Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2021 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" PyTorch - Flax general utilities.""" | |
import os | |
from pickle import UnpicklingError | |
from typing import Dict, Tuple | |
import jax | |
import jax.numpy as jnp | |
import numpy as np | |
from flax.serialization import from_bytes | |
from flax.traverse_util import flatten_dict, unflatten_dict | |
import transformers | |
from . import is_safetensors_available | |
from .utils import logging | |
if is_safetensors_available(): | |
from safetensors import safe_open | |
from safetensors.flax import load_file as safe_load_file | |
logger = logging.get_logger(__name__) | |
##################### | |
# PyTorch => Flax # | |
##################### | |
def load_pytorch_checkpoint_in_flax_state_dict( | |
flax_model, pytorch_checkpoint_path, is_sharded, allow_missing_keys=False | |
): | |
"""Load pytorch checkpoints in a flax model""" | |
try: | |
import torch # noqa: F401 | |
except (ImportError, ModuleNotFoundError): | |
logger.error( | |
"Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" | |
" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" | |
" instructions." | |
) | |
raise | |
if not is_sharded: | |
pt_path = os.path.abspath(pytorch_checkpoint_path) | |
logger.info(f"Loading PyTorch weights from {pt_path}") | |
if pt_path.endswith(".safetensors"): | |
pt_state_dict = {} | |
with safe_open(pt_path, framework="pt") as f: | |
for k in f.keys(): | |
pt_state_dict[k] = f.get_tensor(k) | |
else: | |
pt_state_dict = torch.load(pt_path, map_location="cpu") | |
logger.info(f"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values()):,} parameters.") | |
flax_state_dict = convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model) | |
else: | |
# model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files | |
flax_state_dict = convert_pytorch_sharded_state_dict_to_flax(pytorch_checkpoint_path, flax_model) | |
return flax_state_dict | |
def rename_key_and_reshape_tensor( | |
pt_tuple_key: Tuple[str], | |
pt_tensor: np.ndarray, | |
random_flax_state_dict: Dict[str, jnp.ndarray], | |
model_prefix: str, | |
) -> (Tuple[str], np.ndarray): | |
"""Rename PT weight names to corresponding Flax weight names and reshape tensor if necessary""" | |
def is_key_or_prefix_key_in_dict(key: Tuple[str]) -> bool: | |
"""Checks if `key` of `(prefix,) + key` is in random_flax_state_dict""" | |
return len(set(random_flax_state_dict) & {key, (model_prefix,) + key}) > 0 | |
# layer norm | |
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("scale",) | |
if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(renamed_pt_tuple_key): | |
return renamed_pt_tuple_key, pt_tensor | |
# batch norm layer mean | |
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("mean",) | |
if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(pt_tuple_key): | |
return renamed_pt_tuple_key, pt_tensor | |
# batch norm layer var | |
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("var",) | |
if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(pt_tuple_key): | |
return renamed_pt_tuple_key, pt_tensor | |
# embedding | |
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("embedding",) | |
if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(renamed_pt_tuple_key): | |
return renamed_pt_tuple_key, pt_tensor | |
# conv layer | |
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("kernel",) | |
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(pt_tuple_key): | |
pt_tensor = pt_tensor.transpose(2, 3, 1, 0) | |
return renamed_pt_tuple_key, pt_tensor | |
# linear layer | |
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("kernel",) | |
if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(pt_tuple_key): | |
pt_tensor = pt_tensor.T | |
return renamed_pt_tuple_key, pt_tensor | |
# old PyTorch layer norm weight | |
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("weight",) | |
if pt_tuple_key[-1] == "gamma": | |
return renamed_pt_tuple_key, pt_tensor | |
# old PyTorch layer norm bias | |
renamed_pt_tuple_key = pt_tuple_key[:-1] + ("bias",) | |
if pt_tuple_key[-1] == "beta": | |
return renamed_pt_tuple_key, pt_tensor | |
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 | |
name = None | |
if pt_tuple_key[-3::2] == ("parametrizations", "original0"): | |
name = pt_tuple_key[-2] + "_g" | |
elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): | |
