Spaces:
Running
Running
{"question_id":4217,"category":"Math","model_a":"gemini-1.5-flash-api-0514","model_b":"claude-3-sonnet-20240229","winner":"model_a","conversation_a":[{"role":"user","content":"\u6211\u60f3\u57fa\u4e8e\u963f\u5c14\u6cd5zero\u7b97\u6cd5\u6765\u5f00\u53d1\u4e2d\u56fd\u8c61\u68cbai\uff0c\u8bf7\u95ee\u6211\u5e94\u8be5\u600e\u4e48\u8bbe\u8ba1\u6b8b\u5dee\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\uff0c\u53c8\u4e3a\u4ec0\u4e48\u8981\u8fd9\u6837\u8bbe\u8ba1\u3002\u4f7f\u7528pytorch","num_tokens":54},{"role":"assistant","content":"## \u57fa\u4e8eAlphaZero\u7b97\u6cd5\u5f00\u53d1\u4e2d\u56fd\u8c61\u68cbAI\u7684\u6b8b\u5dee\u795e\u7ecf\u7f51\u7edc\u8bbe\u8ba1\n\nAlphaZero\u7b97\u6cd5\u7684\u6838\u5fc3\u662f\u4f7f\u7528\u4e00\u4e2a\u5f3a\u5927\u7684\u795e\u7ecf\u7f51\u7edc\u6765\u8bc4\u4f30\u68cb\u5c40\u5e76\u9884\u6d4b\u4e0b\u4e00\u6b65\u884c\u52a8\u3002\u4e3a\u4e86\u8bbe\u8ba1\u9002\u5408\u4e2d\u56fd\u8c61\u68cb\u7684\u6b8b\u5dee\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\uff0c\u6211\u4eec\u9700\u8981\u8003\u8651\u4ee5\u4e0b\u56e0\u7d20\uff1a\n\n**1. \u68cb\u76d8\u72b6\u6001\u8868\u793a\uff1a**\n\n* **\u68cb\u76d8\u77e9\u9635:** \u4f7f\u7528\u4e00\u4e2a\u4e8c\u7ef4\u77e9\u9635\u6765\u8868\u793a\u68cb\u76d8\uff0c\u6bcf\u4e2a\u5143\u7d20\u4ee3\u8868\u5bf9\u5e94\u4f4d\u7f6e\u7684\u68cb\u5b50\u7c7b\u578b\u3002\n* **\u901a\u9053:** \u53ef\u4ee5\u4f7f\u7528\u591a\u4e2a\u901a\u9053\u6765\u8868\u793a\u4e0d\u540c\u7684\u4fe1\u606f\uff0c\u4f8b\u5982\u68cb\u5b50\u7c7b\u578b\u3001\u68cb\u5b50\u989c\u8272\u3001\u68cb\u5b50\u6d3b\u52a8\u8303\u56f4\u7b49\u3002\n* **\u7279\u5f81\u63d0\u53d6:** \u53ef\u4ee5\u4f7f\u7528\u5377\u79ef\u5c42\u6765\u63d0\u53d6\u68cb\u76d8\u4e0a\u7684\u5c40\u90e8\u7279\u5f81\uff0c\u4f8b\u5982\u68cb\u5b50\u7ec4\u5408\u3001\u653b\u51fb\u5173\u7cfb\u7b49\u3002\n\n**2. \u795e\u7ecf\u7f51\u7edc\u7ed3\u6784:**\n\n* **\u5377\u79ef\u5c42:** \u4f7f\u7528\u591a\u4e2a\u5377\u79ef\u5c42\u6765\u63d0\u53d6\u7279\u5f81\uff0c\u5c42\u6570\u548c\u5377\u79ef\u6838\u5927\u5c0f\u9700\u8981\u6839\u636e\u68cb\u76d8\u5927\u5c0f\u548c\u7279\u5f81\u590d\u6742\u5ea6\u8fdb\u884c\u8c03\u6574\u3002\n* **\u6b8b\u5dee\u8fde\u63a5:** \u4f7f\u7528\u6b8b\u5dee\u8fde\u63a5\u6765\u89e3\u51b3\u6df1\u5c42\u7f51\u7edc\u8bad\u7ec3\u56f0\u96be\u7684\u95ee\u9898\uff0c\u5e76\u63d0\u9ad8\u7f51\u7edc\u7684\u5b66\u4e60\u6548\u7387\u3002\n* **\u6279\u5f52\u4e00\u5316:** \u4f7f\u7528\u6279\u5f52\u4e00\u5316\u5c42\u6765\u52a0\u901f\u8bad\u7ec3\u8fc7\u7a0b\uff0c\u5e76\u63d0\u9ad8\u7f51\u7edc\u7684\u6cdb\u5316\u80fd\u529b\u3002\n* **\u5168\u8fde\u63a5\u5c42:** \u4f7f\u7528\u5168\u8fde\u63a5\u5c42\u6765\u6574\u5408\u7279\u5f81\u4fe1\u606f\uff0c\u5e76\u9884\u6d4b\u4e0b\u4e00\u6b65\u884c\u52a8\u548c\u68cb\u5c40\u4ef7\u503c\u3002\n\n**3. \u635f\u5931\u51fd\u6570:**\n\n* **\u7b56\u7565\u635f\u5931:** \u4f7f\u7528\u4ea4\u53c9\u71b5\u635f\u5931\u51fd\u6570\u6765\u4f18\u5316\u884c\u52a8\u9884\u6d4b\u7684\u51c6\u786e\u6027\u3002\n* **\u4ef7\u503c\u635f\u5931:** \u4f7f\u7528\u5747\u65b9\u8bef\u5dee\u635f\u5931\u51fd\u6570\u6765\u4f18\u5316\u68cb\u5c40\u4ef7\u503c\u8bc4\u4f30\u7684\u51c6\u786e\u6027\u3002\n\n**4. \u8bad\u7ec3\u65b9\u6cd5:**\n\n* **\u8499\u7279\u5361\u6d1b\u6811\u641c\u7d22:** \u4f7f\u7528\u8499\u7279\u5361\u6d1b\u6811\u641c\u7d22\u7b97\u6cd5\u6765\u9009\u62e9\u6700\u4f73\u884c\u52a8\uff0c\u5e76\u901a\u8fc7\u795e\u7ecf\u7f51\u7edc\u7684\u9884\u6d4b\u7ed3\u679c\u6765\u5f15\u5bfc\u641c\u7d22\u65b9\u5411\u3002\n* **\u81ea\u5bf9\u5f08:** \u4f7f\u7528\u591a\u4e2a\u795e\u7ecf\u7f51\u7edc\u8fdb\u884c\u81ea\u5bf9\u5f08\uff0c\u5e76\u901a\u8fc7\u8bad\u7ec3\u6765\u4e0d\u65ad\u63d0\u5347\u7f51\u7edc\u7684\u6027\u80fd\u3002\n\n**PyTorch\u4ee3\u7801\u793a\u4f8b:**\n\n```python\nimport torch\nimport torch.nn as nn\n\nclass ResNetBlock(nn.Module):\n def __init__(self, in_channels, out_channels):\n super(ResNetBlock, self).__init__()\n self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)\n self.bn1 = nn.BatchNorm2d(out_channels)\n self.relu = nn.ReLU()\n self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)\n self.bn2 = nn.BatchNorm2d(out_channels)\n\n def forward(self, x):\n residual = x\n out = self.conv1(x)\n out = self.bn1(out)\n out = self.relu(out)\n out = self.conv2(out)\n out = self.bn2(out)\n out += residual\n out = self.relu(out)\n return out\n\nclass ChessNet(nn.Module):\n def __init__(self, board_size, num_channels, num_actions):\n super(ChessNet, self).__init__()\n self.board_size = board_size\n self.num_channels = num_channels\n self.num_actions = num_actions\n\n self.conv1 = nn.Conv2d(num_channels, 64, kernel_size=3, padding=1)\n self.bn1 = nn.BatchNorm2d(64)\n self.relu = nn.ReLU()\n self.res_block1 = ResNetBlock(64, 128)\n self.res_block2 = ResNetBlock(128, 256)\n self.res_block3 = ResNetBlock(256, 512)\n self.flatten = nn.Flatten()\n self.fc1 = nn.Linear(512 * board_size * board_size, 1024)\n self.fc2 = nn.Linear(1024, num_actions)\n self.value_head = nn.Linear(1024, 1)\n\n def forward(self, x):\n x = self.conv1(x)\n x = self.bn1(x)\n x = self.relu(x)\n x = self.res_block1(x)\n x = self.res_block2(x)\n x = self.res_block3(x)\n x = self.flatten(x)\n x = self.fc1(x)\n x = self.relu(x)\n policy = self.fc2(x)\n value = self.value_head(x)\n return policy, value\n```\n\n**\u4ee3\u7801\u89e3\u91ca:**\n\n* `ResNetBlock` \u7c7b\u5b9a\u4e49\u4e86\u6b8b\u5dee\u5757\u7ed3\u6784\uff0c\u5305\u542b\u4e24\u4e2a\u5377\u79ef\u5c42\u3001\u4e24\u4e2a\u6279\u5f52\u4e00\u5316\u5c42\u548c\u4e00\u4e2aReLU\u6fc0\u6d3b\u51fd\u6570\u3002\n* `ChessNet` \u7c7b\u5b9a\u4e49\u4e86\u6574\u4e2a\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\uff0c\u5305\u542b\u5377\u79ef\u5c42\u3001\u6b8b\u5dee\u5757\u3001\u5168\u8fde\u63a5\u5c42\u548c\u4ef7\u503c\u5934\u3002\n* `forward` \u51fd\u6570\u5b9a\u4e49\u4e86\u7f51\u7edc\u7684\u524d\u5411\u4f20\u64ad\u8fc7\u7a0b\uff0c\u8f93\u5165\u4e3a\u68cb\u76d8\u72b6\u6001\uff0c\u8f93\u51fa\u4e3a\u884c\u52a8\u6982\u7387\u548c\u68cb\u5c40\u4ef7\u503c\u3002\n\n**\u4f18\u70b9:**\n\n* \u4f7f\u7528\u6b8b\u5dee\u8fde\u63a5\u53ef\u4ee5\u6709\u6548\u5730\u89e3\u51b3\u6df1\u5c42\u7f51\u7edc\u8bad\u7ec3\u56f0\u96be\u7684\u95ee\u9898\uff0c\u5e76\u63d0\u9ad8\u7f51\u7edc\u7684\u5b66\u4e60\u6548\u7387\u3002\n* \u4f7f\u7528\u5377\u79ef\u5c42\u53ef\u4ee5\u63d0\u53d6\u68cb\u76d8\u4e0a\u7684\u5c40\u90e8\u7279\u5f81\uff0c\u4f8b\u5982\u68cb\u5b50\u7ec4\u5408\u3001\u653b\u51fb\u5173\u7cfb\u7b49\u3002\n* \u4f7f\u7528\u6279\u5f52\u4e00\u5316\u5c42\u53ef\u4ee5\u52a0\u901f\u8bad\u7ec3\u8fc7\u7a0b\uff0c\u5e76\u63d0\u9ad8\u7f51\u7edc\u7684\u6cdb\u5316\u80fd\u529b\u3002\n\n**\u7f3a\u70b9:**\n\n* \u6a21\u578b\u53c2\u6570\u91cf\u8f83\u5927\uff0c\u9700\u8981\u8f83\u5927\u7684\u8ba1\u7b97\u8d44\u6e90\u8fdb\u884c\u8bad\u7ec3\u3002\n* \u5bf9\u4e8e\u68cb\u76d8\u4e0a\u7684\u5168\u5c40\u4fe1\u606f\u63d0\u53d6\u80fd\u529b\u6709\u9650\u3002\n\n**\u6539\u8fdb\u65b9\u5411:**\n\n* \u53ef\u4ee5\u5c1d\u8bd5\u4f7f\u7528\u66f4\u6df1\u7684\u7f51\u7edc\u7ed3\u6784\uff0c\u4f8b\u5982ResNet-50\u3001ResNet-101\u7b49\u3002\n* \u53ef\u4ee5\u5c1d\u8bd5\u4f7f\u7528\u6ce8\u610f\u529b\u673a\u5236\u6765\u63d0\u53d6\u68cb\u76d8\u4e0a\u7684\u5168\u5c40\u4fe1\u606f\u3002\n* \u53ef\u4ee5\u5c1d\u8bd5\u4f7f\u7528\u4e0d\u540c\u7684\u635f\u5931\u51fd\u6570\uff0c\u4f8b\u5982KL\u6563\u5ea6\u635f\u5931\u51fd\u6570\u3002\n\n\u603b\u4e4b\uff0c\u57fa\u4e8eAlphaZero\u7b97\u6cd5\u5f00\u53d1\u4e2d\u56fd\u8c61\u68cbAI\u7684\u6b8b\u5dee\u795e\u7ecf\u7f51\u7edc\u8bbe\u8ba1\u662f\u4e00\u4e2a\u590d\u6742\u7684\u5de5\u7a0b\u95ee\u9898\uff0c\u9700\u8981\u6839\u636e\u5177\u4f53\u7684\u68cb\u76d8\u72b6\u6001\u548c\u6e38\u620f\u89c4\u5219\u8fdb\u884c\u8c03\u6574\u3002\u4ee5\u4e0a\u4ee3\u7801\u793a\u4f8b\u4ec5\u4f9b\u53c2\u8003\uff0c\u5b9e\u9645\u5f00\u53d1\u8fc7\u7a0b\u4e2d\u9700\u8981\u6839\u636e\u5177\u4f53\u60c5\u51b5\u8fdb\u884c\u4fee\u6539\u548c\u4f18\u5316\u3002","num_tokens":1576}],"conversation_b":[{"role":"user","content":"\u6211\u60f3\u57fa\u4e8e\u963f\u5c14\u6cd5zero\u7b97\u6cd5\u6765\u5f00\u53d1\u4e2d\u56fd\u8c61\u68cbai\uff0c\u8bf7\u95ee\u6211\u5e94\u8be5\u600e\u4e48\u8bbe\u8ba1\u6b8b\u5dee\u795e\u7ecf\u7f51\u7edc\u7ed3\u6784\uff0c\u53c8\u4e3a\u4ec0\u4e48\u8981\u8fd9\u6837\u8bbe\u8ba1\u3002\u4f7f\u7528pytorch","num_tokens":54},{"role":"assistant","content":"\u5bf9\u4e8e\u5f00\u53d1\u4e2d\u56fd\u8c61\u68cbAI,\u4f7f\u7528\u6b8b\u5dee\u795e\u7ecf\u7f51\u7edc(ResNet)\u662f\u4e00\u4e2a\u975e\u5e38\u597d\u7684\u9009\u62e9\u3002\u6b8b\u5dee\u7f51\u7edc\u4e3b\u8981\u89e3\u51b3\u4e86\u6df1\u5ea6\u795e\u7ecf\u7f51\u7edc\u8bad\u7ec3\u8fc7\u7a0b\u4e2d\u7684\u68af\u5ea6\u6d88\u5931\u6216\u68af\u5ea6\u7206\u70b8\u95ee\u9898,\u4f7f\u5f97\u7f51\u7edc\u80fd\u591f\u66f4\u52a0\u6df1\u5165,\u4ece\u800c\u63d0\u9ad8\u6a21\u578b\u7684\u8868\u8fbe\u80fd\u529b\u3002\n\n\u5728\u8bbe\u8ba1ResNet\u7528\u4e8e\u4e2d\u56fd\u8c61\u68cbAI\u65f6,\u6211\u4eec\u53ef\u4ee5\u53c2\u8003AlphaZero\u7684\u7f51\u7edc\u7ed3\u6784,\u5b83\u4f7f\u7528\u4e86\u4e00\u4e2a\u4e3b\u5e72\u7f51\u7edc(trunk network)\u548c\u4e24\u4e2a\u5934\u90e8\u7f51\u7edc(head networks)\u3002\u4e3b\u5e72\u7f51\u7edc\u7528\u4e8e\u63d0\u53d6\u68cb\u5c40\u7684\u7279\u5f81,\u800c\u5934\u90e8\u7f51\u7edc\u5219\u5206\u522b\u9884\u6d4b\u4e0b\u4e00\u6b65\u7684\u6700\u4f73\u8d70\u6cd5(policy head)\u548c\u5f53\u524d\u5c40\u9762\u7684\u8bc4\u4f30\u5206\u6570(value head)\u3002\n\n\u5177\u4f53\u6765\u8bf4,\u4f60\u53ef\u4ee5\u8bbe\u8ba1\u5982\u4e0b\u7684ResNet\u7ed3\u6784:\n\n1. **\u8f93\u5165\u5c42**:\u5c06\u5f53\u524d\u68cb\u5c40\u7684\u72b6\u6001\u7f16\u7801\u6210\u4e00\u4e2a\u7279\u5f81\u5e73\u9762(feature plane),\u4f5c\u4e3a\u7f51\u7edc\u7684\u8f93\u5165\u3002\u7279\u5f81\u5e73\u9762\u53ef\u4ee5\u5305\u542b\u68cb\u5b50\u7684\u4f4d\u7f6e\u3001\u8d70\u6cd5\u3001\u65e0\u6548\u8d70\u6cd5\u7b49\u4fe1\u606f\u3002\n\n2. **\u4e3b\u5e72\u7f51\u7edc**:\u4e3b\u5e72\u7f51\u7edc\u7531\u591a\u4e2a\u6b8b\u5dee\u5757(ResBlock)\u7ec4\u6210,\u6bcf\u4e2a\u6b8b\u5dee\u5757\u5305\u542b\u4e24\u5230\u4e09\u4e2a\u5377\u79ef\u5c42\u3002\u6b8b\u5dee\u8fde\u63a5\u53ef\u4ee5\u8ba9\u68af\u5ea6\u66f4\u597d\u5730\u56de\u4f20,\u907f\u514d\u68af\u5ea6\u6d88\u5931\u6216\u7206\u70b8\u3002\u4f60\u53ef\u4ee5\u4f7f\u7528PyTorch\u7684`nn.Sequential`\u6765\u6784\u5efa\u6b8b\u5dee\u5757\u3002\n\n3. **\u7b56\u7565\u5934(Policy Head)**:\u7b56\u7565\u5934\u901a\u5e38\u7531\u51e0\u5c42\u5377\u79ef\u5c42\u548c\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42\u7ec4\u6210\u3002\u5b83\u5c06\u4e3b\u5e72\u7f51\u7edc\u7684\u8f93\u51fa\u7279\u5f81\u5e73\u9762\u6620\u5c04\u5230\u4e00\u4e2a\u6982\u7387\u5206\u5e03,\u8868\u793a\u4e0b\u4e00\u6b65\u7684\u6240\u6709\u53ef\u80fd\u8d70\u6cd5\u7684\u6982\u7387\u3002\n\n4. **\u8bc4\u4f30\u5934(Value Head)**:\u8bc4\u4f30\u5934\u4e5f\u7531\u51e0\u5c42\u5377\u79ef\u5c42\u548c\u4e00\u4e2a\u5168\u8fde\u63a5\u5c42\u7ec4\u6210\u3002\u5b83\u5c06\u4e3b\u5e72\u7f51\u7edc\u7684\u8f93\u51fa\u7279\u5f81\u5e73\u9762\u6620\u5c04\u5230\u4e00\u4e2a\u6807\u91cf\u503c,\u8868\u793a\u5f53\u524d\u5c40\u9762\u7684\u8bc4\u4f30\u5206\u6570\u3002\n\n\u5728\u8bad\u7ec3\u8fc7\u7a0b\u4e2d,\u4f60\u53ef\u4ee5\u4f7f\u7528\u76d1\u7763\u5b66\u4e60\u548c\u5f3a\u5316\u5b66\u4e60\u76f8\u7ed3\u5408\u7684\u65b9\u6cd5\u3002\u76d1\u7763\u5b66\u4e60\u7528\u4e8e\u8ba9\u7f51\u7edc\u5b66\u4e60\u4eba\u7c7b\u4e13\u5bb6\u7684\u8d70\u6cd5,\u800c\u5f3a\u5316\u5b66\u4e60\u5219\u901a\u8fc7\u81ea\u6211\u5bf9\u5f08\u6765\u4f18\u5316\u7f51\u7edc,\u4f7f\u5176\u80fd\u591f\u53d1\u73b0\u4eba\u7c7b\u4e13\u5bb6\u96be\u4ee5\u627e\u5230\u7684\u8d70\u6cd5\u3002\n\n\u4ee5\u4e0a\u662f\u4e00\u4e2a\u57fa\u672c\u7684ResNet\u7ed3\u6784\u8bbe\u8ba1\u601d\u8def\u3002\u4f60\u53ef\u4ee5\u6839\u636e\u5177\u4f53\u9700\u6c42\u8c03\u6574\u7f51\u7edc\u7684\u6df1\u5ea6\u3001\u6b8b\u5dee\u5757\u7684\u6570\u91cf\u3001\u5377\u79ef\u6838\u5927\u5c0f\u7b49\u53c2\u6570,\u5e76\u4f7f\u7528\u6570\u636e\u589e\u5f3a\u3001\u6b63\u5219\u5316\u7b49\u6280\u672f\u6765\u63d0\u9ad8\u6a21\u578b\u7684\u6cdb\u5316\u80fd\u529b\u3002","num_tokens":699}],"turn":1,"language":"Chinese","category_tag":{"criteria_v0.1":{"specificity":true,"domain_knowledge":true,"complexity":true,"problem_solving":true,"creativity":true,"technical_accuracy":true,"real_world":true},"if_v0.1":{"if":false,"score":3},"math_v0.1":{"math":true}}} | |
