            from neptune.new.exceptions import NeptuneMissingApiTokenException, NeptuneMissingProjectNameException

        self._stop_run_if_exists()

        try:
            self._run = init_run(**self._init_run_kwargs, **additional_neptune_kwargs)
            self._run_id = self._run["sys/id"].fetch()
        except (NeptuneMissingProjectNameException, NeptuneMissingApiTokenException) as e:
            raise NeptuneMissingConfiguration() from e

    def _use_initial_run(self):
        self._run = self._initial_run
        self._is_monitoring_run = True
        self._run_id = self._run["sys/id"].fetch()
        self._initial_run = None

    def _ensure_run_with_monitoring(self):
        if self._initial_run is not None:
            self._use_initial_run()
        else:
            if not self._force_reset_monitoring_run and self._is_monitoring_run:
                return

            if self._run and not self._is_monitoring_run and not self._force_reset_monitoring_run:
                self._initialize_run(with_id=self._run_id)
                self._is_monitoring_run = True
            else:
                self._initialize_run()
                self._force_reset_monitoring_run = False

    def _ensure_at_least_run_without_monitoring(self):
        if self._initial_run is not None:
            self._use_initial_run()
        else:
            if not self._run:
                self._initialize_run(
                    with_id=self._run_id,
                    capture_stdout=False,
                    capture_stderr=False,
                    capture_hardware_metrics=False,
                    capture_traceback=False,
                )
                self._is_monitoring_run = False

    @property
    def run(self):
        if self._run is None:
            self._ensure_at_least_run_without_monitoring()
        return self._run

    @property
    def _metadata_namespace(self):
        return self.run[self._base_namespace_path]

    def _log_integration_version(self):
        self.run[NeptuneCallback.integration_version_key] = version

    def _log_trainer_parameters(self, args):
        self._metadata_namespace[NeptuneCallback.trainer_parameters_key] = args.to_sanitized_dict()

    def _log_model_parameters(self, model):
        from neptune.utils import stringify_unsupported

        if model and hasattr(model, "config") and model.config is not None:
            self._metadata_namespace[NeptuneCallback.model_parameters_key] = stringify_unsupported(
                model.config.to_dict()
            )

    def _log_hyper_param_search_parameters(self, state):
        if state and hasattr(state, "trial_name"):
            self._metadata_namespace[NeptuneCallback.trial_name_key] = state.trial_name

        if state and hasattr(state, "trial_params") and state.trial_params is not None:
            self._metadata_namespace[NeptuneCallback.trial_params_key] = state.trial_params

    def _log_model_checkpoint(self, source_directory: str, checkpoint: str):
        target_path = relative_path = os.path.join(source_directory, checkpoint)

        if self._volatile_checkpoints_dir is not None:
            consistent_checkpoint_path = os.path.join(self._volatile_checkpoints_dir, checkpoint)
            try:
                # Remove leading ../ from a relative path.
                cpkt_path = relative_path.replace("..", "").lstrip(os.path.sep)
                copy_path = os.path.join(consistent_checkpoint_path, cpkt_path)
                shutil.copytree(relative_path, copy_path)
                target_path = consistent_checkpoint_path
            except IOError as e:
                logger.warning(
                    "NeptuneCallback was unable to made a copy of checkpoint due to I/O exception: '{}'. "
                    "Could fail trying to upload.".format(e)
                )

        self._metadata_namespace[self._target_checkpoints_namespace].upload_files(target_path)

        if self._should_clean_recently_uploaded_checkpoint and self._recent_checkpoint_path is not None:
            self._metadata_namespace[self._target_checkpoints_namespace].delete_files(self._recent_checkpoint_path)

        self._recent_checkpoint_path = relative_path

    def on_init_end(self, args, state, control, **kwargs):
        self._volatile_checkpoints_dir = None
        if self._log_checkpoints and (args.overwrite_output_dir or args.save_total_limit is not None):
            self._volatile_checkpoints_dir = tempfile.TemporaryDirectory().name

        if self._log_checkpoints == "best" and not args.load_best_model_at_end:
            raise ValueError("To save the best model checkpoint, the load_best_model_at_end argument must be enabled.")

