import openai | |
import gradio as gr | |
import os | |
#OpenAi call | |
def gpt3(texts): | |
openai.api_key = os.environ["Secret"] | |
response = openai.Completion.create( | |
engine="text-davinci-003", | |
prompt= texts, | |
temperature=0, | |
max_tokens=750, | |
top_p=1, | |
frequency_penalty=0.0, | |
presence_penalty=0.0, | |
stop = (";", "/*", "</code>") | |
) | |
x = response.choices[0].text | |
return x | |
# Function to elicit sql response from model | |
def greet(prompt): | |
txt= (f'''/*Prompt: {prompt}*/ \n —-SQL Code:\n''') | |
sql = gpt3(txt) | |
return sql | |
#Code to set up Gradio UI | |
iface = gr.Interface(greet, inputs = ["text"], outputs = "text",title="Natural Language to SQL", description="Enter any prompt and get a SQL statement back! For better results, give it more context") | |
iface.launch() |