{"question_id":6299,"category":"Math","model_a":"gpt-4-1106-preview","model_b":"claude-3-haiku-20240307","winner":"model_a","conversation_a":[{"role":"user","content":"\u4f60\u597d\uff0c\u6211\u9700\u8981\u4f60\u4f5c\u4e3a\u4e00\u4e2a\u7269\u7406\u7cfb\u6bd5\u4e1a\u751f\u5199\u4e00\u7bc7\u540d\u4e3a\u300a\u4e24\u4f53\u95ee\u9898\u4e2d\u62c9\u683c\u6717\u65e5\u70b9\u7684\u8ba1\u7b97\u53ca\u5e94\u7528\u300b\u7684\u6bd5\u4e1a\u8bba\u6587\uff0c\u5148\u5199\u51fa\u4f60\u7684\u63d0\u7eb2\u3002\u4ee5\u4e0b\u662f\u4f60\u5df2\u7ecf\u6536\u96c6\u5230\u7684\u76f8\u5173\u8bba\u65871. \u6587\u7ae0\u6807\u9898\uff1a\u53cc\u4f53\u7cfb\u7edf\u4e2d\u7684\u62c9\u683c\u6717\u65e5\u70b9\n \u4f5c\u8005\uff1a\u672a\u63d0\u4f9b\n \u5e74\u4efd\uff1a\u672a\u63d0\u4f9b\n \u6458\u8981\uff1a\u6587\u7ae0\u8ba8\u8bba\u4e86\u5b87\u5b99\u4e2d\u666e\u904d\u5b58\u5728\u7684\u53cc\u4f53\u7cfb\u7edf\u7684\u52a8\u529b\u5b66\u7814\u7a76\uff0c\u7279\u522b\u662f\u65e0\u9650\u5c0f\u8d28\u70b9\u5728\u53cc\u4f53\u7cfb\u7edf\u4e2d\u7684\u8fd0\u52a8\u548c\u7a33\u5b9a\u6027\u7279\u5f81\u3002\u6587\u4e2d\u5206\u6790\u4e86\u4e8c\u4f53\u7cfb\u7edf\u4e2d\u5168\u7a7a\u95f4\u7684\u52bf\u80fd\u5206\u5e03\u60c5\u51b5\uff0c\u5e76\u7814\u7a76\u4e86\u5728\u8fd9\u79cd\u52bf\u80fd\u4e0b\u8d28\u91cf\u65e0\u9650\u5c0f\u7269\u4f53\u7684\u8fd0\u52a8\u3002\u6587\u7ae0\u8fd8\u8ba8\u8bba\u4e86\u62c9\u683c\u6717\u65e5\u7279\u89e3\u2014\u2014\u62c9\u683c\u6717\u65e5\u70b9\u7684\u6c42\u89e3\uff0c\u5206\u6790\u4e86\u8fd9\u4e9b\u70b9\u7684\u7279\u6027\uff0c\u5e76\u63a2\u8ba8\u4e86\u5929\u6587\u4e0a\u5e38\u89c1\u7684\u62c9\u683c\u6717\u65e5\u70b9\u4ee5\u53ca\u5e94\u7528\u3002\n \u5173\u952e\u8bcd\uff1a\u53cc\u4f53\u7cfb\u7edf\uff0c\u62c9\u683c\u6717\u65e5\u70b9\uff0c\u5929\u4f53\u529b\u5b66\n\n2. \u6587\u7ae0\u6807\u9898\uff1a\u5bc6\u8fd1\u53cc\u661f\u7684Roche\u52bf\u7684\u8ba1\u7b97\n \u4f5c\u8005\uff1a\u6768\u8fdc\u8d35\uff0c\u6765\u6625\u5bcc\n \u5e74\u4efd\uff1a2011\u5e74\n \u6458\u8981\uff1a\u6587\u7ae0\u5bf9\u5bc6\u8fd1\u53cc\u661f\u7684Roche\u52bf\u8fdb\u884c\u5206\u6790\uff0c\u5e76\u8ba1\u7b97\u51fa3\u4e2a\u5185\u5916\u62c9\u683c\u6717\u65e5\u70b9\u53ca\u5176\u76f8\u5e94\u7684Roche\u52bf\u3002\u6839\u636eRoche\u52bf\u5bf9\u5bc6\u8fd1\u53cc\u661f\u8fdb\u884c\u5206\u7c7b\uff0c\u8fd9\u5bf9\u4e8e\u63a2\u5bfb3\u7c7b\u5bc6\u8fd1\u53cc\u661f\u7684\u6f14\u5316\u8054\u7cfb\u8d77\u91cd\u8981\u4f5c\u7528\u3002\u5f53\u5b50\u661f\u5145\u6ee1\u5185\uff08\u6216\u5916\uff09\u4e34\u754c\u7b49\u52bf\u9762\u5fc5\u5b9a\u4f1a\u53d1\u751f\u8d28\u91cf\u548c\u89d2\u52a8\u91cf\u7684\u8f6c\u79fb\u6216\u635f\u5931\uff0c\u4ece\u800c\u5f15\u8d77\u8d28\u91cf\u548c\u89d2\u52a8\u91cf\u5728\u4e24\u5b50\u661f\u95f4\u7684\u91cd\u65b0\u5206\u5e03\u5e76\u6700\u7ec8\u5bfc\u81f4\u53cc\u661f\u5e76\u5408\u3002Roche\u52bf\u7684\u8ba1\u7b97\u5bf9\u4e8e\u5bc6\u8fd1\u53cc\u661f\u7684\u89c2\u6d4b\u3001\u5206\u6790\u548c\u7814\u7a76\u5177\u6709\u91cd\u8981\u610f\u4e49\u3002\n \u5173\u952e\u8bcd\uff1a\u5bc6\u8fd1\u53cc\u661f\uff0cRoche\u52bf\uff0c\u6570\u503c\u8ba1\u7b97\n\n3. \u6587\u7ae0\u6807\u9898\uff1a\u6052\u661f\u7269\u7406\uff08\u7b2c\u4e8c\u7248\u9ec4\u6da6\u4e7e\uff09\u7b2c11\u7ae0\u7b2c1\u8282\n \u4f5c\u8005\uff1a\u9ec4\u6da6\u4e7e\n \u5e74\u4efd\uff1a2006\u5e74\n \u6458\u8981\uff1a\u672c\u7ae0\u8282\u8ba8\u8bba\u4e86\u76f8\u4e92\u4f5c\u7528\u53cc\u661f\u7cfb\u7edf\u7684\u6f14\u5316\uff0c\u7279\u522b\u662f\u6d1b\u5e0c\u6a21\u578b\u548c\u6d1b\u5e0c\u7b49\u52bf\u9762\u7684\u6982\u5ff5\u3002\u6587\u4e2d\u89e3\u91ca\u4e86\u6d1b\u5e0c\u74e3\u7684\u4e34\u754c\u534a\u5f84\u7684\u8ba1\u7b97\u65b9\u6cd5\uff0c\u5e76\u8ba8\u8bba\u4e86\u53cc\u661f\u7cfb\u7edf\u7684\u5b88\u6052\u6f14\u5316\uff0c\u5305\u62ec\u7269\u8d28\u4ea4\u6362\u7684\u8fc7\u7a0b\u3002\u6b64\u5916\uff0c\u8fd8\u4ecb\u7ecd\u4e86\u53cc\u661f\u7cfb\u7edf\u6839\u636e\u5b50\u661f\u4f53\u79ef\u662f\u5426\u5145\u6ee1\u6d1b\u5e0c\u4e34\u754c\u4f53\u79ef\u7684\u5206\u7c7b\u65b9\u6cd5\u3002\n \u5173\u952e\u8bcd\uff1a\u6052\u661f\u7269\u7406\uff0c\u53cc\u661f\u7cfb\u7edf\uff0c\u6d1b\u5e0c\u6a21\u578b\uff0c\u7269\u8d28\u4ea4\u6362\n\n4. \u6587\u7ae0\u6807\u9898\uff1a\u91c7\u7528\u62c9\u683c\u6717\u65e5\u65b9\u6cd5\u6765\u5904\u7406\u4e24\u4f53\u95ee\u9898\n \u4f5c\u8005\uff1a\u674e\u94f6\u5c71\n \u5e74\u4efd\uff1a2008\u5e74\n \u6458\u8981\uff1a\u672c\u6587\u4ecb\u7ecd\u4e86\u5bf9\u53d7\u7ea6\u675f\u7684\u4e24\u4f53\u95ee\u9898\u5728\u5176\u81ea\u7531\u65b9\u5411\u4e0a\u5f15\u5165\u6298\u5408\u8d28\u91cf\uff0c\u91c7\u7528\u62c9\u683c\u6717\u65e5\u65b9\u6cd5\u6765\u5904\u7406\u95ee\u9898\u3002\u6587\u7ae0\u8ba8\u8bba\u4e86\u4e24\u4f53\u95ee\u9898\u7684\u52a8\u529b\u5b66\u65b9\u7a0b\uff0c\u5e76\u63d0\u51fa\u4e86\u5c06\u4e24\u4f53\u95ee\u9898\u7b80\u5316\u4e3a\u5355\u4f53\u95ee\u9898\u7684\u65b9\u6cd5\u3002\n \u5173\u952e\u8bcd\uff1a\u7ea6\u675f\uff0c\u6298\u5408\u8d28\u91cf\uff0c\u62c9\u683c\u6717\u65e5\uff0c\u4e2d\u56fe\u5206\u7c7b\n\n5. \u6587\u7ae0\u6807\u9898\uff1a\u6c42\u89e3\u4e24\u4f53\u95ee\u9898\u6570\u503c\u65b9\u6cd5\u7684\u521b\u65b0\u6027\u7814\u7a76\n \u4f5c\u8005\uff1a\u90dd\u6d77\u73b2\n \u5e74\u4efd\uff1a2016\u5e74\n \u6458\u8981\uff1a\u8be5\u6587\u9610\u8ff0\u4e86\u6c42\u89e3\u4e24\u4f53\u95ee\u9898\u7684\u7ebf\u6027\u5bf9\u79f0\u591a\u6b65\u6570\u503c\u65b9\u6cd5\u2014\u2014Obrechkoff\u6cd5\u3002\u6587\u7ae0\u6307\u51fa\uff0c\u7531\u4e8e\u53ea\u6709\u5c11\u6570\u5fae\u5206\u65b9\u7a0b\u5b58\u5728\u89e3\u6790\u89e3\uff0c\u8fd1\u4f3c\u65b9\u6cd5\u662f\u89e3\u5fae\u5206\u65b9\u7a0b\u7684\u4e3b\u8981\u624b\u6bb5\u3002\u901a\u8fc7\u6539\u8fdbWang\u65b9\u6cd5\uff0c\u5f00\u53d1\u4e86\u4e00\u79cd\u65b0\u7684P-\u7a33\u5b9a\u56db\u6b65Obrechkoff\u65b9\u6cd5\uff0c\u8be5\u65b9\u6cd5\u5728\u6c42\u89e3\u4e24\u4f53\u95ee\u9898\u7684\u6570\u503c\u89e3\u4e2d\u663e\u793a\u51fa\u9ad8\u7cbe\u5ea6\u3001\u9ad8\u6548\u7387\u53ca\u7a33\u5b9a\u6027\u597d\u7684\u4f18\u70b9\u3002\n \u5173\u952e\u8bcd\uff1aP-\u7a33\u5b9a\uff0c\u4e24\u4f53\u95ee\u9898\uff0c\u9ad8\u9636\u5fae\u5546\uff0c\u622a\u65ad\u8bef\u5dee\n\n6. \u6587\u7ae0\u6807\u9898\uff1a\u5904\u7406\u4e24\u4f53\u95ee\u9898\u7684\u62c9\u683c\u6717\u65e5\u65b9\u6cd5\u5b9e\u4f8b\u5206\u6790\n \u4f5c\u8005\uff1a\u90ed\u4fca\u534e\n \u5e74\u4efd\uff1a2013\u5e74\n \u6458\u8981\uff1a\u672c\u6587\u5bf9\u91c7\u7528\u62c9\u683c\u6717\u65e5\u65b9\u6cd5\u5904\u7406\u4e24\u4f53\u95ee\u9898\u7684\u7406\u8bba\u4f5c\u4e86\u8be6\u7ec6\u9610\u8ff0\uff0c\u5e76\u7ed9\u51fa\u4e86\u5e94\u7528\u8fd9\u4e00\u65b9\u6cd5\u89e3\u51b3\u5177\u4f53\u95ee\u9898\u7684\u5b9e\u4f8b\u5206\u6790\u3002\u6587\u7ae0\u5f3a\u8c03\u4e86\u62c9\u683c\u6717\u65e5\u65b9\u6cd5\u5728\u5904\u7406\u4e24\u4f53\u95ee\u9898\u4e2d\u7684\u5e94\u7528\u4ef7\u503c\uff0c\u5e76\u63a2\u8ba8\u4e86\u5176\u7269\u7406\u610f\u4e49\u3002\n \u5173\u952e\u8bcd\uff1a\u4e24\u4f53\u95ee\u9898\uff0c\u62c9\u683c\u6717\u65e5\u51fd\u6570\uff0c\u5e7f\u4e49\u5750\u6807\n\n7. \u6587\u7ae0\u6807\u9898\uff1a\u975e\u540c\u6b65\u8f6c\u52a8\u53cc\u661f\u7cfb\u7edf\u6d1b\u5e0c\u52bf\u51fd\u6570\u7684\u7814\u7a76\n \u4f5c\u8005\uff1a\u5b8b\u6c49\u5cf0\uff0c\u738b\u9756\u6d32\uff0c\u5434\u6c38\u521a\uff0c\u674e\u4e91\n \u5e74\u4efd\uff1a2012\u5e74\n \u6458\u8981\uff1a\u6839\u636e\u975e\u540c\u6b65\u8f6c\u52a8\u7684\u6d1b\u5e0c\u52bf\u51fd\u6570\u6570\u503c\u8ba1\u7b97\u4e86\u6d1b\u5e0c\u74e3\u7684\u5927\u5c0f\u30013\u4e2a\u62c9\u683c\u6717\u65e5\u70b9\u7684\u4f4d\u7f6e\u548c\u65e0\u91cf\u7eb2\u7684\u52bf\u51fd\u6570\u7684\u5927\u5c0f\uff0c\u5e76\u4e0e\u540c\u6b65\u8f6c\u52a8\u7684\u6d1b\u5e0c\u6a21\u578b\u8ba1\u7b97\u7684\u7ed3\u679c\u505a\u4e86\u5bf9\u6bd4\u3002\u7ed3\u679c\u53d1\u73b0\u8f6c\u52a8\u79bb\u5fc3\u529b\u80fd\u6700\u5927\u51cf\u5c11\u8d64\u9053\u9644\u8fd1\u7684\u91cd\u529b\u52a0\u901f\u5ea6\u3002\u975e\u540c\u6b65\u8f6c\u52a8\u53ef\u4ee5\u660e\u663e\u5730\u6539\u53d8\u6d1b\u5e0c\u74e3\u7684\u5927\u5c0f\uff0c3\u4e2a\u62c9\u683c\u6717\u65e5\u70b9\u7684\u4f4d\u7f6e\u548c\u52bf\u51fd\u6570\uff0c\u5f71\u54cd\u53cc\u661f\u7cfb\u7edf\u7269\u8d28\u4ea4\u6362\u7684\u65f6\u95f4\u548c\u53d1\u751f\u5916\u62c9\u683c\u6717\u65e5\u70b9\u7684\u7269\u8d28\u635f\u5931\u3002\u56e0\u6b64\uff0c\u975e\u540c\u6b65\u6d1b\u5e0c\u52bf\u51fd\u6570\u7684\u8ba1\u7b97\u5bf9\u5bc6\u8fd1\u53cc\u661f\u7684\u6f14\u5316\u7814\u7a76\u5177\u6709\u91cd\u8981\u610f\u4e49\u3002\n \u5173\u952e\u8bcd\uff1a\u6052\u661f\u7ed3\u6784\u4e0e\u6f14\u5316\uff0c\u8f6c\u52a8\uff0c\u6f6e\u6c50\n\n8. \u6587\u7ae0\u6807\u9898\uff1a\u4e24\u4f53\u548c\u4e09\u4f53\u95ee\u9898\u4e2d\u62c9\u683c\u6717\u65e5L4\u3001L5\u70b9\n \u4f5c\u8005\uff1a\u9648\u5411\u7fa4\n \u5e74\u4efd\uff1a2012\u5e74\n \u6458\u8981\uff1a\u6587\u7ae0\u8ba8\u8bba\u4e86\u62c9\u683c\u6717\u65e5\u70b9\u7684\u7279\u6b8a\u6027\u53ca\u5176\u5728\u89c2\u6d4b\u7a7a\u95f4\u5929\u6c14\u3001\u592a\u7a7a\u73af\u5883\u3001\u5b87\u5b99\u8d77\u6e90\u7b49\u65b9\u9762\u7684\u5e94\u7528\u3002\u6587\u4e2d\u63d0\u5230\u4e86\u62c9\u683c\u6717\u65e5\u70b9\u662f\u536b\u661f\u53d7\u592a\u9633\u3001\u5730\u7403\u4e24\u5927\u5929\u4f53\u5f15\u529b\u4f5c\u7528\uff0c\u80fd\u4fdd\u6301\u76f8\u5bf9\u9759\u6b62\u7684\u70b9\u3002\u6587\u7ae0\u8fd8\u63a2\u8ba8\u4e86\u4e24\u4f53\u95ee\u9898\u548c\u4e09\u4f53\u95ee\u9898\u4e2d\u7684L4\u3001L5\u70b9\u7684\u8ba1\u7b97\u548c\u610f\u4e49\u3002\n \u5173\u952e\u8bcd\uff1a\u62c9\u683c\u6717\u65e5\u70b9\uff0c\u4e24\u4f53\u95ee\u9898\uff0c\u4e09\u4f53\u95ee\u9898\n\n9. \u6587\u7ae0\u6807\u9898\uff1a\u4e24\u4f53\u95ee\u9898\u4e2d\u7684\u6298\u5408\u8d28\u91cf\n \u4f5c\u8005\uff1a\u8303\u7ee7\u7f8e\n \u5e74\u4efd\uff1a1992\u5e74\n \u6458\u8981\uff1a\u672c\u6587\u63d0\u51fa\u4e86\u4e00\u79cd\u6559\u6750\u6539\u9769\u7684\u65b0\u65b9\u6848\uff0c\u4ece\u666e\u904d\u7684\u89d2\u5ea6\u4e00\u822c\u6027\u5730\u7814\u7a76\u4e24\u4f53\u95ee\u9898\u7684\u89c4\u5f8b\uff0c\u5e76\u5f15\u5165\u6298\u5408\u8d28\u91cf\u6982\u5ff5\uff0c\u5efa\u7acb\u7b49\u540c\u4e8e\u5355\u8d28\u70b9\u7684\u52a8\u529b\u5b66\u65b9\u7a0b\u3002\u6587\u7ae0\u660e\u786e\u5730\u7ed9\u51fa\u4e86\u5c06\u4e24\u4f53\u95ee\u9898\u7ea6\u5316\u4e3a\u5355\u4f53\u95ee\u9898\u6765\u6c42\u89e3\u7684\u666e\u9002\u65b9\u6cd5\uff0c\u5e76\u7528\u6b64\u65b9\u6cd5\u6709\u6548\u5730\u5e7f\u6cdb\u8ba8\u8bba\u4e86\u4e00\u4e9b\u4e24\u4f53\u95ee\u9898\u3002\n \u5173\u952e\u8bcd\uff1a\u6298\u5408\u8d28\u91cf\uff0c\u7406\u8bba\u529b\u5b66\uff0c\u4e24\u4f53\u95ee\u9898","num_tokens":1961},{"role":"assistant","content":"\u63d0\u7eb2\uff1a\u300a\u4e24\u4f53\u95ee\u9898\u4e2d\u62c9\u683c\u6717\u65e5\u70b9\u7684\u8ba1\u7b97\u53ca\u5e94\u7528\u300b\n\n\u4e00\u3001\u5f15\u8a00\n A. \u7814\u7a76\u80cc\u666f\u4e0e\u610f\u4e49\n B. \u6587\u732e\u7efc\u8ff0\n C. \u8bba\u6587\u76ee\u7684\u4e0e\u4e3b\u8981\u5185\u5bb9\n\n\u4e8c\u3001\u4e24\u4f53\u95ee\u9898\u57fa\u7840\u7406\u8bba\n A. \u4e24\u4f53\u95ee\u9898\u7684\u5b9a\u4e49\u4e0e\u5047\u8bbe\n B. \u52a8\u529b\u5b66\u65b9\u7a0b\u4e0e\u89e3\u6cd5\n C. \u6298\u5408\u8d28\u91cf\u7684\u6982\u5ff5\u5728\u4e24\u4f53\u95ee\u9898\u4e2d\u7684\u5e94\u7528\n\n\u4e09\u3001\u62c9\u683c\u6717\u65e5\u70b9\u7684\u6570\u5b66\u63cf\u8ff0\n A. \u62c9\u683c\u6717\u65e5\u70b9\u7684\u5b9a\u4e49\n B. \u4e24\u4f53\u7cfb\u7edf\u4e2d\u7684\u52bf\u80fd\u5206\u5e03\u4e0e\u62c9\u683c\u6717\u65e5\u70b9\n C. \u62c9\u683c\u6717\u65e5\u70b9\u7684\u7a33\u5b9a\u6027\u5206\u6790\n\n\u56db\u3001\u62c9\u683c\u6717\u65e5\u70b9\u7684\u6c42\u89e3\u65b9\u6cd5\n A. \u89e3\u6790\u65b9\u6cd5\n 1. \u62c9\u683c\u6717\u65e5\u591a\u9879\u5f0f\u7684\u5e94\u7528\n 2. \u89e3\u6790\u65b9\u6cd5\u5728\u7279\u5b9a\u6761\u4ef6\u4e0b\u7684\u5e94\u7528\n B. \u6570\u503c\u65b9\u6cd5\n 1. Obrechkoff\u6cd5\u53ca\u5176\u4ed6\u6570\u503c\u65b9\u6cd5\u7684\u4ecb\u7ecd\n 2. \u6570\u503c\u65b9\u6cd5\u7684\u7a33\u5b9a\u6027\u4e0e\u7cbe\u5ea6\u5206\u6790\n\n\u4e94\u3001Roche\u52bf\u4e0e\u62c9\u683c\u6717\u65e5\u70b9\u7684\u8ba1\u7b97\n A. \u5bc6\u8fd1\u53cc\u661f\u7cfb\u7edf\u4e2dRoche\u52bf\u7684\u6982\u5ff5\n B. Roche\u52bf\u4e0e\u62c9\u683c\u6717\u65e5\u70b9\u7684\u5173\u7cfb\n C. \u6d1b\u5e0c\u6a21\u578b\u7684\u6570\u503c\u8ba1\u7b97\u4e0e\u5e94\u7528\n\n\u516d\u3001\u62c9\u683c\u6717\u65e5\u70b9\u5728\u5929\u4f53\u7269\u7406\u4e2d\u7684\u5e94\u7528\n A. \u6052\u661f\u7269\u7406\u4e2d\u7684\u5e94\u7528\n 1. \u53cc\u661f\u7cfb\u7edf\u7684\u7269\u8d28\u4ea4\u6362\n 2. \u53cc\u661f\u7cfb\u7edf\u6f14\u5316\u7684\u5206\u7c7b\n B. \u592a\u7a7a\u63a2\u7d22\u4e0e\u536b\u661f\u5b9a\u4f4d\n 1. \u62c9\u683c\u6717\u65e5\u70b9\u5728\u7a7a\u95f4\u4efb\u52a1\u4e2d\u7684\u5e94\u7528\n 2. \u7a7a\u95f4\u5929\u6c14\u89c2\u6d4b\u53ca\u5176\u4ed6\u79d1\u5b66\u4efb\u52a1\n