    def on_train_begin(self, args, state, control, model=None, **kwargs):
        if not state.is_world_process_zero:
            return

        self._ensure_run_with_monitoring()
        self._force_reset_monitoring_run = True

        self._log_integration_version()
        if self._log_parameters:
            self._log_trainer_parameters(args)
            self._log_model_parameters(model)

        if state.is_hyper_param_search:
            self._log_hyper_param_search_parameters(state)

    def on_train_end(self, args, state, control, **kwargs):
        self._stop_run_if_exists()

    def __del__(self):
        if self._volatile_checkpoints_dir is not None:
            shutil.rmtree(self._volatile_checkpoints_dir, ignore_errors=True)

        self._stop_run_if_exists()

    def on_save(self, args, state, control, **kwargs):
        if self._should_upload_checkpoint:
            self._log_model_checkpoint(args.output_dir, f"checkpoint-{state.global_step}")

    def on_evaluate(self, args, state, control, metrics=None, **kwargs):
        if self._log_checkpoints == "best":
            best_metric_name = args.metric_for_best_model
            if not best_metric_name.startswith("eval_"):
                best_metric_name = f"eval_{best_metric_name}"

            metric_value = metrics.get(best_metric_name)

            operator = np.greater if args.greater_is_better else np.less

            self._should_upload_checkpoint = state.best_metric is None or operator(metric_value, state.best_metric)

    @classmethod
    def get_run(cls, trainer):
        for callback in trainer.callback_handler.callbacks:
            if isinstance(callback, cls):
                return callback.run

        raise Exception("The trainer doesn't have a NeptuneCallback configured.")

    def on_log(self, args, state, control, logs: Optional[Dict[str, float]] = None, **kwargs):
        if not state.is_world_process_zero:
            return

        if logs is not None:
            for name, value in rewrite_logs(logs).items():
                if isinstance(value, (int, float)):
                    if name in NeptuneCallback.flat_metrics:
                        self._metadata_namespace[name] = value
                    else:
                        self._metadata_namespace[name].log(value, step=state.global_step)


class CodeCarbonCallback(TrainerCallback):
    """
    A [`TrainerCallback`] that tracks the CO2 emission of training.
    """

    def __init__(self):
        if not is_codecarbon_available():
            raise RuntimeError(
                "CodeCarbonCallback requires `codecarbon` to be installed. Run `pip install codecarbon`."
            )
        import codecarbon

        self._codecarbon = codecarbon
        self.tracker = None

    def on_init_end(self, args, state, control, **kwargs):
        if self.tracker is None and state.is_local_process_zero:
            # CodeCarbon will automatically handle environment variables for configuration
            self.tracker = self._codecarbon.EmissionsTracker(output_dir=args.output_dir)

    def on_train_begin(self, args, state, control, model=None, **kwargs):
        if self.tracker and state.is_local_process_zero:
            self.tracker.start()

    def on_train_end(self, args, state, control, **kwargs):
        if self.tracker and state.is_local_process_zero:
            self.tracker.stop()


class ClearMLCallback(TrainerCallback):
    """
    A [`TrainerCallback`] that sends the logs to [ClearML](https://clear.ml/).

    Environment:
    - **CLEARML_PROJECT** (`str`, *optional*, defaults to `HuggingFace Transformers`):
        ClearML project name.
    - **CLEARML_TASK** (`str`, *optional*, defaults to `Trainer`):
        ClearML task name.
    - **CLEARML_LOG_MODEL** (`bool`, *optional*, defaults to `False`):
        Whether to log models as artifacts during training.
    """

    def __init__(self):
        if is_clearml_available():
            import clearml

            self._clearml = clearml
        else:
            raise RuntimeError("ClearMLCallback requires 'clearml' to be installed. Run `pip install clearml`.")

        self._initialized = False
        self._initialized_externally = False
        self._clearml_task = None

        self._log_model = os.getenv("CLEARML_LOG_MODEL", "FALSE").upper() in ENV_VARS_TRUE_VALUES.union({"TRUE"})

    def setup(self, args, state, model, tokenizer, **kwargs):
        if self._clearml is None:
            return
        if self._initialized:
            return
        if state.is_world_process_zero:
            logger.info("Automatic ClearML logging enabled.")
            if self._clearml_task is None:
                # This might happen when running inside of a pipeline, where the task is already initialized
                # from outside of Hugging Face
                if self._clearml.Task.current_task():
                    self._clearml_task = self._clearml.Task.current_task()
                    self._initialized = True
                    self._initialized_externally = True
                    logger.info("External ClearML Task has been connected.")
                else:
                    self._clearml_task = self._clearml.Task.init(
                        project_name=os.getenv("CLEARML_PROJECT", "HuggingFace Transformers"),
                        task_name=os.getenv("CLEARML_TASK", "Trainer"),
                        auto_connect_frameworks={"tensorboard": False, "pytorch": False},
                        output_uri=True,
                    )
                    self._initialized = True
                    logger.info("ClearML Task has been initialized.")