name = pt_tuple_key[-2] + "_v" | |
if name is not None: | |
renamed_pt_tuple_key = pt_tuple_key[:-3] + (name,) | |
return renamed_pt_tuple_key, pt_tensor | |
return pt_tuple_key, pt_tensor | |
def convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model): | |
# convert pytorch tensor to numpy | |
# numpy currently does not support bfloat16, need to go over float32 in this case to not lose precision | |
try: | |
import torch # noqa: F401 | |
except (ImportError, ModuleNotFoundError): | |
logger.error( | |
"Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" | |
" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" | |
" instructions." | |
) | |
raise | |
weight_dtypes = {k: v.dtype for k, v in pt_state_dict.items()} | |
pt_state_dict = { | |
k: v.numpy() if not v.dtype == torch.bfloat16 else v.float().numpy() for k, v in pt_state_dict.items() | |
} | |
model_prefix = flax_model.base_model_prefix | |
# use params dict if the model contains batch norm layers | |
if "params" in flax_model.params: | |
flax_model_params = flax_model.params["params"] | |
else: | |
flax_model_params = flax_model.params | |
random_flax_state_dict = flatten_dict(flax_model_params) | |
# add batch_stats keys,values to dict | |
if "batch_stats" in flax_model.params: | |
flax_batch_stats = flatten_dict(flax_model.params["batch_stats"]) | |
random_flax_state_dict.update(flax_batch_stats) | |
flax_state_dict = {} | |
load_model_with_head_into_base_model = (model_prefix not in flax_model_params) and ( | |
model_prefix in {k.split(".")[0] for k in pt_state_dict.keys()} | |
) | |
load_base_model_into_model_with_head = (model_prefix in flax_model_params) and ( | |
model_prefix not in {k.split(".")[0] for k in pt_state_dict.keys()} | |
) | |
# Need to change some parameters name to match Flax names | |
for pt_key, pt_tensor in pt_state_dict.items(): | |
pt_tuple_key = tuple(pt_key.split(".")) | |
is_bfloat_16 = weight_dtypes[pt_key] == torch.bfloat16 | |
# remove base model prefix if necessary | |
has_base_model_prefix = pt_tuple_key[0] == model_prefix | |
if load_model_with_head_into_base_model and has_base_model_prefix: | |
pt_tuple_key = pt_tuple_key[1:] | |
# Correctly rename weight parameters | |
flax_key, flax_tensor = rename_key_and_reshape_tensor( | |
pt_tuple_key, pt_tensor, random_flax_state_dict, model_prefix | |
) | |
# add model prefix if necessary | |
require_base_model_prefix = (model_prefix,) + flax_key in random_flax_state_dict | |
if load_base_model_into_model_with_head and require_base_model_prefix: | |
flax_key = (model_prefix,) + flax_key | |
if flax_key in random_flax_state_dict: | |
if flax_tensor.shape != random_flax_state_dict[flax_key].shape: | |
raise ValueError( | |
f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " | |
f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." | |
) | |
# add batch stats if the model contains batchnorm layers | |
if "batch_stats" in flax_model.params: | |
if "mean" in flax_key[-1] or "var" in flax_key[-1]: | |
flax_state_dict[("batch_stats",) + flax_key] = jnp.asarray(flax_tensor) | |
continue | |
# remove num_batches_tracked key | |
if "num_batches_tracked" in flax_key[-1]: | |
flax_state_dict.pop(flax_key, None) | |
continue | |
# also add unexpected weight so that warning is thrown | |
flax_state_dict[("params",) + flax_key] = ( | |
jnp.asarray(flax_tensor) if not is_bfloat_16 else jnp.asarray(flax_tensor, dtype=jnp.bfloat16) | |
) | |
else: | |
# also add unexpected weight so that warning is thrown | |
flax_state_dict[flax_key] = ( | |
jnp.asarray(flax_tensor) if not is_bfloat_16 else jnp.asarray(flax_tensor, dtype=jnp.bfloat16) | |
) | |
return unflatten_dict(flax_state_dict) | |
############################ | |
# Sharded Pytorch => Flax # | |
############################ | |
def convert_pytorch_sharded_state_dict_to_flax(shard_filenames, flax_model): | |
import torch | |
# Load the index | |
flax_state_dict = {} | |
for shard_file in shard_filenames: | |
# load using msgpack utils | |
pt_state_dict = torch.load(shard_file) | |
pt_state_dict = {k: v.numpy() for k, v in pt_state_dict.items()} | |
model_prefix = flax_model.base_model_prefix | |
# use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict | |
if "batch_stats" in flax_model.params: | |
flax_model_params = flax_model.params["params"] | |
random_flax_state_dict = flatten_dict(flax_model_params) | |
random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"])) | |