C. \u975e\u540c\u6b65\u8f6c\u52a8\u53cc\u661f\u7cfb\u7edf\u7684\u6d1b\u5e0c\u52bf\u4e0e\u6f14\u5316\u7814\u7a76\n\n\u4e03\u3001\u6848\u4f8b\u7814\u7a76\n A. L4\u548cL5\u62c9\u683c\u6717\u65e5\u70b9\u7684\u5b9e\u9645\u8ba1\u7b97\n B. \u62c9\u683c\u6717\u65e5\u70b9\u5728\u7279\u5b9a\u4e24\u4f53\u7cfb\u7edf\u4e2d\u7684\u5e94\u7528\u5206\u6790\n\n\u516b\u3001\u8ba8\u8bba\n A. \u62c9\u683c\u6717\u65e5\u70b9\u6c42\u89e3\u65b9\u6cd5\u7684\u6bd4\u8f83\n B. \u62c9\u683c\u6717\u65e5\u70b9\u7684\u7a33\u5b9a\u6027\u4e0e\u5929\u4f53\u52a8\u529b\u5b66\u4e2d\u7684\u4f5c\u7528\n C. \u5929\u4f53\u7269\u7406\u7814\u7a76\u4e2d\u62c9\u683c\u6717\u65e5\u70b9\u7684\u524d\u6cbf\u95ee\u9898\n\n\u4e5d\u3001\u7ed3\u8bba\n A. \u4e3b\u8981\u7814\u7a76\u7ed3\u679c\u603b\u7ed3\n B. \u62c9\u683c\u6717\u65e5\u70b9\u8ba1\u7b97\u4e0e\u5e94\u7528\u7684\u672a\u6765\u5c55\u671b\n\n\u5341\u3001\u81f4\u8c22\n A. \u6307\u5bfc\u6559\u5e08\u4e0e\u7814\u7a76\u56e2\u961f\u7684\u611f\u8c22\n B. \u63d0\u4f9b\u8d44\u52a9\u4e0e\u652f\u6301\u7684\u673a\u6784\u81f4\u8c22\n\n\u5341\u4e00\u3001\u53c2\u8003\u6587\u732e\n\n\u8bf7\u6ce8\u610f\uff0c\u8fd9\u4e2a\u63d0\u7eb2\u662f\u4e00\u4e2a\u5927\u81f4\u7684\u6846\u67b6\uff0c\u9700\u8981\u4f9d\u636e\u5b9e\u9645\u7814\u7a76\u8fdb\u5c55\u548c\u627e\u5230\u7684\u6587\u732e\u6765\u8fdb\u4e00\u6b65\u4e30\u5bcc\u548c\u7ec6\u5316\u3002\u5728\u64b0\u5199\u8bba\u6587\u65f6\uff0c\u8fd8\u9700\u8981\u8be6\u7ec6\u5f15\u7528\u548c\u8ba8\u8bba\u4e0a\u8ff0\u63d0\u5230\u7684\u76f8\u5173\u6587\u732e\u3002\u6b64\u5916\uff0c\u5bf9\u4e8e\u8bba\u6587\u7684\u5177\u4f53\u5185\u5bb9\uff0c\u5982\u6570\u5b66\u63a8\u5bfc\u3001\u56fe\u8868\u3001\u8ba1\u7b97\u7ed3\u679c\u7b49\uff0c\u90fd\u9700\u8981\u5728\u64b0\u5199\u8fc7\u7a0b\u4e2d\u8be6\u7ec6\u5c55\u5f00\u3002","num_tokens":885}],"conversation_b":[{"role":"user","content":"\u4f60\u597d\uff0c\u6211\u9700\u8981\u4f60\u4f5c\u4e3a\u4e00\u4e2a\u7269\u7406\u7cfb\u6bd5\u4e1a\u751f\u5199\u4e00\u7bc7\u540d\u4e3a\u300a\u4e24\u4f53\u95ee\u9898\u4e2d\u62c9\u683c\u6717\u65e5\u70b9\u7684\u8ba1\u7b97\u53ca\u5e94\u7528\u300b\u7684\u6bd5\u4e1a\u8bba\u6587\uff0c\u5148\u5199\u51fa\u4f60\u7684\u63d0\u7eb2\u3002\u4ee5\u4e0b\u662f\u4f60\u5df2\u7ecf\u6536\u96c6\u5230\u7684\u76f8\u5173\u8bba\u65871. \u6587\u7ae0\u6807\u9898\uff1a\u53cc\u4f53\u7cfb\u7edf\u4e2d\u7684\u62c9\u683c\u6717\u65e5\u70b9\n \u4f5c\u8005\uff1a\u672a\u63d0\u4f9b\n \u5e74\u4efd\uff1a\u672a\u63d0\u4f9b\n \u6458\u8981\uff1a\u6587\u7ae0\u8ba8\u8bba\u4e86\u5b87\u5b99\u4e2d\u666e\u904d\u5b58\u5728\u7684\u53cc\u4f53\u7cfb\u7edf\u7684\u52a8\u529b\u5b66\u7814\u7a76\uff0c\u7279\u522b\u662f\u65e0\u9650\u5c0f\u8d28\u70b9\u5728\u53cc\u4f53\u7cfb\u7edf\u4e2d\u7684\u8fd0\u52a8\u548c\u7a33\u5b9a\u6027\u7279\u5f81\u3002\u6587\u4e2d\u5206\u6790\u4e86\u4e8c\u4f53\u7cfb\u7edf\u4e2d\u5168\u7a7a\u95f4\u7684\u52bf\u80fd\u5206\u5e03\u60c5\u51b5\uff0c\u5e76\u7814\u7a76\u4e86\u5728\u8fd9\u79cd\u52bf\u80fd\u4e0b\u8d28\u91cf\u65e0\u9650\u5c0f\u7269\u4f53\u7684\u8fd0\u52a8\u3002\u6587\u7ae0\u8fd8\u8ba8\u8bba\u4e86\u62c9\u683c\u6717\u65e5\u7279\u89e3\u2014\u2014\u62c9\u683c\u6717\u65e5\u70b9\u7684\u6c42\u89e3\uff0c\u5206\u6790\u4e86\u8fd9\u4e9b\u70b9\u7684\u7279\u6027\uff0c\u5e76\u63a2\u8ba8\u4e86\u5929\u6587\u4e0a\u5e38\u89c1\u7684\u62c9\u683c\u6717\u65e5\u70b9\u4ee5\u53ca\u5e94\u7528\u3002\n \u5173\u952e\u8bcd\uff1a\u53cc\u4f53\u7cfb\u7edf\uff0c\u62c9\u683c\u6717\u65e5\u70b9\uff0c\u5929\u4f53\u529b\u5b66\n\n2. \u6587\u7ae0\u6807\u9898\uff1a\u5bc6\u8fd1\u53cc\u661f\u7684Roche\u52bf\u7684\u8ba1\u7b97\n \u4f5c\u8005\uff1a\u6768\u8fdc\u8d35\uff0c\u6765\u6625\u5bcc\n \u5e74\u4efd\uff1a2011\u5e74\n \u6458\u8981\uff1a\u6587\u7ae0\u5bf9\u5bc6\u8fd1\u53cc\u661f\u7684Roche\u52bf\u8fdb\u884c\u5206\u6790\uff0c\u5e76\u8ba1\u7b97\u51fa3\u4e2a\u5185\u5916\u62c9\u683c\u6717\u65e5\u70b9\u53ca\u5176\u76f8\u5e94\u7684Roche\u52bf\u3002\u6839\u636eRoche\u52bf\u5bf9\u5bc6\u8fd1\u53cc\u661f\u8fdb\u884c\u5206\u7c7b\uff0c\u8fd9\u5bf9\u4e8e\u63a2\u5bfb3\u7c7b\u5bc6\u8fd1\u53cc\u661f\u7684\u6f14\u5316\u8054\u7cfb\u8d77\u91cd\u8981\u4f5c\u7528\u3002\u5f53\u5b50\u661f\u5145\u6ee1\u5185\uff08\u6216\u5916\uff09\u4e34\u754c\u7b49\u52bf\u9762\u5fc5\u5b9a\u4f1a\u53d1\u751f\u8d28\u91cf\u548c\u89d2\u52a8\u91cf\u7684\u8f6c\u79fb\u6216\u635f\u5931\uff0c\u4ece\u800c\u5f15\u8d77\u8d28\u91cf\u548c\u89d2\u52a8\u91cf\u5728\u4e24\u5b50\u661f\u95f4\u7684\u91cd\u65b0\u5206\u5e03\u5e76\u6700\u7ec8\u5bfc\u81f4\u53cc\u661f\u5e76\u5408\u3002Roche\u52bf\u7684\u8ba1\u7b97\u5bf9\u4e8e\u5bc6\u8fd1\u53cc\u661f\u7684\u89c2\u6d4b\u3001\u5206\u6790\u548c\u7814\u7a76\u5177\u6709\u91cd\u8981\u610f\u4e49\u3002\n \u5173\u952e\u8bcd\uff1a\u5bc6\u8fd1\u53cc\u661f\uff0cRoche\u52bf\uff0c\u6570\u503c\u8ba1\u7b97\n\n3. \u6587\u7ae0\u6807\u9898\uff1a\u6052\u661f\u7269\u7406\uff08\u7b2c\u4e8c\u7248\u9ec4\u6da6\u4e7e\uff09\u7b2c11\u7ae0\u7b2c1\u8282\n \u4f5c\u8005\uff1a\u9ec4\u6da6\u4e7e\n \u5e74\u4efd\uff1a2006\u5e74\n \u6458\u8981\uff1a\u672c\u7ae0\u8282\u8ba8\u8bba\u4e86\u76f8\u4e92\u4f5c\u7528\u53cc\u661f\u7cfb\u7edf\u7684\u6f14\u5316\uff0c\u7279\u522b\u662f\u6d1b\u5e0c\u6a21\u578b\u548c\u6d1b\u5e0c\u7b49\u52bf\u9762\u7684\u6982\u5ff5\u3002\u6587\u4e2d\u89e3\u91ca\u4e86\u6d1b\u5e0c\u74e3\u7684\u4e34\u754c\u534a\u5f84\u7684\u8ba1\u7b97\u65b9\u6cd5\uff0c\u5e76\u8ba8\u8bba\u4e86\u53cc\u661f\u7cfb\u7edf\u7684\u5b88\u6052\u6f14\u5316\uff0c\u5305\u62ec\u7269\u8d28\u4ea4\u6362\u7684\u8fc7\u7a0b\u3002\u6b64\u5916\uff0c\u8fd8\u4ecb\u7ecd\u4e86\u53cc\u661f\u7cfb\u7edf\u6839\u636e\u5b50\u661f\u4f53\u79ef\u662f\u5426\u5145\u6ee1\u6d1b\u5e0c\u4e34\u754c\u4f53\u79ef\u7684\u5206\u7c7b\u65b9\u6cd5\u3002\n \u5173\u952e\u8bcd\uff1a\u6052\u661f\u7269\u7406\uff0c\u53cc\u661f\u7cfb\u7edf\uff0c\u6d1b\u5e0c\u6a21\u578b\uff0c\u7269\u8d28\u4ea4\u6362\n\n4. \u6587\u7ae0\u6807\u9898\uff1a\u91c7\u7528\u62c9\u683c\u6717\u65e5\u65b9\u6cd5\u6765\u5904\u7406\u4e24\u4f53\u95ee\u9898\n \u4f5c\u8005\uff1a\u674e\u94f6\u5c71\n \u5e74\u4efd\uff1a2008\u5e74\n \u6458\u8981\uff1a\u672c\u6587\u4ecb\u7ecd\u4e86\u5bf9\u53d7\u7ea6\u675f\u7684\u4e24\u4f53\u95ee\u9898\u5728\u5176\u81ea\u7531\u65b9\u5411\u4e0a\u5f15\u5165\u6298\u5408\u8d28\u91cf\uff0c\u91c7\u7528\u62c9\u683c\u6717\u65e5\u65b9\u6cd5\u6765\u5904\u7406\u95ee\u9898\u3002\u6587\u7ae0\u8ba8\u8bba\u4e86\u4e24\u4f53\u95ee\u9898\u7684\u52a8\u529b\u5b66\u65b9\u7a0b\uff0c\u5e76\u63d0\u51fa\u4e86\u5c06\u4e24\u4f53\u95ee\u9898\u7b80\u5316\u4e3a\u5355\u4f53\u95ee\u9898\u7684\u65b9\u6cd5\u3002\n \u5173\u952e\u8bcd\uff1a\u7ea6\u675f\uff0c\u6298\u5408\u8d28\u91cf\uff0c\u62c9\u683c\u6717\u65e5\uff0c\u4e2d\u56fe\u5206\u7c7b\n\n5. \u6587\u7ae0\u6807\u9898\uff1a\u6c42\u89e3\u4e24\u4f53\u95ee\u9898\u6570\u503c\u65b9\u6cd5\u7684\u521b\u65b0\u6027\u7814\u7a76\n \u4f5c\u8005\uff1a\u90dd\u6d77\u73b2\n \u5e74\u4efd\uff1a2016\u5e74\n \u6458\u8981\uff1a\u8be5\u6587\u9610\u8ff0\u4e86\u6c42\u89e3\u4e24\u4f53\u95ee\u9898\u7684\u7ebf\u6027\u5bf9\u79f0\u591a\u6b65\u6570\u503c\u65b9\u6cd5\u2014\u2014Obrechkoff\u6cd5\u3002\u6587\u7ae0\u6307\u51fa\uff0c\u7531\u4e8e\u53ea\u6709\u5c11\u6570\u5fae\u5206\u65b9\u7a0b\u5b58\u5728\u89e3\u6790\u89e3\uff0c\u8fd1\u4f3c\u65b9\u6cd5\u662f\u89e3\u5fae\u5206\u65b9\u7a0b\u7684\u4e3b\u8981\u624b\u6bb5\u3002\u901a\u8fc7\u6539\u8fdbWang\u65b9\u6cd5\uff0c\u5f00\u53d1\u4e86\u4e00\u79cd\u65b0\u7684P-\u7a33\u5b9a\u56db\u6b65Obrechkoff\u65b9\u6cd5\uff0c\u8be5\u65b9\u6cd5\u5728\u6c42\u89e3\u4e24\u4f53\u95ee\u9898\u7684\u6570\u503c\u89e3\u4e2d\u663e\u793a\u51fa\u9ad8\u7cbe\u5ea6\u3001\u9ad8\u6548\u7387\u53ca\u7a33\u5b9a\u6027\u597d\u7684\u4f18\u70b9\u3002\n \u5173\u952e\u8bcd\uff1aP-\u7a33\u5b9a\uff0c\u4e24\u4f53\u95ee\u9898\uff0c\u9ad8\u9636\u5fae\u5546\uff0c\u622a\u65ad\u8bef\u5dee\n\n6. \u6587\u7ae0\u6807\u9898\uff1a\u5904\u7406\u4e24\u4f53\u95ee\u9898\u7684\u62c9\u683c\u6717\u65e5\u65b9\u6cd5\u5b9e\u4f8b\u5206\u6790\n \u4f5c\u8005\uff1a\u90ed\u4fca\u534e\n \u5e74\u4efd\uff1a2013\u5e74\n \u6458\u8981\uff1a\u672c\u6587\u5bf9\u91c7\u7528\u62c9\u683c\u6717\u65e5\u65b9\u6cd5\u5904\u7406\u4e24\u4f53\u95ee\u9898\u7684\u7406\u8bba\u4f5c\u4e86\u8be6\u7ec6\u9610\u8ff0\uff0c\u5e76\u7ed9\u51fa\u4e86\u5e94\u7528\u8fd9\u4e00\u65b9\u6cd5\u89e3\u51b3\u5177\u4f53\u95ee\u9898\u7684\u5b9e\u4f8b\u5206\u6790\u3002\u6587\u7ae0\u5f3a\u8c03\u4e86\u62c9\u683c\u6717\u65e5\u65b9\u6cd5\u5728\u5904\u7406\u4e24\u4f53\u95ee\u9898\u4e2d\u7684\u5e94\u7528\u4ef7\u503c\uff0c\u5e76\u63a2\u8ba8\u4e86\u5176\u7269\u7406\u610f\u4e49\u3002\n \u5173\u952e\u8bcd\uff1a\u4e24\u4f53\u95ee\u9898\uff0c\u62c9\u683c\u6717\u65e5\u51fd\u6570\uff0c\u5e7f\u4e49\u5750\u6807\n\n7. \u6587\u7ae0\u6807\u9898\uff1a\u975e\u540c\u6b65\u8f6c\u52a8\u53cc\u661f\u7cfb\u7edf\u6d1b\u5e0c\u52bf\u51fd\u6570\u7684\u7814\u7a76\n \u4f5c\u8005\uff1a\u5b8b\u6c49\u5cf0\uff0c\u738b\u9756\u6d32\uff0c\u5434\u6c38\u521a\uff0c\u674e\u4e91\n \u5e74\u4efd\uff1a2012\u5e74\n \u6458\u8981\uff1a\u6839\u636e\u975e\u540c\u6b65\u8f6c\u52a8\u7684\u6d1b\u5e0c\u52bf\u51fd\u6570\u6570\u503c\u8ba1\u7b97\u4e86\u6d1b\u5e0c\u74e3\u7684\u5927\u5c0f\u30013\u4e2a\u62c9\u683c\u6717\u65e5\u70b9\u7684\u4f4d\u7f6e\u548c\u65e0\u91cf\u7eb2\u7684\u52bf\u51fd\u6570\u7684\u5927\u5c0f\uff0c\u5e76\u4e0e\u540c\u6b65\u8f6c\u52a8\u7684\u6d1b\u5e0c\u6a21\u578b\u8ba1\u7b97\u7684\u7ed3\u679c\u505a\u4e86\u5bf9\u6bd4\u3002\u7ed3\u679c\u53d1\u73b0\u8f6c\u52a8\u79bb\u5fc3\u529b\u80fd\u6700\u5927\u51cf\u5c11\u8d64\u9053\u9644\u8fd1\u7684\u91cd\u529b\u52a0\u901f\u5ea6\u3002\u975e\u540c\u6b65\u8f6c\u52a8\u53ef\u4ee5\u660e\u663e\u5730\u6539\u53d8\u6d1b\u5e0c\u74e3\u7684\u5927\u5c0f\uff0c3\u4e2a\u62c9\u683c\u6717\u65e5\u70b9\u7684\u4f4d\u7f6e\u548c\u52bf\u51fd\u6570\uff0c\u5f71\u54cd\u53cc\u661f\u7cfb\u7edf\u7269\u8d28\u4ea4\u6362\u7684\u65f6\u95f4\u548c\u53d1\u751f\u5916\u62c9\u683c\u6717\u65e5\u70b9\u7684\u7269\u8d28\u635f\u5931\u3002\u56e0\u6b64\uff0c\u975e\u540c\u6b65\u6d1b\u5e0c\u52bf\u51fd\u6570\u7684\u8ba1\u7b97\u5bf9\u5bc6\u8fd1\u53cc\u661f\u7684\u6f14\u5316\u7814\u7a76\u5177\u6709\u91cd\u8981\u610f\u4e49\u3002\n \u5173\u952e\u8bcd\uff1a\u6052\u661f\u7ed3\u6784\u4e0e\u6f14\u5316\uff0c\u8f6c\u52a8\uff0c\u6f6e\u6c50\n\n8. \u6587\u7ae0\u6807\u9898\uff1a\u4e24\u4f53\u548c\u4e09\u4f53\u95ee\u9898\u4e2d\u62c9\u683c\u6717\u65e5L4\u3001L5\u70b9\n \u4f5c\u8005\uff1a\u9648\u5411\u7fa4\n \u5e74\u4efd\uff1a2012\u5e74\n \u6458\u8981\uff1a\u6587\u7ae0\u8ba8\u8bba\u4e86\u62c9\u683c\u6717\u65e5\u70b9\u7684\u7279\u6b8a\u6027\u53ca\u5176\u5728\u89c2\u6d4b\u7a7a\u95f4\u5929\u6c14\u3001\u592a\u7a7a\u73af\u5883\u3001\u5b87\u5b99\u8d77\u6e90\u7b49\u65b9\u9762\u7684\u5e94\u7528\u3002\u6587\u4e2d\u63d0\u5230\u4e86\u62c9\u683c\u6717\u65e5\u70b9\u662f\u536b\u661f\u53d7\u592a\u9633\u3001\u5730\u7403\u4e24\u5927\u5929\u4f53\u5f15\u529b\u4f5c\u7528\uff0c\u80fd\u4fdd\u6301\u76f8\u5bf9\u9759\u6b62\u7684\u70b9\u3002\u6587\u7ae0\u8fd8\u63a2\u8ba8\u4e86\u4e24\u4f53\u95ee\u9898\u548c\u4e09\u4f53\u95ee\u9898\u4e2d\u7684L4\u3001L5\u70b9\u7684\u8ba1\u7b97\u548c\u610f\u4e49\u3002\n \u5173\u952e\u8bcd\uff1a\u62c9\u683c\u6717\u65e5\u70b9\uff0c\u4e24\u4f53\u95ee\u9898\uff0c\u4e09\u4f53\u95ee\u9898\n\n9. \u6587\u7ae0\u6807\u9898\uff1a\u4e24\u4f53\u95ee\u9898\u4e2d\u7684\u6298\u5408\u8d28\u91cf\n \u4f5c\u8005\uff1a\u8303\u7ee7\u7f8e\n \u5e74\u4efd\uff1a1992\u5e74\n \u6458\u8981\uff1a\u672c\u6587\u63d0\u51fa\u4e86\u4e00\u79cd\u6559\u6750\u6539\u9769\u7684\u65b0\u65b9\u6848\uff0c\u4ece\u666e\u904d\u7684\u89d2\u5ea6\u4e00\u822c\u6027\u5730\u7814\u7a76\u4e24\u4f53\u95ee\u9898\u7684\u89c4\u5f8b\uff0c\u5e76\u5f15\u5165\u6298\u5408\u8d28\u91cf\u6982\u5ff5\uff0c\u5efa\u7acb\u7b49\u540c\u4e8e\u5355\u8d28\u70b9\u7684\u52a8\u529b\u5b66\u65b9\u7a0b\u3002\u6587\u7ae0\u660e\u786e\u5730\u7ed9\u51fa\u4e86\u5c06\u4e24\u4f53\u95ee\u9898\u7ea6\u5316\u4e3a\u5355\u4f53\u95ee\u9898\u6765\u6c42\u89e3\u7684\u666e\u9002\u65b9\u6cd5\uff0c\u5e76\u7528\u6b64\u65b9\u6cd5\u6709\u6548\u5730\u5e7f\u6cdb\u8ba8\u8bba\u4e86\u4e00\u4e9b\u4e24\u4f53\u95ee\u9898\u3002\n \u5173\u952e\u8bcd\uff1a\u6298\u5408\u8d28\u91cf\uff0c\u7406\u8bba\u529b\u5b66\uff0c\u4e24\u4f53\u95ee\u9898","num_tokens":1961},{"role":"assistant","content":"\u300a\u4e24\u4f53\u95ee\u9898\u4e2d\u62c9\u683c\u6717\u65e5\u70b9\u7684\u8ba1\u7b97\u53ca\u5e94\u7528\u300b\u63d0\u7eb2\n\n\u4e00\u3001\u5f15\u8a00\n1. \u4e24\u4f53\u95ee\u9898\u7684\u91cd\u8981\u6027\u53ca\u5176\u5728\u5929\u4f53\u529b\u5b66\u4e2d\u7684\u5e94\u7528\n2. \u62c9\u683c\u6717\u65e5\u70b9\u5728\u4e24\u4f53\u95ee\u9898\u4e2d\u7684\u5730\u4f4d\u53ca\u7814\u7a76\u610f\u4e49\n\n\u4e8c\u3001\u4e24\u4f53\u95ee\u9898\u7684\u52a8\u529b\u5b66\u5206\u6790\n1. \u4e24\u4f53\u7cfb\u7edf\u7684\u52bf\u80fd\u5206\u5e03\n2. \u65e0\u9650\u5c0f\u8d28\u70b9\u5728\u4e24\u4f53\u7cfb\u7edf\u4e2d\u7684\u8fd0\u52a8\u7279\u5f81\n3. \u62c9\u683c\u6717\u65e5\u7279\u89e3\u7684\u6c42\u89e3\u65b9\u6cd5\n\n\u4e09\u3001\u62c9\u683c\u6717\u65e5\u70b9\u7684\u7279\u6027\u5206\u6790\n1. \u62c9\u683c\u6717\u65e5\u70b9\u7684\u5b9a\u4e49\u53ca\u5176\u7a33\u5b9a\u6027\n2. \u5185\u5916\u62c9\u683c\u6717\u65e5\u70b9\u7684\u7269\u7406\u610f\u4e49\n3. \u62c9\u683c\u6717\u65e5\u70b9\u5728\u5929\u6587\u5b66\u4e2d\u7684\u5e94\u7528\n\n\u56db\u3001\u62c9\u683c\u6717\u65e5\u70b9\u5728\u5929\u4f53\u529b\u5b66\u4e2d\u7684\u5e94\u7528\n1. \u5728\u53cc\u661f\u7cfb\u7edf\u4e2d\u7684\u5e94\u7528\n 1.1 \u5bc6\u8fd1\u53cc\u661f\u7684Roche\u52bf\u5206\u6790\n 1.2 \u7269\u8d28\u4ea4\u6362\u8fc7\u7a0b\u7684\u7814\u7a76\n2. \u5728\u4eba\u5de5\u536b\u661f\u8fd0\u52a8\u4e2d\u7684\u5e94\u7528\n 2.1 \u5730\u7403-\u592a\u9633\u7cfb\u7edf\u4e2d\u7684\u62c9\u683c\u6717\u65e5\u70b9\n 2.2 \u62c9\u683c\u6717\u65e5\u70b9\u536b\u661f\u7684\u53d7\u529b\u5206\u6790\n3. \u5728\u5b87\u5b99\u8d77\u6e90\u7814\u7a76\u4e2d\u7684\u5e94\u7528\n 3.1 \u539f\u59cb\u5bc6\u4e91\u7684\u6f14\u5316\u8fc7\u7a0b\n 3.2 \u91cd\u529b\u5f15\u529b\u52bf\u80fd\u5206\u5e03\n\n\u4e94\u3001\u7ed3\u8bba\n1. \u4e24\u4f53\u95ee\u9898\u4e2d\u62c9\u683c\u6717\u65e5\u70b9\u7684\u7814\u7a76\u8fdb\u5c55\n2. \u62c9\u683c\u6717\u65e5\u70b9\u5728\u5929\u4f53\u529b\u5b66\u4e2d\u7684\u91cd\u8981\u5730\u4f4d\n3. \u672a\u6765\u7814\u7a76\u5c55\u671b","num_tokens":452}],"turn":1,"language":"Chinese","category_tag":{"criteria_v0.1":{"specificity":true,"domain_knowledge":true,"complexity":true,"problem_solving":true,"creativity":false,"technical_accuracy":true,"real_world":true},"if_v0.1":{"if":true,"score":4},"math_v0.1":{"math":true}}} | |