            self._clearml_task.connect(args, "Args")
            if hasattr(model, "config") and model.config is not None:
                self._clearml_task.connect(model.config, "Model Configuration")

    def on_train_begin(self, args, state, control, model=None, tokenizer=None, **kwargs):
        if self._clearml is None:
            return
        if state.is_hyper_param_search:
            self._initialized = False
        if not self._initialized:
            self.setup(args, state, model, tokenizer, **kwargs)

    def on_train_end(self, args, state, control, model=None, tokenizer=None, metrics=None, logs=None, **kwargs):
        if self._clearml is None:
            return
        if self._clearml_task and state.is_world_process_zero and not self._initialized_externally:
            # Close ClearML Task at the end end of training
            self._clearml_task.close()

    def on_log(self, args, state, control, model=None, tokenizer=None, logs=None, **kwargs):
        if self._clearml is None:
            return
        if not self._initialized:
            self.setup(args, state, model, tokenizer, **kwargs)
        if state.is_world_process_zero:
            eval_prefix = "eval_"
            eval_prefix_len = len(eval_prefix)
            test_prefix = "test_"
            test_prefix_len = len(test_prefix)
            single_value_scalars = [
                "train_runtime",
                "train_samples_per_second",
                "train_steps_per_second",
                "train_loss",
                "total_flos",
                "epoch",
            ]
            for k, v in logs.items():
                if isinstance(v, (int, float)):
                    if k in single_value_scalars:
                        self._clearml_task.get_logger().report_single_value(name=k, value=v)
                    elif k.startswith(eval_prefix):
                        self._clearml_task.get_logger().report_scalar(
                            title=k[eval_prefix_len:], series="eval", value=v, iteration=state.global_step
                        )
                    elif k.startswith(test_prefix):
                        self._clearml_task.get_logger().report_scalar(
                            title=k[test_prefix_len:], series="test", value=v, iteration=state.global_step
                        )
                    else:
                        self._clearml_task.get_logger().report_scalar(
                            title=k, series="train", value=v, iteration=state.global_step
                        )
                else:
                    logger.warning(
                        "Trainer is attempting to log a value of "
                        f'"{v}" of type {type(v)} for key "{k}" as a scalar. '
                        "This invocation of ClearML logger's  report_scalar() "
                        "is incorrect so we dropped this attribute."
                    )

    def on_save(self, args, state, control, **kwargs):
        if self._log_model and self._clearml_task and state.is_world_process_zero:
            ckpt_dir = f"checkpoint-{state.global_step}"
            artifact_path = os.path.join(args.output_dir, ckpt_dir)
            logger.info(f"Logging checkpoint artifacts in {ckpt_dir}. This may take time.")
            self._clearml_task.update_output_model(artifact_path, iteration=state.global_step, auto_delete_file=False)


class FlyteCallback(TrainerCallback):
    """A [`TrainerCallback`] that sends the logs to [Flyte](https://flyte.org/).
    NOTE: This callback only works within a Flyte task.

    Args:
        save_log_history (`bool`, *optional*, defaults to `True`):
            When set to True, the training logs are saved as a Flyte Deck.

        sync_checkpoints (`bool`, *optional*, defaults to `True`):
            When set to True, checkpoints are synced with Flyte and can be used to resume training in the case of an
            interruption.

    Example:

    ```python
    # Note: This example skips over some setup steps for brevity.
    from flytekit import current_context, task


    @task
    def train_hf_transformer():
        cp = current_context().checkpoint
        trainer = Trainer(..., callbacks=[FlyteCallback()])
        output = trainer.train(resume_from_checkpoint=cp.restore())
    ```
    """

    def __init__(self, save_log_history: bool = True, sync_checkpoints: bool = True):
        super().__init__()
        if not is_flytekit_available():
            raise ImportError("FlyteCallback requires flytekit to be installed. Run `pip install flytekit`.")

        if not is_flyte_deck_standard_available() or not is_pandas_available():
            logger.warning(
                "Syncing log history requires both flytekitplugins-deck-standard and pandas to be installed. "
                "Run `pip install flytekitplugins-deck-standard pandas` to enable this feature."
            )
            save_log_history = False

        from flytekit import current_context

        self.cp = current_context().checkpoint
        self.save_log_history = save_log_history
        self.sync_checkpoints = sync_checkpoints

    def on_save(self, args, state, control, **kwargs):
        if self.sync_checkpoints and state.is_world_process_zero:
            ckpt_dir = f"checkpoint-{state.global_step}"
            artifact_path = os.path.join(args.output_dir, ckpt_dir)

            logger.info(f"Syncing checkpoint in {ckpt_dir} to Flyte. This may take time.")
            self.cp.save(artifact_path)

    def on_train_end(self, args, state, control, **kwargs):
        if self.save_log_history:
            import pandas as pd
            from flytekit import Deck
            from flytekitplugins.deck.renderer import TableRenderer

            log_history_df = pd.DataFrame(state.log_history)
            Deck("Log History", TableRenderer().to_html(log_history_df))


class DVCLiveCallback(TrainerCallback):
    """
    A [`TrainerCallback`] that sends the logs to [DVCLive](https://www.dvc.org/doc/dvclive).

