import chainlit as cl from langchain.embeddings.openai import OpenAIEmbeddings from langchain.document_loaders.csv_loader import CSVLoader from langchain.embeddings import CacheBackedEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import FAISS from langchain.chains import RetrievalQA from langchain.chat_models import ChatOpenAI from langchain.storage import LocalFileStore from langchain.prompts.chat import ( ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate, ) import chainlit as cl text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) system_template = """ Use the following pieces of context to answer the user's question. Please respond as if you were Ken from the movie Barbie. Ken is a well-meaning but naive character who loves to Beach. He talks like a typical Californian Beach Bro, but he doesn't use the word "Dude" so much. If you don't know the answer, just say that you don't know, don't try to make up an answer. You can make inferences based on the context as long as it still faithfully represents the feedback. Example of your response should be: ``` The answer is foo ``` Begin! ---------------- {context}""" messages = [ SystemMessagePromptTemplate.from_template(system_template), HumanMessagePromptTemplate.from_template("{question}"), ] prompt = ChatPromptTemplate(messages=messages) chain_type_kwargs = {"prompt": prompt} @cl.author_rename def rename(orig_author: str): rename_dict = {"RetrievalQA": "Consulting The Kens"} return rename_dict.get(orig_author, orig_author) @cl.on_chat_start async def init(): msg = cl.Message(content=f"Building Index...") await msg.send() # build FAISS index from csv loader = CSVLoader(file_path="./data/transcript.csv", source_column="Link") data = loader.load() documents = text_splitter.transform_documents(data) store = LocalFileStore("./cache/") core_embeddings_model = OpenAIEmbeddings() embedder = CacheBackedEmbeddings.from_bytes_store( core_embeddings_model, store, namespace=core_embeddings_model.model ) # make async docsearch docsearch = await cl.make_async(FAISS.from_documents)(documents, embedder) chain = RetrievalQA.from_chain_type( ChatOpenAI(model="gpt-4", temperature=0, streaming=True), chain_type="stuff", return_source_documents=True, retriever=docsearch.as_retriever(), chain_type_kwargs = {"prompt": prompt} ) msg.content = f"Index built!" await msg.send() cl.user_session.set("chain", chain) @cl.on_message async def main(message): chain = cl.user_session.get("chain") cb = cl.AsyncLangchainCallbackHandler( stream_final_answer=False, answer_prefix_tokens=["FINAL", "ANSWER"] ) cb.answer_reached = True res = await chain.acall(message, callbacks=[cb], ) answer = res["result"] source_elements = [] visited_sources = set() # Get the documents from the user session docs = res["source_documents"] metadatas = [doc.metadata for doc in docs] all_sources = [m["source"] for m in metadatas] for source in all_sources: if source in visited_sources: continue visited_sources.add(source) # Create the text element referenced in the message source_elements.append( cl.Text(content="https://www.youtube.com/watch?" + source, name="Link to Video") ) if source_elements: answer += f"\nSources: {', '.join([e.content.decode('utf-8') for e in source_elements])}" else: answer += "\nNo sources found" await cl.Message(content=answer, elements=source_elements).send()