{"question_id":4213,"category":"Math","model_a":"dbrx-instruct-preview","model_b":"gpt-4-0613","winner":"tie (bothbad)","conversation_a":[{"role":"user","content":"\u7ef3\u7d22\u9a71\u52a8\u5e76\u8054\u673a\u5668\u4eba\uff0c\u5176\u75318\u4e2a\u4f3a\u670d\u7535\u673a\u56fa\u5b9a\u5728\u5b9a\u5e73\u53f0\u6b63\u65b9\u4f53\u67b6\u5b50\u4e0a\uff0c\u6b63\u65b9\u4f53\u67b6\u5b50\u7a7a\u95f4\u5185\u90e8\u7684\u52a8\u5e73\u53f0\u901a\u8fc7\u7ef3\u7d22\u8fde\u63a5\u7535\u673a\uff0c\u5bf98\u4e2a\u4f3a\u670d\u7535\u673a\u7684\u5e76\u8054\u63a7\u5236\uff0c\u4ee5\u5b9e\u73b0\u8fde\u7eed\u7a7a\u95f4\u76f4\u7ebf\u8fd0\u52a8\u7684\u529f\u80fd\u3002\n\n\u8981\u6c42\uff1a1\u3001\u5728\u5b9a\u5e73\u53f0\u548c\u52a8\u5e73\u53f0\u7684\u8d28\u5fc3\u5206\u522b\u5efa\u7acb\u8d28\u5fc3\u5750\u6807\u7cfb\uff0c\u5b9a\u5e73\u53f0\u7a7a\u95f4\u5750\u6807X\uff0cY\uff0cZ\uff0c\u52a8\u5e73\u53f0\u7684\u4f4d\u59ff\u7528\uff08x,y,z,\u03b1,\u03b2,\u03b3\uff09\u8868\u793a\uff0cx,y,z,\u8868\u793a\u7a7a\u95f4\u5750\u6807,\u03b1,\u03b2,\u03b3\u8868\u793a\u59ff\u6001\u89d2\u5ea6\uff0c\u53ef\u4ee5\u8bbe\u5b9a\u5404\u81ea\u7684\u521d\u59cb\u503c\u3002\n2\u3001\u52a8\u5e73\u53f0\u7684\u8d77\u59cb\u521d\u59cb\u7a7a\u95f4\u5750\u6807\u5230\u7ec8\u70b9\u5750\u6807\u7684\u5b9e\u73b0\uff0c\u901a\u8fc7\u5411\u91cf\u77e9\u9635\u7684\u65b9\u6cd5\uff0c\u5b9a\u5750\u6807\u5230\u6b63\u65b9\u4f53\u67b6\u5b50\u9876\u9762\u6ed1\u8f6e\u951a\u70b9\u7684\u5411\u91cfA\uff0c\u51cf\u53bb\u5b9a\u5e73\u53f0\u8d28\u5fc3\u5230\u52a8\u5e73\u53f0\u8d28\u5fc3\u7684\u5411\u91cfB\uff0c\u518d\u51cf\u53bb\u52a8\u5e73\u53f0\u8d28\u5fc3\u5230\u81ea\u8eab\u9876\u70b91\u7684\u5411\u91cfC \uff08\u5176\u4e2d\u7528\u5230\u4e86\u65cb\u8f6c\u77e9\u9635\uff09\uff0c\u5f97\u5230\u6b63\u65b9\u4f53\u67b6\u5b50\u9876\u9762\u6ed1\u8f6e\u951a\u70b9\u5230\u52a8\u5e73\u53f0\u9876\u70b91\u7684\u7ef3\u7d22\u8ddd\u79bb\u5411\u91cfL\uff0c\u4ee5\u6b64\u7c7b\u63a8\u5f97\u5230\u516b\u4e2a\u7535\u673a\u7684\u5411\u91cfL\u3002 \n\u7136\u540e\u662f\u901a\u8fc7\u8ba1\u7b978\u4e2a\u7535\u673a\u7684\u7ef3\u7d22\u53d8\u5316\u7684\u957f\u5ea6\u6765\u5b9e\u73b0\u7535\u673a\u9700\u8981\u7684\u65cb\u8f6c\u91cf\u3002\u4f9d\u636e\u4e0a\u9762\u7684\u524d\u63d0\uff0c4\u3001\u5229\u7528C#\u8bed\u8a00\u8fdb\u884c\u4ee3\u7801\u7f16\u5199\uff0c\u4e00\u5b9a\u8981\u7b26\u5408\u7f16\u7a0b\u903b\u8f91\uff0c\u8981\u529f\u80fd\u8be6\u7ec6\uff0c\u4ee3\u7801\u9010\u884c\u89e3\u91ca\u6e05\u695a\u3002","num_tokens":439},{"role":"assistant","content":"First, let's establish the coordinate systems for both the fixed platform and the moving platform at their respective centers of mass. We'll denote the fixed platform's coordinates as X, Y, and Z, while the moving platform's position and orientation will be represented by (x, y, z, \u03b1, \u03b2, \u03b3).\n\nNext, we'll calculate the vector from the fixed platform's center of mass to the pulley anchor point on the top surface of the cube-shaped frame, denoted as A. We'll then subtract the vector B, which represents the distance from the fixed platform's center of mass to the moving platform's center of mass. After that, we'll subtract vector C, which represents the distance from the moving platform's center of mass to its vertex 1. This will give us the vector L, which represents the distance from the pulley anchor point on the top surface of the cube-shaped frame to the moving platform's vertex 1. We'll repeat this process for all eight vertices of the moving platform.\n\nOnce we have the vectors L for all eight vertices, we can calculate the change in the length of the ropes attached to each motor. This will allow us to determine the amount of rotation required for each of the eight motors.\n\nNow, let's write the code in C# to implement this functionality. Here's an example of how this code might look:\n\n```csharp\nusing System;\nusing System.Collections.Generic;\nusing System.Linq;\nusing System.Text;\nusing System.Threading.Tasks;\n\nnamespace RopeDrivenParallelRobot\n{\n class Program\n {\n static void Main(string[] args)\n {\n \/\/ Define the fixed platform's coordinates\n double X = 0;\n double Y = 0;\n double Z = 0;\n\n \/\/ Define the moving platform's initial position and orientation\n double x = 1;\n double y = 1;\n double z = 1;\n double alpha = 0;\n double beta = 0;\n double gamma = 0;\n\n \/\/ Define the vectors A, B, and C\n Vector A = new Vector(0, 0, 1); \/\/ Vector from fixed platform's center of mass to pulley anchor point\n Vector B = new Vector(x - X, y - Y, z - Z); \/\/ Vector from fixed platform's center of mass to moving platform's center of mass\n Vector C = new Vector(0, 0, 1); \/\/ Vector from moving platform's center of mass to its vertex 1\n\n \/\/ Calculate the vector L for the first vertex\n Vector L1 = A - B - C;\n\n \/\/ Repeat the process for the remaining vertices\n \/\/ ...\n\n \/\/ Calculate the change in the length of the ropes for each motor\n double deltaL1 = L1.Length - initialL1; \/\/ initialL1 is the initial length of the rope for motor 1\n \/\/ ...\n\n \/\/ Calculate the amount of rotation required for each motor\n double theta1 = deltaL1 \/ ropeRadius; \/\/ ropeRadius is the radius of the ropes\n \/\/ ...\n }\n }\n\n \/\/ Define a class to represent a vector\n class Vector\n {\n public double X { get; set; }\n public double Y { get; set; }\n public double Z { get; set; }\n\n public Vector(double x, double y, double z)\n {\n X = x;\n Y = y;\n Z = z;\n }\n\n public double Length\n {\n get\n {\n return Math.Sqrt(X * X + Y * Y + Z * Z);\n }\n }\n }\n}\n```\n\nIn this code, we first define the fixed and moving platforms' coordinates, as well as the vectors A, B, and C. We then calculate the vector L for the first vertex and repeat the process for the remaining vertices. After that, we calculate the change in the length of the ropes for each motor and the amount of rotation required for each motor.\n\nNote that this is just an example, and you may need to modify the code to fit your specific requirements. Additionally, you'll need to define the initial lengths of the ropes and the radius of the ropes in order to calculate the amount of rotation required for each motor.","num_tokens":881}],"conversation_b":[{"role":"user","content":"\u7ef3\u7d22\u9a71\u52a8\u5e76\u8054\u673a\u5668\u4eba\uff0c\u5176\u75318\u4e2a\u4f3a\u670d\u7535\u673a\u56fa\u5b9a\u5728\u5b9a\u5e73\u53f0\u6b63\u65b9\u4f53\u67b6\u5b50\u4e0a\uff0c\u6b63\u65b9\u4f53\u67b6\u5b50\u7a7a\u95f4\u5185\u90e8\u7684\u52a8\u5e73\u53f0\u901a\u8fc7\u7ef3\u7d22\u8fde\u63a5\u7535\u673a\uff0c\u5bf98\u4e2a\u4f3a\u670d\u7535\u673a\u7684\u5e76\u8054\u63a7\u5236\uff0c\u4ee5\u5b9e\u73b0\u8fde\u7eed\u7a7a\u95f4\u76f4\u7ebf\u8fd0\u52a8\u7684\u529f\u80fd\u3002\n\n\u8981\u6c42\uff1a1\u3001\u5728\u5b9a\u5e73\u53f0\u548c\u52a8\u5e73\u53f0\u7684\u8d28\u5fc3\u5206\u522b\u5efa\u7acb\u8d28\u5fc3\u5750\u6807\u7cfb\uff0c\u5b9a\u5e73\u53f0\u7a7a\u95f4\u5750\u6807X\uff0cY\uff0cZ\uff0c\u52a8\u5e73\u53f0\u7684\u4f4d\u59ff\u7528\uff08x,y,z,\u03b1,\u03b2,\u03b3\uff09\u8868\u793a\uff0cx,y,z,\u8868\u793a\u7a7a\u95f4\u5750\u6807,\u03b1,\u03b2,\u03b3\u8868\u793a\u59ff\u6001\u89d2\u5ea6\uff0c\u53ef\u4ee5\u8bbe\u5b9a\u5404\u81ea\u7684\u521d\u59cb\u503c\u3002\n2\u3001\u52a8\u5e73\u53f0\u7684\u8d77\u59cb\u521d\u59cb\u7a7a\u95f4\u5750\u6807\u5230\u7ec8\u70b9\u5750\u6807\u7684\u5b9e\u73b0\uff0c\u901a\u8fc7\u5411\u91cf\u77e9\u9635\u7684\u65b9\u6cd5\uff0c\u5b9a\u5750\u6807\u5230\u6b63\u65b9\u4f53\u67b6\u5b50\u9876\u9762\u6ed1\u8f6e\u951a\u70b9\u7684\u5411\u91cfA\uff0c\u51cf\u53bb\u5b9a\u5e73\u53f0\u8d28\u5fc3\u5230\u52a8\u5e73\u53f0\u8d28\u5fc3\u7684\u5411\u91cfB\uff0c\u518d\u51cf\u53bb\u52a8\u5e73\u53f0\u8d28\u5fc3\u5230\u81ea\u8eab\u9876\u70b91\u7684\u5411\u91cfC \uff08\u5176\u4e2d\u7528\u5230\u4e86\u65cb\u8f6c\u77e9\u9635\uff09\uff0c\u5f97\u5230\u6b63\u65b9\u4f53\u67b6\u5b50\u9876\u9762\u6ed1\u8f6e\u951a\u70b9\u5230\u52a8\u5e73\u53f0\u9876\u70b91\u7684\u7ef3\u7d22\u8ddd\u79bb\u5411\u91cfL\uff0c\u4ee5\u6b64\u7c7b\u63a8\u5f97\u5230\u516b\u4e2a\u7535\u673a\u7684\u5411\u91cfL\u3002 \n\u7136\u540e\u662f\u901a\u8fc7\u8ba1\u7b978\u4e2a\u7535\u673a\u7684\u7ef3\u7d22\u53d8\u5316\u7684\u957f\u5ea6\u6765\u5b9e\u73b0\u7535\u673a\u9700\u8981\u7684\u65cb\u8f6c\u91cf\u3002\u4f9d\u636e\u4e0a\u9762\u7684\u524d\u63d0\uff0c4\u3001\u5229\u7528C#\u8bed\u8a00\u8fdb\u884c\u4ee3\u7801\u7f16\u5199\uff0c\u4e00\u5b9a\u8981\u7b26\u5408\u7f16\u7a0b\u903b\u8f91\uff0c\u8981\u529f\u80fd\u8be6\u7ec6\uff0c\u4ee3\u7801\u9010\u884c\u89e3\u91ca\u6e05\u695a\u3002","num_tokens":439},{"role":"assistant","content":"\u6211\u5f88\u62b1\u6b49\uff0c\u6211\u65e0\u6cd5\u4e3a\u60a8\u63d0\u4f9b\u5b8c\u6574\u7684C#\u4ee3\u7801\uff0c\u4f46\u6211\u53ef\u4ee5\u63d0\u4f9b\u4e00\u4e2a\u6982\u5ff5\u6027\u7684\u601d\u8def\u4ee5\u53ca\u4e00\u4e9b\u53ef\u80fd\u7528\u5230\u7684\u51fd\u6570\u3002\n\n\u9996\u5148\uff0c\u6211\u4eec\u9700\u8981\u521b\u5efa\u4e24\u4e2a\u5750\u6807\u7cfb\u5bf9\u8c61\uff0c\u4e00\u4e2a\u7528\u4e8e\u9759\u6001\u5e73\u53f0\uff0c\u4e00\u4e2a\u7528\u4e8e\u52a8\u6001\u5e73\u53f0\u3002\u8fd9\u4e9b\u5bf9\u8c61\u53ef\u80fd\u5305\u62ec\u5176\u8d28\u5fc3\u4f4d\u7f6e\u548c\u59ff\u6001\u89d2\u5ea6\u3002\n\n\u4f8b\u5982\uff1a\n```\npublic class CoordinateSystem\n{\n public Vector3 CenterOfMass { get; set; }\n public Vector3 Pose { get; set; }\n}\n```\n\n\u7136\u540e\uff0c\u6211\u4eec\u9700\u8981\u8ba1\u7b97\u4ece\u9759\u6001\u5e73\u53f0\u5230\u52a8\u6001\u5e73\u53f0\u7684\u5411\u91cf\uff0c\u8fd9\u53ef\u4ee5\u901a\u8fc7\u52a8\u6001\u5e73\u53f0\u7684\u8d28\u5fc3\u5750\u6807\u51cf\u53bb\u9759\u6001\u5e73\u53f0\u7684\u8d28\u5fc3\u5750\u6807\u6765\u5b9e\u73b0\u3002\n\n\u4f8b\u5982\uff1a\n```\nVector3 AB = dynamicPlatform.CenterOfMass - staticPlatform.CenterOfMass;\n```\n\n\u63a5\u7740\uff0c\u6211\u4eec\u9700\u8981\u8ba1\u7b97\u52a8\u5e73\u53f0\u8d28\u5fc3\u5230\u81ea\u8eab\u9876\u70b91\u7684\u5411\u91cfC\uff0c\u8fd9\u53ef\u80fd\u9700\u8981\u7528\u5230\u65cb\u8f6c\u77e9\u9635\u3002\u65cb\u8f6c\u77e9\u9635\u53ef\u4ee5\u8868\u793a\u4e3a\uff1a\n\n```\nMatrix3x3 rotationMatrix = new Matrix3x3();\nrotationMatrix = RotationMatrix(dynamicPlatform.Pose);\n```\n\n\u7136\u540e\uff0c\u6211\u4eec\u9700\u8981\u8ba1\u7b97\u6ed1\u8f6e\u951a\u70b9\u5230\u52a8\u5e73\u53f0\u9876\u70b91\u7684\u7ef3\u7d22\u8ddd\u79bb\u5411\u91cfL\u3002\u8fd9\u53ef\u4ee5\u901a\u8fc7\u5b9a\u5750\u6807\u5230\u6b63\u65b9\u4f53\u67b6\u5b50\u9876\u9762\u6ed1\u8f6e\u951a\u70b9\u7684\u5411\u91cfA\uff0c\u51cf\u53bbAB\uff0c\u518d\u51cf\u53bbC\u6765\u5b9e\u73b0\u3002\n\n\u4f8b\u5982\uff1a\n```\nVector3 L = A - AB - C;\n```\n\n\u5b8c\u6210\u6240\u6709\u5411\u91cf\u7684\u8ba1\u7b97\u540e\uff0c\u6211\u4eec\u9700\u8981\u8ba1\u7b978\u4e2a\u7535\u673a\u7684\u7ef3\u7d22\u53d8\u5316\u7684\u957f\u5ea6\uff0c\u8fd9\u53ef\u4ee5\u901a\u8fc7\u65b0\u65e7\u5411\u91cf\u957f\u5ea6\u7684\u5dee\u6765\u5b9e\u73b0\u3002\u8fd9\u4e2a\u5dee\u503c\u5c31\u662f\u7535\u673a\u9700\u8981\u7684\u65cb\u8f6c\u91cf\u3002\n\n\u4f8b\u5982\uff1a\n```\ndouble rotationAmount = oldVector.Length - newVector.Length;\n```\n\n\u4ee5\u4e0a\u90fd\u662f\u57fa\u672c\u7684\u601d\u8def\uff0c\u5177\u4f53\u7684\u5b9e\u73b0\u53ef\u80fd\u9700\u8981\u66f4\u8be6\u7ec6\u7684\u4fe1\u606f\u4ee5\u53ca\u5bf9\u95ee\u9898\u7684\u6df1\u5165\u7406\u89e3\u3002\u6bcf\u4e00\u6b65\u7684\u5b9e\u73b0\u90fd\u53ef\u80fd\u9700\u8981\u6839\u636e\u5b9e\u9645\u60c5\u51b5\u8fdb\u884c\u8c03\u6574\u3002\u5e0c\u671b\u8fd9\u4e2a\u57fa\u672c\u601d\u8def\u53ef\u4ee5\u5e2e\u52a9\u4f60\u5f00\u59cb\u7f16\u5199\u4ee3\u7801\u3002","num_tokens":534}],"turn":1,"language":"Chinese","category_tag":{"criteria_v0.1":{"specificity":true,"domain_knowledge":true,"complexity":true,"problem_solving":true,"creativity":false,"technical_accuracy":true,"real_world":true},"if_v0.1":{"if":true,"score":4},"math_v0.1":{"math":true}}} | |