    Use the environment variables below in `setup` to configure the integration. To customize this callback beyond
    those environment variables, see [here](https://dvc.org/doc/dvclive/ml-frameworks/huggingface).

    Args:
        live (`dvclive.Live`, *optional*, defaults to `None`):
            Optional Live instance. If None, a new instance will be created using **kwargs.
        log_model (Union[Literal["all"], bool], *optional*, defaults to `None`):
            Whether to use `dvclive.Live.log_artifact()` to log checkpoints created by [`Trainer`]. If set to `True`,
            the final checkpoint is logged at the end of training. If set to `"all"`, the entire
            [`TrainingArguments`]'s `output_dir` is logged at each checkpoint.
    """

    def __init__(
        self,
        live: Optional[Any] = None,
        log_model: Optional[Union[Literal["all"], bool]] = None,
        **kwargs,
    ):
        if not is_dvclive_available():
            raise RuntimeError("DVCLiveCallback requires dvclive to be installed. Run `pip install dvclive`.")
        from dvclive import Live

        self._log_model = log_model

        self._initialized = False
        self.live = None
        if isinstance(live, Live):
            self.live = live
            self._initialized = True
        elif live is not None:
            raise RuntimeError(f"Found class {live.__class__} for live, expected dvclive.Live")

    def setup(self, args, state, model):
        """
        Setup the optional DVCLive integration. To customize this callback beyond the environment variables below, see
        [here](https://dvc.org/doc/dvclive/ml-frameworks/huggingface).

        Environment:
        - **HF_DVCLIVE_LOG_MODEL** (`str`, *optional*):
            Whether to use `dvclive.Live.log_artifact()` to log checkpoints created by [`Trainer`]. If set to `True` or
            *1*, the final checkpoint is logged at the end of training. If set to `all`, the entire
            [`TrainingArguments`]'s `output_dir` is logged at each checkpoint.
        """
        from dvclive import Live

        self._initalized = True
        if self._log_model is not None:
            log_model_env = os.getenv("HF_DVCLIVE_LOG_MODEL")
            if log_model_env.upper() in ENV_VARS_TRUE_VALUES:
                self._log_model = True
            elif log_model_env.lower() == "all":
                self._log_model = "all"
        if state.is_world_process_zero:
            if not self.live:
                self.live = Live()
            self.live.log_params(args.to_dict())

    def on_train_begin(self, args, state, control, model=None, **kwargs):
        if not self._initialized:
            self.setup(args, state, model)

    def on_log(self, args, state, control, model=None, logs=None, **kwargs):
        if not self._initialized:
            self.setup(args, state, model)
        if state.is_world_process_zero:
            from dvclive.plots import Metric
            from dvclive.utils import standardize_metric_name

            for key, value in logs.items():
                if Metric.could_log(value):
                    self.live.log_metric(standardize_metric_name(key, "dvclive.huggingface"), value)
                else:
                    logger.warning(
                        "Trainer is attempting to log a value of "
                        f'"{value}" of type {type(value)} for key "{key}" as a scalar. '
                        "This invocation of DVCLive's Live.log_metric() "
                        "is incorrect so we dropped this attribute."
                    )
            self.live.next_step()

    def on_save(self, args, state, control, **kwargs):
        if self._log_model == "all" and self._initialized and state.is_world_process_zero:
            self.live.log_artifact(args.output_dir)

    def on_train_end(self, args, state, control, **kwargs):
        if self._initialized and state.is_world_process_zero:
            from transformers.trainer import Trainer

            if self._log_model is True:
                fake_trainer = Trainer(args=args, model=kwargs.get("model"), tokenizer=kwargs.get("tokenizer"))
                name = "best" if args.load_best_model_at_end else "last"
                output_dir = os.path.join(args.output_dir, name)
                fake_trainer.save_model(output_dir)
                self.live.log_artifact(output_dir, name=name, type="model", copy=True)
            self.live.end()


INTEGRATION_TO_CALLBACK = {
    "azure_ml": AzureMLCallback,
    "comet_ml": CometCallback,
    "mlflow": MLflowCallback,
    "neptune": NeptuneCallback,
    "tensorboard": TensorBoardCallback,
    "wandb": WandbCallback,
    "codecarbon": CodeCarbonCallback,
    "clearml": ClearMLCallback,
    "dagshub": DagsHubCallback,
    "flyte": FlyteCallback,
    "dvclive": DVCLiveCallback,
}


def get_reporting_integration_callbacks(report_to):
    for integration in report_to:
        if integration not in INTEGRATION_TO_CALLBACK:
            raise ValueError(
                f"{integration} is not supported, only {', '.join(INTEGRATION_TO_CALLBACK.keys())} are supported."
            )

    return [INTEGRATION_TO_CALLBACK[integration] for integration in report_to]