else: | |
flax_model_params = flax_model.params | |
random_flax_state_dict = flatten_dict(flax_model_params) | |
load_model_with_head_into_base_model = (model_prefix not in flax_model_params) and ( | |
model_prefix in {k.split(".")[0] for k in pt_state_dict.keys()} | |
) | |
load_base_model_into_model_with_head = (model_prefix in flax_model_params) and ( | |
model_prefix not in {k.split(".")[0] for k in pt_state_dict.keys()} | |
) | |
# Need to change some parameters name to match Flax names | |
for pt_key, pt_tensor in pt_state_dict.items(): | |
pt_tuple_key = tuple(pt_key.split(".")) | |
# remove base model prefix if necessary | |
has_base_model_prefix = pt_tuple_key[0] == model_prefix | |
if load_model_with_head_into_base_model and has_base_model_prefix: | |
pt_tuple_key = pt_tuple_key[1:] | |
# Correctly rename weight parameters | |
flax_key, flax_tensor = rename_key_and_reshape_tensor( | |
pt_tuple_key, pt_tensor, random_flax_state_dict, model_prefix | |
) | |
# add model prefix if necessary | |
require_base_model_prefix = (model_prefix,) + flax_key in random_flax_state_dict | |
if load_base_model_into_model_with_head and require_base_model_prefix: | |
flax_key = (model_prefix,) + flax_key | |
if flax_key in random_flax_state_dict: | |
if flax_tensor.shape != random_flax_state_dict[flax_key].shape: | |
raise ValueError( | |
f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " | |
f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." | |
) | |
# add batch stats if the model contains batchnorm layers | |
if "batch_stats" in flax_model.params: | |
if "mean" in flax_key[-1]: | |
flax_state_dict[("batch_stats",) + flax_key] = jnp.asarray(flax_tensor) | |
continue | |
if "var" in flax_key[-1]: | |
flax_state_dict[("batch_stats",) + flax_key] = jnp.asarray(flax_tensor) | |
continue | |
# remove num_batches_tracked key | |
if "num_batches_tracked" in flax_key[-1]: | |
flax_state_dict.pop(flax_key, None) | |
continue | |
# also add unexpected weight so that warning is thrown | |
flax_state_dict[("params",) + flax_key] = jnp.asarray(flax_tensor) | |
else: | |
# also add unexpected weight so that warning is thrown | |
flax_state_dict[flax_key] = jnp.asarray(flax_tensor) | |
return unflatten_dict(flax_state_dict) | |
##################### | |
# Flax => PyTorch # | |
##################### | |
def load_flax_checkpoint_in_pytorch_model(model, flax_checkpoint_path): | |
"""Load flax checkpoints in a PyTorch model""" | |
flax_checkpoint_path = os.path.abspath(flax_checkpoint_path) | |
logger.info(f"Loading Flax weights from {flax_checkpoint_path}") | |
# import correct flax class | |
flax_cls = getattr(transformers, "Flax" + model.__class__.__name__) | |
# load flax weight dict | |
if flax_checkpoint_path.endswith(".safetensors"): | |
flax_state_dict = safe_load_file(flax_checkpoint_path) | |
flax_state_dict = unflatten_dict(flax_state_dict, sep=".") | |
else: | |
with open(flax_checkpoint_path, "rb") as state_f: | |
try: | |
flax_state_dict = from_bytes(flax_cls, state_f.read()) | |
except UnpicklingError: | |
raise EnvironmentError(f"Unable to convert {flax_checkpoint_path} to Flax deserializable object. ") | |
return load_flax_weights_in_pytorch_model(model, flax_state_dict) | |
def load_flax_weights_in_pytorch_model(pt_model, flax_state): | |
"""Load flax checkpoints in a PyTorch model""" | |
try: | |
import torch # noqa: F401 | |
except (ImportError, ModuleNotFoundError): | |
logger.error( | |
"Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" | |
" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" | |
" instructions." | |
) | |
raise | |
# check if we have bf16 weights | |
is_type_bf16 = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype == jnp.bfloat16, flax_state)).values() | |
if any(is_type_bf16): | |
# convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 | |
# and bf16 is not fully supported in PT yet. | |
logger.warning( | |
"Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " | |
"before loading those in PyTorch model." | |
) | |
flax_state = jax.tree_util.tree_map( | |
lambda params: params.astype(np.float32) if params.dtype == jnp.bfloat16 else params, flax_state | |
) | |
flax_state_dict = flatten_dict(flax_state) | |
pt_model_dict = pt_model.state_dict() | |
load_model_with_head_into_base_model = (pt_model.base_model_prefix in flax_state) and ( | |
pt_model.base_model_prefix not in {k.split(".")[0] for k in pt_model_dict.keys()} | |