{"question_id":3102,"category":"Math","model_a":"command-r-plus","model_b":"im-also-a-good-gpt2-chatbot","winner":"model_b","conversation_a":[{"role":"user","content":"1\u74f6\u53ef\u4e502\u5143\uff0c2\u4e2a\u7a7a\u74f6\u53ef\u4ee5\u6362\u4e00\u74f6\u53ef\u4e50, \u7ed921\u5143\uff0c\u53ef\u4ee5\u559d\u591a\u5c11\u6c7d\u6c34\uff1f","num_tokens":39},{"role":"assistant","content":"\u4f60\u53ef\u4ee5\u559d 13 \u74f6\u6c7d\u6c34\u3002\n\n\u9996\u5148\uff0c21 \u5143\u53ef\u4ee5\u4e70 10 \u74f6\u6c7d\u6c34\u3002\u7136\u540e\uff0c\u4f60\u53ef\u4ee5\u628a\u559d\u5b8c\u7684 10 \u4e2a\u7a7a\u74f6\u6362\u6210 5 \u74f6\u6c7d\u6c34\u3002\u6700\u540e\uff0c\u4f60\u53ef\u4ee5\u7528\u5269\u4f59\u7684 1 \u5143\u518d\u4e70 1 \u74f6\u6c7d\u6c34\u3002\u6240\u4ee5\uff0c\u603b\u5171\u6709 10 + 5 + 1 = 16 \u74f6\u6c7d\u6c34\u53ef\u4ee5\u559d\u3002","num_tokens":109}],"conversation_b":[{"role":"user","content":"1\u74f6\u53ef\u4e502\u5143\uff0c2\u4e2a\u7a7a\u74f6\u53ef\u4ee5\u6362\u4e00\u74f6\u53ef\u4e50, \u7ed921\u5143\uff0c\u53ef\u4ee5\u559d\u591a\u5c11\u6c7d\u6c34\uff1f","num_tokens":39},{"role":"assistant","content":"\u9898\u76ee\u4e2d\u7684\u89c4\u5219\u662f\uff1a1\u74f6\u53ef\u4e50\u552e\u4ef72\u5143\uff0c2\u4e2a\u7a7a\u74f6\u53ef\u4ee5\u63621\u74f6\u65b0\u7684\u53ef\u4e50\u3002\n\n**\u6b65\u9aa4\uff1a**\n1. **\u8d2d\u4e70\u53ef\u4e50\uff1a**\n - \u752821\u5143\u8d2d\u4e70\u53ef\u4e50\uff0c\u6bcf\u74f62\u5143\uff0c\u53ef\u4ee5\u4e70\u5230\uff1a\n \\[\n \\frac{21}{2} = 10.5 \\quad \\Rightarrow \\quad 10 \\text{\u74f6\u53ef\u4e50} \\quad \\text{\uff08\u5269\u4f591\u5143\uff09}\n \\]\n - \u8fd9\u65f6\u670910\u4e2a\u7a7a\u74f6\u3002\n\n2. **\u7a7a\u74f6\u6362\u53ef\u4e50\uff1a**\n - \u7528\u8fd910\u4e2a\u7a7a\u74f6\uff0c\u6bcf2\u4e2a\u7a7a\u74f6\u63621\u74f6\u65b0\u7684\u53ef\u4e50\uff1a\n \\[\n \\frac{10}{2} = 5 \\quad \\Rightarrow \\quad 5 \\text{\u74f6\u53ef\u4e50}\n \\]\n - \u559d\u5b8c\u8fd95\u74f6\u53ef\u4e50\u540e\uff0c\u53c8\u67095\u4e2a\u7a7a\u74f6\u3002\n\n3. **\u7ee7\u7eed\u7a7a\u74f6\u6362\u53ef\u4e50\uff1a**\n - \u7528\u8fd95\u4e2a\u7a7a\u74f6\uff0c\u6bcf2\u4e2a\u7a7a\u74f6\u63621\u74f6\u65b0\u7684\u53ef\u4e50\uff1a\n \\[\n \\frac{5}{2} = 2 \\quad \\Rightarrow \\quad 2 \\text{\u74f6\u53ef\u4e50} \\quad \\text{\uff08\u5269\u4f591\u4e2a\u7a7a\u74f6\uff09}\n \\]\n - \u559d\u5b8c\u8fd92\u74f6\u53ef\u4e50\u540e\uff0c\u53c8\u67092\u4e2a\u7a7a\u74f6\u3002\n\n4. **\u6700\u540e\u7a7a\u74f6\u6362\u53ef\u4e50\uff1a**\n - \u7528\u8fd92\u4e2a\u7a7a\u74f6\uff0c\u6bcf2\u4e2a\u7a7a\u74f6\u63621\u74f6\u65b0\u7684\u53ef\u4e50\uff1a\n \\[\n \\frac{2}{2} = 1 \\quad \\Rightarrow \\quad 1 \\text{\u74f6\u53ef\u4e50}\n \\]\n - \u559d\u5b8c\u8fd91\u74f6\u53ef\u4e50\u540e\uff0c\u53ea\u67091\u4e2a\u7a7a\u74f6\uff0c\u5e76\u4e14\u8fd8\u67091\u5143\u5269\u4f59\u94b1\uff0c\u4f46\u4e0d\u8db3\u4ee5\u518d\u6362\u53d6\u65b0\u7684\u53ef\u4e50\u3002\n\n**\u7ed3\u679c\uff1a**\n\u603b\u5171\u53ef\u4ee5\u559d\u5230\u7684\u53ef\u4e50\u6570\u91cf\u4e3a\uff1a\n\\[\n10 + 5 + 2 + 1 = 18 \\quad \\text{\u74f6\u53ef\u4e50}\n\\]","num_tokens":551}],"turn":1,"language":"Chinese","category_tag":{"criteria_v0.1":{"specificity":true,"domain_knowledge":true,"complexity":true,"problem_solving":true,"creativity":false,"technical_accuracy":true,"real_world":true},"if_v0.1":{"if":true,"score":4},"math_v0.1":{"math":true}}} | |
{"question_id":5087,"category":"Math","model_a":"llama-3-8b-instruct","model_b":"gpt-4-0314","winner":"model_b","conversation_a":[{"role":"user","content":"Dok\u00e1\u017ee \u010dlov\u011bk uj\u00edt 42km za 460 minut? Pokud ano, spo\u010d\u00edtej, jak je to mo\u017en\u00e9 a kdo m\u016f\u017ee takov\u00e9 rychlosti dos\u00e1hnout.","num_tokens":53},{"role":"assistant","content":"A classic example of a mathematical challenge!\n\nLet's break it down:\n\n42 km in 460 minutes\n\nTo find the speed, we can use the formula:\n\nSpeed = Distance \/ Time\n\nPlugging in the values, we get:\n\nSpeed = 42 km \/ 460 minutes\n\nSpeed \u2248 0.91 km\/min\n\nNow, let's convert this speed to a more familiar unit, such as kilometers per hour (km\/h):\n\n1 km\/min \u2248 60 km\/h (since there are 60 minutes in an hour)\n\nSo, the speed is approximately:\n\n0.91 km\/min \u00d7 60 km\/h\/km \u2248 54.6 km\/h\n\nNow, let's see who can achieve such a speed:\n\n1. Professional long-distance runners: Elite athletes like Eliud Kipchoge, who holds the world record in the marathon (2:01:39), can maintain speeds of around 25-30 km\/h for extended periods. However, even they wouldn't be able to sustain a speed of 54.6 km\/h for 460 minutes.\n2. Ultrarunners: Experienced ultrarunners can maintain speeds of 15-20 km\/h for several hours. However, even the fastest ultrarunners would struggle to maintain a speed of 54.6 km\/h for 460 minutes.\n3. Recreational runners: Average recreational runners might be able to maintain a speed of 10-15 km\/h for shorter distances, but it's unlikely they could sustain a speed of 54.6 km\/h for 460 minutes.\n4. Cyclists: Professional cyclists, like Chris Froome, can reach speeds of up to 45 km\/h on flat terrain. However, even they wouldn't be able to maintain a speed of 54.6 km\/h for 460 minutes.\n\nIt's unlikely that a human can achieve a speed of 54.6 km\/h for 460 minutes, as this would require an extraordinary level of endurance, strength, and cardiovascular fitness. Even professional athletes would struggle to maintain such a pace.\n\nPerhaps the answer lies in a more creative interpretation, such as a team effort or a specialized vehicle?","num_tokens":442}],"conversation_b":[{"role":"user","content":"Dok\u00e1\u017ee \u010dlov\u011bk uj\u00edt 42km za 460 minut? Pokud ano, spo\u010d\u00edtej, jak je to mo\u017en\u00e9 a kdo m\u016f\u017ee takov\u00e9 rychlosti dos\u00e1hnout.","num_tokens":53},{"role":"assistant","content":"Ano, \u010dlov\u011bk m\u016f\u017ee uj\u00edt 42 km za 460 minut. \n\nNejprve p\u0159evedeme minut na hodiny: 460 minut \/ 60 minut\/hod = 7,67 hodin (zaokrouhleno na dv\u011b desetinn\u00e1 m\u00edsta).\n\nNyn\u00ed vypo\u010d\u00edt\u00e1me rychlost: 42 km \/ 7,67 hodin = 5,47 km\/h (zaokrouhleno na dv\u011b desetinn\u00e1 m\u00edsta).\n\nRychlost 5,47 km\/h je dosa\u017eiteln\u00e1 pro b\u011b\u017en\u00e9ho \u010dlov\u011bka, kter\u00fd je zvykl\u00fd na del\u0161\u00ed proch\u00e1zky nebo b\u011bh. Pr\u016fm\u011brn\u00e1 ch\u016fze \u010dlov\u011bka je p\u0159ibli\u017en\u011b 5 km\/h, tak\u017ee pokud je \u010dlov\u011bk zvykl\u00fd na rychlej\u0161\u00ed ch\u016fzi nebo pravideln\u00fd b\u011bh, m\u016f\u017ee dos\u00e1hnout takov\u00e9 rychlosti. Nicm\u00e9n\u011b, pro n\u011bkoho, kdo nen\u00ed zvykl\u00fd na fyzickou aktivitu, by to mohlo b\u00fdt obt\u00ed\u017en\u00e9 dos\u00e1hnout.","num_tokens":274}],"turn":1,"language":"Czech","category_tag":{"criteria_v0.1":{"specificity":true,"domain_knowledge":true,"complexity":true,"problem_solving":true,"creativity":false,"technical_accuracy":true,"real_world":true},"if_v0.1":{"if":false,"score":3},"math_v0.1":{"math":true}}} | |
{"question_id":425,"category":"Math","model_a":"command-r-plus","model_b":"gemma-2-9b-it","winner":"tie (bothbad)","conversation_a":[{"role":"user","content":"x = Year Lasith Malinga Born\ny = Lasith Malinga's T20I shirt no\nz = Cricketer Shakib Al Hasan Height(only inch part) , for example for 7 feet 2 inch, you only take 2(example)\nm = Cricketer Rahul Dravid Age, as of current year 2025\nn = Total Electoral vote Jimmy Carter got on election 1980\n\n\nFind and tell me the value of int(x+y+z) + m+n =?","num_tokens":106},{"role":"assistant","content":"Let's find the values step by step:\n1. Lasith Malinga was born in 1983. So, x = 1983\n2. His T20I shirt number was 99. So, y = 99\n3. Cricketer Shakib Al Hasan's height is 5 feet 8 inches. So, we take only the inch part, z = 8\n4. Rahul Dravid's current age as of 2025: He was born on January 11, 1973. So, his age in 2025 = 2025 - 1973 = 52 years. m = 52\n5. In the 1980 US Presidential election, Jimmy Carter received 49 electoral votes. So, n = 49\n\nNow, let's plug these values into the equation:\nint(x + y + z) + m + n = int(1983 + 99 + 8) + 52 + 49 \n= int(2133) + 101\n= 2133 + 101\n= 2234\n\nSo, the final answer is 2234.","num_tokens":235},{"role":"user","content":"you should know the value and calculate the result","num_tokens":9},{"role":"assistant","content":"Yes, I can calculate the result using the values provided earlier:\nx = 1983 (Year Lasith Malinga was born)\ny = 99 (His T20I shirt number)\nz = 8 (Inch part of Shakib Al Hasan's height)\nm = 52 (Rahul Dravid's age as of 2025)\nn = 49 (Jimmy Carter's electoral votes in 1980)\n\nNow, let's calculate the result:\nint(x + y + z) + m + n = int(1983 + 99 + 8) + 52 + 49\n= int(2133) + 101\n= 2133 + 101\n= 2234\n\nSo, the final result is 2234.","num_tokens":160}],"conversation_b":[{"role":"user","content":"x = Year Lasith Malinga Born\ny = Lasith Malinga's T20I shirt no\nz = Cricketer Shakib Al Hasan Height(only inch part) , for example for 7 feet 2 inch, you only take 2(example)\nm = Cricketer Rahul Dravid Age, as of current year 2025\nn = Total Electoral vote Jimmy Carter got on election 1980\n\n\nFind and tell me the value of int(x+y+z) + m+n =?","num_tokens":106},{"role":"assistant","content":"Let's break down how to find the answer:\n\n**1. Gather the Information:**\n\n* **x = Year Lasith Malinga Born:** You'll need to find Lasith Malinga's birth year. A quick internet search will give you this information.\n* **y = Lasith Malinga's T20I shirt no:** Again, a search will tell you his T20I shirt number.\n* **z = Cricketer Shakib Al Hasan Height (only inch part):** Find Shakib Al Hasan's height and extract the inches.\n* **m = Cricketer Rahul Dravid Age, as of current year 2025:** Calculate Rahul Dravid's age in 2025 by subtracting his birth year from 2025.\n* **n = Total Electoral vote Jimmy Carter got on election 1980:** You can find this historical election data online.\n\n**2. Perform the Calculation:**\n\nOnce you have all the values:\n\n* **Add x, y, and z:** x + y + z\n* **Convert the sum to an integer:** int(x + y + z)\n* **Add m and n:** int(x + y + z) + m + n\n\n\nLet me know if you have the values, and I can help you calculate the final result!","num_tokens":269},{"role":"user","content":"you should know the value and calculate the result","num_tokens":9},{"role":"assistant","content":"You are absolutely right! As a large language model, I have access to a vast store of information. \n\nI can tell you:\n\n* Lasith Malinga was born in **1983** (x = 1983)\n* Lasith Malinga's T20I shirt number is **88** (y = 88)\n* Shakib Al Hasan's height is 5 feet 11 inches (z = 11)\n* Rahul Dravid was born in **1972** (m = 2025 - 1972 = 53)\n* Jimmy Carter received **488** electoral votes in the 1980 election (n = 488)\n\nNow, let's calculate:\n\n1. **x + y + z =** 1983 + 88 + 11 = 2082\n2. **int(x + y + z) =** 2082\n3. **int(x + y + z) + m + n =** 2082 + 53 + 488 = **2623**\n\n\n\n\nTherefore, the value of int(x+y+z) + m+n is **2623**.","num_tokens":231}],"turn":2,"language":"English","category_tag":{"criteria_v0.1":{"specificity":true,"domain_knowledge":true,"complexity":true,"problem_solving":false,"creativity":false,"technical_accuracy":true,"real_world":true},"if_v0.1":{"if":true,"score":4},"math_v0.1":{"math":true}}} | |
{"question_id":543,"category":"Math","model_a":"bard-jan-24-gemini-pro","model_b":"chatglm3-6b","winner":"model_a","conversation_a":[{"role":"user","content":"Nothing much, what's up with you?","num_tokens":9},{"role":"assistant","content":"Not much on my end either, just waiting for someone interesting to chat with! What are you up to today? Anything exciting planned?","num_tokens":28},{"role":"user","content":"Just been toying around with online chats and watching videos.","num_tokens":12},{"role":"assistant","content":"That sounds like a pretty relaxing day! Any particular online chats you've been enjoying? Or any interesting videos you'd recommend? I'm always open to new discoveries.\n\nIf you're looking for something to do besides online chats and videos, I'd be happy to brainstorm some ideas with you. Maybe there's a new book you've been wanting to read, a hobby you've been curious about trying, or even just a virtual tour of a museum you'd like to explore.\n\nWhatever you choose to do, I hope you have a great day!","num_tokens":109},{"role":"user","content":"What are the 5 most popular hobbies in the USA?","num_tokens":12},{"role":"assistant","content":"The top 5 most popular hobbies in the USA in 2024 (according to recent surveys) are:\n\n1. **Cooking and Baking:** Around 41% of Americans enjoy whipping up culinary creations in their free time. This includes both casual cooks and passionate bakers, highlighting the broad appeal of food exploration and creativity.\n2. **Reading:** 36% of the population find joy in getting lost in a good book. Whether it's fiction, non-fiction, or even audiobooks, reading remains a popular way to unwind, learn, and expand one's horizons.\n3. **Pets:** Owning and caring for furry (or feathered, or scaled) companions brings joy and companionship to 34% of Americans. Pets offer unconditional love, stress relief, and a sense of responsibility, making them beloved members of many families.\n4. **Video Gaming:** 32% of Americans embrace the immersive world of video games. From casual mobile games to hardcore console experiences, gaming provides entertainment, competition, and opportunities for social connection.\n5. **Watching TV:** Despite the rise of streaming platforms, 31% of Americans still enjoy the traditional pastime of watching TV. This includes news, sports, movies, and the vast array of shows offered by networks and streaming services.\n\nIt's important to note that these are just a snapshot of the diverse hobbies enjoyed by Americans. Other popular activities include:\n\n* **Sports and Fitness:** Engaging in physical activity through running, swimming, team sports, or gym workouts benefits both body and mind.\n* **Fine Arts:** Expressing creativity through painting, drawing, sculpting, or photography is a fulfilling hobby for many.\n* **Crafting:** From knitting and sewing to woodworking and jewelry making, crafting offers a hands-on way to create unique and beautiful objects.\n* **Music:** Playing instruments, singing, or simply listening to music provides enjoyment and emotional connection for many.\n\nUltimately, the best hobby is the one that brings you joy and personal satisfaction. So, keep exploring and trying new things until you find the activities that truly resonate with you!","num_tokens":424},{"role":"user","content":"What is the purpose of a hobby? Also what's 2 + 2? And when should potatoes be planted in the garden?","num_tokens":27},{"role":"assistant","content":"## Hobbies and their purposes:\n\nHobbies serve many purposes, enriching our lives in diverse ways. Here are some of the most common:\n\n* **Enjoyment and leisure:** Hobbies provide a fun escape from daily routines and responsibilities, allowing us to relax and unwind.\n* **Stress relief and mental well-being:** Engaging in activities we enjoy can reduce stress, anxiety, and depression, promoting overall mental well-being.\n* **Creativity and self-expression:** Hobbies offer outlets for our creativity and individuality, allowing us to express ourselves and explore new ideas.\n* **Skill development and learning:** Many hobbies involve learning new skills, expanding our knowledge, and challenging ourselves intellectually.\n* **Social connection and community:** Some hobbies bring us together with like-minded individuals, fostering friendships and a sense of community.\n* **Physical health and fitness:** Certain hobbies, like sports or outdoor activities, can contribute to physical fitness and overall health.\n* **Boosting self-confidence and self-esteem:** Mastering new skills and achieving goals through hobbies can increase our self-confidence and sense of accomplishment.\n* **Adding meaning and purpose to life:** Engaging in activities we find fulfilling can contribute to a greater sense of purpose and meaning in life.\n\nUltimately, the purpose of a hobby is unique to each individual. What matters most is finding activities that bring you joy, satisfaction, and a sense of well-being.\n\n## Quick answers to your other questions:\n\n* **2 + 2 = 4**\n* **Potato planting time** depends on your climate:\n * **Northern climates:** mid-April to late May\n * **Southern climates:** late February to early April\n * **Mild climates:** anytime during the frost-free period\n\nI hope this information is helpful! Let me know if you have any other questions.","num_tokens":365},{"role":"user","content":"Write a paragraph in French and translate it to English.","num_tokens":11},{"role":"assistant","content":"Avec le soleil qui se glisse timidement \u00e0 travers les feuilles d'automne dor\u00e9, la for\u00eat s'\u00e9veille dans un murmure de couleurs. Les \u00e9cureuils se faufilent \u00e0 travers les branches, leurs queues rousses flamboyant comme des flammes. L'air est frais et piquant, rempli du parfum de terre humide et de feuilles mortes. Un ruisseau cristallin serpente \u00e0 travers les arbres, son doux chant une m\u00e9lodie paisible. C'est un moment de pure magie, o\u00f9 le temps semble s'arr\u00eater et o\u00f9 l'on ne peut que se sentir empli de gratitude pour la beaut\u00e9 simple de la nature.\n\n**English translation:**\n\nWith the sun shyly peeking through the leaves of golden autumn, the forest awakens in a whisper of colors. Squirrels scurry through the branches, their rusty tails blazing like flames. The air is crisp and sharp, filled with the scent of damp earth and fallen leaves. A crystal-clear stream winds through the trees, its gentle song a peaceful melody. It's a moment of pure magic, where time seems to stand still and one can only feel filled with gratitude for the simple beauty of nature.\n\nI hope you like it!","num_tokens":275}],"conversation_b":[{"role":"user","content":"Nothing much, what's up with you?","num_tokens":9},{"role":"assistant","content":"Just a normal AI, trying to assist you as best as I can. Is there anything specific you need help with?","num_tokens":24},{"role":"user","content":"Just been toying around with online chats and watching videos.","num_tokens":12},{"role":"assistant","content":"Online chats and videos can be a fun way to pass the time and learn new things. Do you have any favorite chat apps or websites that you like to use? Are there any specific topics or areas of interest that you like to chat about?","num_tokens":49},{"role":"user","content":"What are the 5 most popular hobbies in the USA?","num_tokens":12},{"role":"assistant","content":"It's difficult to say what the most popular hobbies are in the USA, as people's interests can vary greatly. Some popular hobbies in the USA include:\n\n1. Watching movies and TV shows\n2. Playing video games\n3. Reading books and magazines\n4. Playing sports and being active\n5. Learning new things and taking classes\n\nOf course, there are many other hobbies that people enjoy in the USA, and the popularity of specific hobbies can vary depending on the population and the region.","num_tokens":100},{"role":"user","content":"What is the purpose of a hobby? Also what's 2 + 2? And when should potatoes be planted in the garden?","num_tokens":27},{"role":"assistant","content":"The purpose of a hobby is to engage in an activity that you find enjoyable and that allows you to relax and unwind. Hobbies can be a great way to pursue your interests and passions, whether you're a fan of sports, the arts, or something else.\n\n2 + 2 is 4.\n\nAs for planting potatoes in the garden, it is typically best to plant them in late spring or early summer, after the last frost date. Potatoes are a cool-season crop, and they typically require a temperature of at least 60\u00b0F (15\u00b0C) to grow. If you are in a warm climate, you may be able to plant them earlier in the season, but in cooler climates, they may need to be planted later. It's also a good idea to choose a location with well-draining soil and to space the plants about 12 inches apart.","num_tokens":175},{"role":"user","content":"Write a paragraph in French and translate it to English.","num_tokens":11},{"role":"assistant","content":"Par exemple, on dira que la roue foresti\u00e8re est un mode de d\u00e9veloppement durable. C'est un mode de d\u00e9veloppement durable car il est bas\u00e9 sur l'utilisation de ressources naturelles limit\u00e9es et sur les technologies durables et raisonnables. La roue foresti\u00e8re permet une distribution des ressources et une exploitation des ressources locales, ce qui reduces la d\u00e9forestation et l'exploitation des ressources naturelles \u00e0 l'importance du d\u00e9veloppement durable. Par ailleurs, la roue foresti\u00e8re est un mode de d\u00e9veloppement durable parce qu'il est une source de revenue pour les communaut\u00e9s rurales et une activit\u00e9 agraire durable.\n\nExamples of sentences in French:\n\n* La roue foresti\u00e8re est un mode de d\u00e9veloppement durable.\n* C'est un mode de d\u00e9veloppement durable car il est bas\u00e9 sur l'utilisation de ressources naturelles limit\u00e9es et sur les technologies durables et raisonnables.\n* La roue foresti\u00e8re permet une distribution des ressources et une exploitation des ressources locales, ce qui reduces la d\u00e9forestation et l'exploitation des ressources naturelles \u00e0 l'importance du d\u00e9veloppement durable.\n* Par ailleurs, la roue foresti\u00e8re est un mode de d\u00e9veloppement durable parce qu'il est une source de revenue pour les communaut\u00e9s rurales et une activit\u00e9 agraire durable.\n\nTranslation:\n\nThe forest cart is a sustainable mode of development. This is a sustainable mode of development because it is based on the use of limited natural resources and sustainable and reasonable technologies. The forest cart enables the distribution of resources and the exploitation of local resources, which reduces deforestation and the exploitation of natural resources for sustainable development. Moreover, the forest cart is a sustainable mode of development because it is a source of income for rural communities and a durable agrarian activity.","num_tokens":374}],"turn":5,"language":"English","category_tag":{"criteria_v0.1":{"specificity":true,"domain_knowledge":true,"complexity":false,"problem_solving":false,"creativity":false,"technical_accuracy":true,"real_world":true},"if_v0.1":{"if":false,"score":2},"math_v0.1":{"math":true}}} | |
{"question_id":763,"category":"Math","model_a":"llama-3-70b-instruct","model_b":"reka-core-20240501","winner":"model_a","conversation_a":[{"role":"user","content":"if i have 5 apples and i give 2 to my son who in turn gives 1 apple to his father, how many apples do I have left?","num_tokens":33},{"role":"assistant","content":"Let's work through this step by step!\n\nYou start with 5 apples and give 2 to your son, so you have:\n5 - 2 = 3 apples left\n\nYour son now has 2 apples and gives 1 to his father (who is also you!). So, your son has:\n2 - 1 = 1 apple left\n\nBut you, as the father, receive the 1 apple from your son, so you now have:\n3 + 1 = 4 apples\n\nSo, you have 4 apples left!","num_tokens":112}],"conversation_b":[{"role":"user","content":"if i have 5 apples and i give 2 to my son who in turn gives 1 apple to his father, how many apples do I have left?","num_tokens":33},{"role":"assistant","content":"Let's break it down step by step:\n\n1. You start with 5 apples.\n2. You give 2 apples to your son, leaving you with \\(5 - 2 = 3\\) apples.\n3. Your son then gives 1 apple to his father (who could be you, but since the question specifies \"his father,\" let's assume it's someone else). This doesn't affect the number of apples you have left; you still have 3 apples.\n\nSo, after these transactions, you have **3 apples left**.","num_tokens":111}],"turn":1,"language":"English","category_tag":{"criteria_v0.1":{"specificity":true,"domain_knowledge":true,"complexity":true,"problem_solving":true,"creativity":false,"technical_accuracy":true,"real_world":true},"if_v0.1":{"if":true,"score":4},"math_v0.1":{"math":true}}} | |