) | |
load_base_model_into_model_with_head = (pt_model.base_model_prefix not in flax_state) and ( | |
pt_model.base_model_prefix in {k.split(".")[0] for k in pt_model_dict.keys()} | |
) | |
# keep track of unexpected & missing keys | |
unexpected_keys = [] | |
missing_keys = set(pt_model_dict.keys()) | |
for flax_key_tuple, flax_tensor in flax_state_dict.items(): | |
has_base_model_prefix = flax_key_tuple[0] == pt_model.base_model_prefix | |
require_base_model_prefix = ".".join((pt_model.base_model_prefix,) + flax_key_tuple) in pt_model_dict | |
# adapt flax_key to prepare for loading from/to base model only | |
if load_model_with_head_into_base_model and has_base_model_prefix: | |
flax_key_tuple = flax_key_tuple[1:] | |
elif load_base_model_into_model_with_head and require_base_model_prefix: | |
flax_key_tuple = (pt_model.base_model_prefix,) + flax_key_tuple | |
# rename flax weights to PyTorch format | |
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(flax_key_tuple) not in pt_model_dict: | |
# conv layer | |
flax_key_tuple = flax_key_tuple[:-1] + ("weight",) | |
flax_tensor = jnp.transpose(flax_tensor, (3, 2, 0, 1)) | |
elif flax_key_tuple[-1] == "kernel" and ".".join(flax_key_tuple) not in pt_model_dict: | |
# linear layer | |
flax_key_tuple = flax_key_tuple[:-1] + ("weight",) | |
flax_tensor = flax_tensor.T | |
elif flax_key_tuple[-1] in ["scale", "embedding"]: | |
flax_key_tuple = flax_key_tuple[:-1] + ("weight",) | |
# adding batch stats from flax batch norm to pt | |
elif "mean" in flax_key_tuple[-1]: | |
flax_key_tuple = flax_key_tuple[:-1] + ("running_mean",) | |
elif "var" in flax_key_tuple[-1]: | |
flax_key_tuple = flax_key_tuple[:-1] + ("running_var",) | |
if "batch_stats" in flax_state: | |
flax_key = ".".join(flax_key_tuple[1:]) # Remove the params/batch_stats header | |
else: | |
flax_key = ".".join(flax_key_tuple) | |
# We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. | |
special_pt_names = {} | |
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 | |
for key in pt_model_dict: | |
key_components = key.split(".") | |
name = None | |
if key_components[-3::2] == ["parametrizations", "original0"]: | |
name = key_components[-2] + "_g" | |
elif key_components[-3::2] == ["parametrizations", "original1"]: | |
name = key_components[-2] + "_v" | |
if name is not None: | |
key_components = key_components[:-3] + [name] | |
key_to_check = ".".join(key_components) | |
special_pt_names[key_to_check] = key | |
if flax_key in special_pt_names: | |
flax_key = special_pt_names[flax_key] | |
if flax_key in pt_model_dict: | |
if flax_tensor.shape != pt_model_dict[flax_key].shape: | |
raise ValueError( | |
f"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " | |
f"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." | |
) | |
else: | |
# add weight to pytorch dict | |
flax_tensor = np.asarray(flax_tensor) if not isinstance(flax_tensor, np.ndarray) else flax_tensor | |
pt_model_dict[flax_key] = torch.from_numpy(flax_tensor) | |
# remove from missing keys | |
missing_keys.remove(flax_key) | |
else: | |
# weight is not expected by PyTorch model | |
unexpected_keys.append(flax_key) | |
pt_model.load_state_dict(pt_model_dict) | |
# re-transform missing_keys to list | |
missing_keys = list(missing_keys) | |
if len(unexpected_keys) > 0: | |
logger.warning( | |
"Some weights of the Flax model were not used when initializing the PyTorch model" | |
f" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" | |
f" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" | |
" (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" | |
f" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" | |
" to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" | |
" FlaxBertForSequenceClassification model)." | |
) | |
else: | |
logger.warning(f"All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n") | |
if len(missing_keys) > 0: | |
logger.warning( | |
f"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" | |
f" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" | |
" use it for predictions and inference." | |
) | |
else: | |
logger.warning( | |
f"All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n" | |
"If your task is similar to the task the model of the checkpoint was trained on, " | |
f"you can already use {pt_model.__class__.__name__} for predictions without further training." | |
) | |
return pt_model | |