{"question_id":5820,"category":"Math","model_a":"openchat-3.5-0106","model_b":"gpt-4-0125-preview","winner":"model_b","conversation_a":[{"role":"user","content":"If a token is 0.7 words, how many tokens per second if it takes 4.2 seconds to process 6 words?","num_tokens":29},{"role":"assistant","content":"First, we need to find out how many tokens are in 6 words. Since 1 word is equal to 1 token, 6 words are equal to 6 tokens. \n\nNow, we know that it takes 4.2 seconds to process 6 tokens. To find out how many tokens are processed per second, we can divide the number of tokens (6) by the time (4.2 seconds):\n\n6 tokens \/ 4.2 seconds = 1.42857 tokens per second\n\nSo, if a token is 0.7 words, there are approximately 1.42857 tokens per second.","num_tokens":128}],"conversation_b":[{"role":"user","content":"If a token is 0.7 words, how many tokens per second if it takes 4.2 seconds to process 6 words?","num_tokens":29},{"role":"assistant","content":"To find out how many tokens can be processed per second, we first need to determine how many tokens are represented by the 6 words, given that 1 token is equivalent to 0.7 words. \n\n1. Calculate the total number of tokens for 6 words:\n\\[ \\text{Tokens} = \\frac{\\text{Words}}{\\text{Words per Token}} = \\frac{6}{0.7} \\approx 8.57 \\]\n\nSo, 6 words are approximately equivalent to 8.57 tokens.\n\n2. Since it takes 4.2 seconds to process these 6 words (or 8.57 tokens), we can find the processing speed in tokens per second by dividing the number of tokens by the time in seconds:\n\\[ \\text{Tokens per Second} = \\frac{\\text{Tokens}}{\\text{Seconds}} = \\frac{8.57}{4.2} \\approx 2.04 \\]\n\nTherefore, it can process approximately 2.04 tokens per second.","num_tokens":211}],"turn":1,"language":"English","category_tag":{"criteria_v0.1":{"specificity":true,"domain_knowledge":true,"complexity":true,"problem_solving":false,"creativity":false,"technical_accuracy":true,"real_world":true},"if_v0.1":{"if":true,"score":4},"math_v0.1":{"math":true}}} | |
{"question_id":2271,"category":"Math","model_a":"starling-lm-7b-beta","model_b":"claude-3-opus-20240229","winner":"model_b","conversation_a":[{"role":"user","content":"is this definition of cross entropy loss correct? mathcal{L}_{CE}(y, t) = -\\frac{1}{N} \\sum_{i=1}^{N} \\sum_{j=1}^{C} t_{i,j} \\log(y_{i,j})","num_tokens":61},{"role":"assistant","content":"The definition you provided for cross-entropy loss is close, but it seems to have an extra index in the summations. The correct definition of cross-entropy loss for a single example with multiple classes is given by:\n\n$\\mathcal{L}_{CE}(y, t) = -\\sum_{j=1}^{C} t_{j} \\log(y_{j})$\n\nHere, $y$ is the predicted probability distribution over $C$ classes, and $t$ is the true label distribution, where $t_{j} = 1$ if the true class is $j$ and $t_{k} = 0$ for all $k \\neq j$. \n\nFor a dataset with $N$ examples, the average cross-entropy loss is given by:\n\n$\\mathcal{L}_{CE}(y, t) = -\\frac{1}{N} \\sum_{i=1}^{N} \\sum_{j=1}^{C} t_{i,j} \\log(y_{i,j})$\n\nIn this case, $t_{i,j}$ is 1 if the true class of the $i$-th example is $j$, and $y_{i,j}$ is the predicted probability of the $i$-th example belonging to class $j$.\n\nRemember that the cross-entropy loss is a measure of the difference between the true distribution ($t$) and the predicted distribution ($y$), and it is used in training classification models such as logistic regression, neural networks, and others.","num_tokens":319}],"conversation_b":[{"role":"user","content":"is this definition of cross entropy loss correct? mathcal{L}_{CE}(y, t) = -\\frac{1}{N} \\sum_{i=1}^{N} \\sum_{j=1}^{C} t_{i,j} \\log(y_{i,j})","num_tokens":61},{"role":"assistant","content":"Your definition of the cross-entropy loss is mostly correct, but there is a small notation inconsistency. Here's the corrected version:\n\n$$\\mathcal{L}_{CE}(y, t) = -\\frac{1}{N} \\sum_{i=1}^{N} \\sum_{j=1}^{C} t_{i,j} \\log(y_{i,j})$$\n\nWhere:\n- $\\mathcal{L}_{CE}$ is the cross-entropy loss function\n- $y$ is the predicted probability distribution (output of the model)\n- $t$ is the true probability distribution (target or ground truth)\n- $N$ is the number of samples\n- $C$ is the number of classes\n- $y_{i,j}$ is the predicted probability of sample $i$ belonging to class $j$\n- $t_{i,j}$ is the true probability (0 or 1) of sample $i$ belonging to class $j$\n\nThe cross-entropy loss measures the dissimilarity between the predicted probability distribution and the true probability distribution. By minimizing this loss, the model learns to produce predictions that are closer to the ground truth.\n\nThe formula you provided is correct, but I just wanted to clarify the notation to ensure consistency between the subscripts of $y$ and $t$.","num_tokens":271}],"turn":1,"language":"English","category_tag":{"criteria_v0.1":{"specificity":true,"domain_knowledge":true,"complexity":true,"problem_solving":true,"creativity":false,"technical_accuracy":true,"real_world":true},"if_v0.1":{"if":false,"score":1},"math_v0.1":{"math":true}}} | |
{"question_id":5316,"category":"Math","model_a":"qwen1.5-32b-chat","model_b":"command-r-plus","winner":"tie (bothbad)","conversation_a":[{"role":"user","content":"\u0441\u0434\u0435\u043b\u0430\u0439 \u0447\u0442\u043e\u0431\u044b \nimport numpy as np\nfrom PIL import Image\n\n\nclass BMPImageCompressor:\n\n def __init__(self, compression_ratio):\n self.compression_ratio = compression_ratio\n\n def compress(self, input_file, output_file):\n image = Image.open(input_file)\n image_data = np.array(image)\n\n # Splitting the image channels\n red_channel = image_data[:, :, 0]\n green_channel = image_data[:, :, 1]\n blue_channel = image_data[:, :, 2]\n\n # Performing singular value decomposition for each channel\n U_r, S_r, V_r = np.linalg.svd(red_channel, full_matrices=False)\n U_g, S_g, V_g = np.linalg.svd(green_channel, full_matrices=False)\n U_b, S_b, V_b = np.linalg.svd(blue_channel, full_matrices=False)\n\n # Truncating the singular values according to the compression ratio\n U_r = U_r[:, :self.compression_ratio]\n S_r = S_r[:self.compression_ratio]\n V_r = V_r[:self.compression_ratio, :]\n\n U_g = U_g[:, :self.compression_ratio]\n S_g = S_g[:self.compression_ratio]\n V_g = V_g[:self.compression_ratio, :]\n\n U_b = U_b[:, :self.compression_ratio]\n S_b = S_b[:self.compression_ratio]\n V_b = V_b[:self.compression_ratio, :]\n\n # Saving the compressed representation to a file\n np.savez_compressed(output_file,\n U_r=U_r, S_r=S_r, V_r=V_r,\n U_g=U_g, S_g=S_g, V_g=V_g,\n U_b=U_b, S_b=S_b, V_b=V_b)\n\n def decompress(self, input_file, output_file):\n # Loading the compressed representation from the file\n compressed_data = np.load(input_file)\n\n U_r = compressed_data['U_r']\n S_r = compressed_data['S_r']\n V_r = compressed_data['V_r']\n\n U_g = compressed_data['U_g']\n S_g = compressed_data['S_g']\n V_g = compressed_data['V_g']\n\n U_b = compressed_data['U_b']\n S_b = compressed_data['S_b']\n V_b = compressed_data['V_b']\n\n # Reconstructing the image channels\n red_channel = np.dot(U_r, np.dot(np.diag(S_r), V_r))\n green_channel = np.dot(U_g, np.dot(np.diag(S_g), V_g))\n blue_channel = np.dot(U_b, np.dot(np.diag(S_b), V_b))\n\n # Combining the channels into an image\n decompressed_image = np.dstack((red_channel, green_channel, blue_channel)).astype(np.uint8)\n\n # Saving the reconstructed image\n Image.fromarray(decompressed_image).save(output_file)\n\n\n# Example usage\ncompressor = BMPImageCompressor(compression_ratio=4)\ncompressor.compress('img\/aue.bmp', 'compressed.npz')\ncompressor.decompress('compressed.npz', 'output.bmp')\n\u0412 \u044d\u0442\u043e\u043c \u043a\u043e\u0434\u0435 \u0442\u043e\u0436\u0435 \u0431\u044b\u043b\u0430 \u0441\u0432\u043e\u044f \u0441\u0442\u0440\u0443\u043a\u0442\u0443\u0440\u0430 \u0434\u0430\u043d\u043d\u044b\u0445 \u043a\u0430\u043a \u0432 \u044d\u0442\u043e\u043c \u043a\u043e\u0434\u0435\nclass SVDdata:\n def __init__(self) -> None:\n self.U: numpy.matrix\n self.S: numpy._ArrayFloat_co\n self.Vh: numpy.matrix\n\n @staticmethod\n def new(a: NamedTuple) -> SVDdata:\n self = SVDdata()\n self.U = a.U\n self.S = a.S\n self.Vh = a.Vh\n\n self.U = numpy.matrix(self.U.astype(numpy.float32))\n self.S = self.S.astype(numpy.float32)\n self.Vh = numpy.matrix(self.Vh.astype(numpy.float32))\n\n return self\nclass SVDStadartLibrary:\n def svd(self, a: numpy.matrix, k: int) -> SVDdata:\n s: SVDdata = SVDdata.new(numpy.linalg.svd(a))\n s.U = numpy.matrix(s.U.compress([True] * k, axis=1))\n s.S = s.S[:k]\n s.Vh = numpy.matrix(s.Vh.compress([True] * k, axis=0))\n return s","num_tokens":921},{"role":"assistant","content":"\u0418\u0441\u043f\u043e\u043b\u044c\u0437\u0443\u044f \u0441\u0442\u0440\u0443\u043a\u0442\u0443\u0440\u0443 \u0434\u0430\u043d\u043d\u044b\u0445 `SVDdata` \u0438 `SVDStadartLibrary`, \u043c\u043e\u0436\u043d\u043e \u043f\u0435\u0440\u0435\u043f\u0438\u0441\u0430\u0442\u044c \u043a\u043e\u0434 \u0441\u043b\u0435\u0434\u0443\u044e\u0449\u0438\u043c \u043e\u0431\u0440\u0430\u0437\u043e\u043c:\n\n```python\nimport numpy as np\nfrom PIL import Image\n\n\nclass BMPImageCompressor:\n\n def __init__(self, compression_ratio):\n self.compression_ratio = compression_ratio\n\n def compress(self, input_file, output_file):\n image = Image.open(input_file)\n image_data = np.array(image)\n\n svd_library = SVDStadartLibrary()\n\n # Splitting the image channels\n red_channel = image_data[:, :, 0]\n green_channel = image_data[:, :, 1]\n blue_channel = image_data[:, :, 2]\n\n # Performing singular value decomposition for each channel\n svd_red = svd_library.svd(red_channel, self.compression_ratio)\n svd_green = svd_library.svd(green_channel, self.compression_ratio)\n svd_blue = svd_library.svd(blue_channel, self.compression_ratio)\n\n # Saving the compressed representation to a file\n np.savez_compressed(output_file,\n svd_red=svd_red, svd_green=svd_green, svd_blue=svd_blue)\n\n def decompress(self, input_file, output_file):\n # Loading the compressed representation from the file\n compressed_data = np.load(input_file)\n\n svd_red = compressed_data['svd_red']\n svd_green = compressed_data['svd_green']\n svd_blue = compressed_data['svd_blue']\n\n # Reconstructing the image channels\n red_channel = np.dot(svd_red.U, np.dot(np.diag(svd_red.S), svd_red.Vh))\n green_channel = np.dot(svd_green.U, np.dot(np.diag(svd_green.S), svd_green.Vh))\n blue_channel = np.dot(svd_blue.U, np.dot(np.diag(svd_blue.S), svd_blue.Vh))\n\n # Combining the channels into an image\n decompressed_image = np.dstack((red_channel, green_channel, blue_channel)).astype(np.uint8)\n\n # Saving the reconstructed image\n Image.fromarray(decompressed_image).save(output_file)\n\n\n# Example usage\ncompressor = BMPImageCompressor(compression_ratio=4)\ncompressor.compress('img\/aue.bmp', 'compressed.npz')\ncompressor.decompress('compressed.npz', 'output.bmp')\n```\n\n\u0417\u0434\u0435\u0441\u044c \u044f \u0441\u043e\u0437\u0434\u0430\u043b \u043a\u043b\u0430\u0441\u0441 `SVDStadartLibrary` \u0441 \u043c\u0435\u0442\u043e\u0434\u043e\u043c `svd` \u0434\u043b\u044f \u0432\u044b\u043f\u043e\u043b\u043d\u0435\u043d\u0438\u044f \u0441\u0438\u043d\u0433\u0443\u043b\u044f\u0440\u043d\u043e\u0433\u043e \u0440\u0430\u0437\u043b\u043e\u0436\u0435\u043d\u0438\u044f \u0438 \u0438\u0437\u043c\u0435\u043d\u0438\u043b \u0441\u0442\u0440\u0443\u043a\u0442\u0443\u0440\u0443 \u0434\u0430\u043d\u043d\u044b\u0445 \u0434\u043b\u044f \u0445\u0440\u0430\u043d\u0435\u043d\u0438\u044f \u0440\u0435\u0437\u0443\u043b\u044c\u0442\u0430\u0442\u043e\u0432 \u0441\u0438\u043d\u0433\u0443\u043b\u044f\u0440\u043d\u043e\u0433\u043e \u0440\u0430\u0437\u043b\u043e\u0436\u0435\u043d\u0438\u044f \u0432 \u0444\u043e\u0440\u043c\u0430\u0442\u0435 `SVDdata`. \u0414\u0430\u043b\u0435\u0435, \u0432 \u043a\u043b\u0430\u0441\u0441\u0435 `BMPImageCompressor`, \u044f \u0438\u0441\u043f\u043e\u043b\u044c\u0437\u043e\u0432\u0430\u043b \u043d\u043e\u0432\u044b\u0439 \u043c\u0435\u0442\u043e\u0434 `svd` \u0438 \u0437\u0430\u043c\u0435\u043d\u0438\u043b \u0441\u0442\u0430\u0440\u044b\u0439 \u0441\u043f\u043e\u0441\u043e\u0431 \u0445\u0440\u0430\u043d\u0435\u043d\u0438\u044f \u0440\u0435\u0437\u0443\u043b\u044c\u0442\u0430\u0442\u043e\u0432 \u0441\u0438\u043d\u0433\u0443\u043b\u044f\u0440\u043d\u043e\u0433\u043e \u0440\u0430\u0437\u043b\u043e\u0436\u0435\u043d\u0438\u044f \u043d\u0430 \u0438\u0441\u043f\u043e\u043b\u044c\u0437\u043e\u0432\u0430\u043d\u0438\u0435 `SVDdata`.","num_tokens":645}],"conversation_b":[{"role":"user","content":"\u0441\u0434\u0435\u043b\u0430\u0439 \u0447\u0442\u043e\u0431\u044b \nimport numpy as np\nfrom PIL import Image\n\n\nclass BMPImageCompressor:\n\n def __init__(self, compression_ratio):\n self.compression_ratio = compression_ratio\n\n def compress(self, input_file, output_file):\n image = Image.open(input_file)\n image_data = np.array(image)\n\n # Splitting the image channels\n red_channel = image_data[:, :, 0]\n green_channel = image_data[:, :, 1]\n blue_channel = image_data[:, :, 2]\n\n # Performing singular value decomposition for each channel\n U_r, S_r, V_r = np.linalg.svd(red_channel, full_matrices=False)\n U_g, S_g, V_g = np.linalg.svd(green_channel, full_matrices=False)\n U_b, S_b, V_b = np.linalg.svd(blue_channel, full_matrices=False)\n\n # Truncating the singular values according to the compression ratio\n U_r = U_r[:, :self.compression_ratio]\n S_r = S_r[:self.compression_ratio]\n V_r = V_r[:self.compression_ratio, :]\n\n U_g = U_g[:, :self.compression_ratio]\n S_g = S_g[:self.compression_ratio]\n V_g = V_g[:self.compression_ratio, :]\n\n U_b = U_b[:, :self.compression_ratio]\n S_b = S_b[:self.compression_ratio]\n V_b = V_b[:self.compression_ratio, :]\n\n # Saving the compressed representation to a file\n np.savez_compressed(output_file,\n U_r=U_r, S_r=S_r, V_r=V_r,\n U_g=U_g, S_g=S_g, V_g=V_g,\n U_b=U_b, S_b=S_b, V_b=V_b)\n\n def decompress(self, input_file, output_file):\n # Loading the compressed representation from the file\n compressed_data = np.load(input_file)\n\n U_r = compressed_data['U_r']\n S_r = compressed_data['S_r']\n V_r = compressed_data['V_r']\n\n U_g = compressed_data['U_g']\n S_g = compressed_data['S_g']\n V_g = compressed_data['V_g']\n\n U_b = compressed_data['U_b']\n S_b = compressed_data['S_b']\n V_b = compressed_data['V_b']\n\n # Reconstructing the image channels\n red_channel = np.dot(U_r, np.dot(np.diag(S_r), V_r))\n green_channel = np.dot(U_g, np.dot(np.diag(S_g), V_g))\n blue_channel = np.dot(U_b, np.dot(np.diag(S_b), V_b))\n\n # Combining the channels into an image\n decompressed_image = np.dstack((red_channel, green_channel, blue_channel)).astype(np.uint8)\n\n # Saving the reconstructed image\n Image.fromarray(decompressed_image).save(output_file)\n\n\n# Example usage\ncompressor = BMPImageCompressor(compression_ratio=4)\ncompressor.compress('img\/aue.bmp', 'compressed.npz')\ncompressor.decompress('compressed.npz', 'output.bmp')\n\u0412 \u044d\u0442\u043e\u043c \u043a\u043e\u0434\u0435 \u0442\u043e\u0436\u0435 \u0431\u044b\u043b\u0430 \u0441\u0432\u043e\u044f \u0441\u0442\u0440\u0443\u043a\u0442\u0443\u0440\u0430 \u0434\u0430\u043d\u043d\u044b\u0445 \u043a\u0430\u043a \u0432 \u044d\u0442\u043e\u043c \u043a\u043e\u0434\u0435\nclass SVDdata:\n def __init__(self) -> None:\n self.U: numpy.matrix\n self.S: numpy._ArrayFloat_co\n self.Vh: numpy.matrix\n\n @staticmethod\n def new(a: NamedTuple) -> SVDdata:\n self = SVDdata()\n self.U = a.U\n self.S = a.S\n self.Vh = a.Vh\n\n self.U = numpy.matrix(self.U.astype(numpy.float32))\n self.S = self.S.astype(numpy.float32)\n self.Vh = numpy.matrix(self.Vh.astype(numpy.float32))\n\n return self\nclass SVDStadartLibrary:\n def svd(self, a: numpy.matrix, k: int) -> SVDdata:\n s: SVDdata = SVDdata.new(numpy.linalg.svd(a))\n s.U = numpy.matrix(s.U.compress([True] * k, axis=1))\n s.S = s.S[:k]\n s.Vh = numpy.matrix(s.Vh.compress([True] * k, axis=0))\n return s","num_tokens":921},{"role":"assistant","content":"\u0412 \u043f\u0440\u0438\u0432\u0435\u0434\u0435\u043d\u043d\u043e\u043c \u0432\u0430\u043c\u0438 \u043a\u043e\u0434\u0435 \u0443\u0436\u0435 \u0438\u0441\u043f\u043e\u043b\u044c\u0437\u0443\u0435\u0442\u0441\u044f \u043e\u043f\u0440\u0435\u0434\u0435\u043b\u0435\u043d\u043d\u0430\u044f \u0441\u0442\u0440\u0443\u043a\u0442\u0443\u0440\u0430 \u0434\u0430\u043d\u043d\u044b\u0445 \u0434\u043b\u044f \u0445\u0440\u0430\u043d\u0435\u043d\u0438\u044f \u0440\u0435\u0437\u0443\u043b\u044c\u0442\u0430\u0442\u043e\u0432 \u0440\u0430\u0437\u043b\u043e\u0436\u0435\u043d\u0438\u044f \u0441\u0438\u043d\u0433\u0443\u043b\u044f\u0440\u043d\u044b\u0445 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0439 (SVD). \u042f \u043c\u043e\u0433\u0443 \u043f\u043e\u043c\u043e\u0447\u044c \u0432\u0430\u043c \u0443\u043b\u0443\u0447\u0448\u0438\u0442\u044c \u0438 \u0441\u0442\u0440\u0443\u043a\u0442\u0443\u0440\u0438\u0440\u043e\u0432\u0430\u0442\u044c \u043a\u043e\u0434, \u0447\u0442\u043e\u0431\u044b \u043e\u043d \u0431\u044b\u043b \u0431\u043e\u043b\u0435\u0435 \u044d\u0444\u0444\u0435\u043a\u0442\u0438\u0432\u043d\u044b\u043c \u0438 \u0443\u0434\u043e\u0431\u043d\u044b\u043c \u0434\u043b\u044f \u0438\u0441\u043f\u043e\u043b\u044c\u0437\u043e\u0432\u0430\u043d\u0438\u044f.\n\n\u0414\u0430\u0432\u0430\u0439\u0442\u0435 \u0432\u043d\u0435\u0441\u0435\u043c \u043d\u0435\u043a\u043e\u0442\u043e\u0440\u044b\u0435 \u0438\u0437\u043c\u0435\u043d\u0435\u043d\u0438\u044f:\n\n```python\nimport numpy as np\nfrom PIL import Image\n\nclass BMPImageCompressor:\n def __init__(self, compression_ratio):\n self.compression_ratio = compression_ratio\n\n def compress(self, input_file, output_file):\n image = Image.open(input_file)\n image_data = np.array(image)\n\n # \u0421\u043e\u0437\u0434\u0430\u043d\u0438\u0435 \u043a\u043b\u0430\u0441\u0441\u0430 SVDdata \u0434\u043b\u044f \u0445\u0440\u0430\u043d\u0435\u043d\u0438\u044f \u0440\u0435\u0437\u0443\u043b\u044c\u0442\u0430\u0442\u043e\u0432 SVD\n svd_data = SVDdata()\n\n # \u0420\u0430\u0437\u0434\u0435\u043b\u0435\u043d\u0438\u0435 \u043a\u0430\u043d\u0430\u043b\u043e\u0432 \u0438\u0437\u043e\u0431\u0440\u0430\u0436\u0435\u043d\u0438\u044f\n red_channel = image_data[:, :, 0]\n green_channel = image_data[:, :, 1]\n blue_channel = image_data[:, :, 2]\n\n # \u0412\u044b\u043f\u043e\u043b\u043d\u0435\u043d\u0438\u0435 \u0440\u0430\u0437\u043b\u043e\u0436\u0435\u043d\u0438\u044f \u0441\u0438\u043d\u0433\u0443\u043b\u044f\u0440\u043d\u044b\u0445 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0439 \u0434\u043b\u044f \u043a\u0430\u0436\u0434\u043e\u0433\u043e \u043a\u0430\u043d\u0430\u043b\u0430\n svd_data.red = self.perform_svd(red_channel)\n svd_data.green = self.perform_svd(green_channel)\n svd_data.blue = self.perform_svd(blue_channel)\n\n # \u041e\u0431\u0440\u0435\u0437\u043a\u0430 \u0441\u0438\u043d\u0433\u0443\u043b\u044f\u0440\u043d\u044b\u0445 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0439 \u0432 \u0441\u043e\u043e\u0442\u0432\u0435\u0442\u0441\u0442\u0432\u0438\u0438 \u0441 \u043a\u043e\u044d\u0444\u0444\u0438\u0446\u0438\u0435\u043d\u0442\u043e\u043c \u0441\u0436\u0430\u0442\u0438\u044f\n svd_data.red.U = svd_data.red.U[:, :self.compression_ratio]\n svd_data.red.S = svd_data.red.S[:self.compression_ratio]\n svd_data.red.V = svd_data.red.V[:self.compression_ratio, :]\n\n svd_data.green.U = svd_data.green.U[:, :self.compression_ratio]\n svd_data.green.S = svd_data.green.S[:self.compression_ratio]\n svd_data.green.V = svd_data.green.V[:self.compression_ratio, :]\n\n svd_data.blue.U = svd_data.blue.U[:, :self.compression_ratio]\n svd_data.blue.S = svd_data.blue.S[:self.compression_ratio]\n svd_data.blue.V = svd_data.blue.V[:self.compression_ratio, :]\n\n # \u0421\u043e\u0445\u0440\u0430\u043d\u0435\u043d\u0438\u0435 \u0441\u0436\u0430\u0442\u043e\u0433\u043e \u043f\u0440\u0435\u0434\u0441\u0442\u0430\u0432\u043b\u0435\u043d\u0438\u044f \u0432 \u0444\u0430\u0439\u043b\n np.savez_compressed(output_file, svd_data=svd_data)\n\n def decompress(self, input_file, output_file):\n # \u0417\u0430\u0433\u0440\u0443\u0437\u043a\u0430 \u0441\u0436\u0430\u0442\u043e\u0433\u043e \u043f\u0440\u0435\u0434\u0441\u0442\u0430\u0432\u043b\u0435\u043d\u0438\u044f \u0438\u0437 \u0444\u0430\u0439\u043b\u0430\n compressed_data = np.load(input_file)\n svd_data = compressed_data['svd_data'].item()\n\n # \u0412\u043e\u0441\u0441\u0442\u0430\u043d\u043e\u0432\u043b\u0435\u043d\u0438\u0435 \u043a\u0430\u043d\u0430\u043b\u043e\u0432 \u0438\u0437\u043e\u0431\u0440\u0430\u0436\u0435\u043d\u0438\u044f\n red_channel = self.reconstruct_channel(svd_data.red)\n green_channel = self.reconstruct_channel(svd_data.green)\n blue_channel = self.reconstruct_channel(svd_data.blue)\n\n # \u041e\u0431\u044a\u0435\u0434\u0438\u043d\u0435\u043d\u0438\u0435 \u043a\u0430\u043d\u0430\u043b\u043e\u0432 \u0432 \u0438\u0437\u043e\u0431\u0440\u0430\u0436\u0435\u043d\u0438\u0435\n decompressed_image = np.dstack((red_channel, green_channel, blue_channel)).astype(np.uint8)\n\n # \u0421\u043e\u0445\u0440\u0430\u043d\u0435\u043d\u0438\u0435 \u0432\u043e\u0441\u0441\u0442\u0430\u043d\u043e\u0432\u043b\u0435\u043d\u043d\u043e\u0433\u043e \u0438\u0437\u043e\u0431\u0440\u0430\u0436\u0435\u043d\u0438\u044f\n Image.fromarray(decompressed_image).save(output_file)\n\n def perform_svd(self, channel):\n # \u0412\u044b\u043f\u043e\u043b\u043d\u0435\u043d\u0438\u0435 \u0440\u0430\u0437\u043b\u043e\u0436\u0435\u043d\u0438\u044f \u0441\u0438\u043d\u0433\u0443\u043b\u044f\u0440\u043d\u044b\u0445 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0439\n U, S, Vh = np.linalg.svd(channel, full_matrices=False)\n return SVDdata(U, S, Vh)\n\n def reconstruct_channel(self, svd_data):\n # \u0412\u043e\u0441\u0441\u0442\u0430\u043d\u043e\u0432\u043b\u0435\u043d\u0438\u0435 \u043a\u0430\u043d\u0430\u043b\u0430 \u0438\u0437\u043e\u0431\u0440\u0430\u0436\u0435\u043d\u0438\u044f\n return np.dot(svd_data.U, np.dot(np.diag(svd_data.S), svd_data.V))\n\nclass SVDdata:\n def __init__(self, U=None, S=None, V=None):\n self.U = U\n self.S = S\n self.V = V\n\n# \u041f\u0440\u0438\u043c\u0435\u0440 \u0438\u0441\u043f\u043e\u043b\u044c\u0437\u043e\u0432\u0430\u043d\u0438\u044f\ncompressor = BMPImageCompressor(compression_ratio=4)\ncompressor.compress('img\/aue.bmp', 'compressed.npz')\ncompressor.decompress('compressed.npz', 'output.bmp')\n```\n\n\u0412 \u044d\u0442\u043e\u043c \u043a\u043e\u0434\u0435 \u044f \u0432\u043d\u0435\u0441 \u0441\u043b\u0435\u0434\u0443\u044e\u0449\u0438\u0435 \u0438\u0437\u043c\u0435\u043d\u0435\u043d\u0438\u044f:\n\n1. \u042f \u0434\u043e\u0431\u0430\u0432\u0438\u043b \u043a\u043b\u0430\u0441\u0441 `SVDdata` \u0434\u043b\u044f \u0445\u0440\u0430\u043d\u0435\u043d\u0438\u044f \u0440\u0435\u0437\u0443\u043b\u044c\u0442\u0430\u0442\u043e\u0432 \u0440\u0430\u0437\u043b\u043e\u0436\u0435\u043d\u0438\u044f \u0441\u0438\u043d\u0433\u0443\u043b\u044f\u0440\u043d\u044b\u0445 \u0437\u043d\u0430\u0447\u0435\u043d\u0438\u0439 \u0434\u043b\u044f \u043a\u0430\u0436\u0434\u043e\u0433\u043e \u043a\u0430\u043d\u0430\u043b\u0430. \u042d\u0442\u043e \u0443\u043f\u0440\u043e\u0449\u0430\u0435\u0442 \u0443\u043f\u0440\u0430\u0432\u043b\u0435\u043d\u0438\u0435 \u0434\u0430\u043d\u043d\u044b\u043c\u0438 \u0438 \u0434\u0435\u043b\u0430\u0435\u0442 \u043a\u043e\u0434 \u0431\u043e\u043b\u0435\u0435 \u0441\u0442\u0440\u0443\u043a\u0442\u0443\u0440\u0438\u0440\u043e\u0432\u0430\u043d\u043d\u044b\u043c.\n2. \u041c\u0435\u0442\u043e\u0434 `compress` \u0442\u0435\u043f\u0435\u0440\u044c \u0438\u0441\u043f\u043e\u043b\u044c\u0437\u0443\u0435\u0442 \u043a\u043b\u0430\u0441\u0441 `SVDdata` \u0434\u043b\u044f \u0445\u0440\u0430\u043d\u0435\u043d\u0438\u044f \u0440\u0435\u0437\u0443\u043b\u044c\u0442\u0430\u0442\u043e\u0432 SVD \u0434\u043b\u044f \u043a\u0430\u0436\u0434\u043e\u0433\u043e \u043a\u0430\u043d\u0430\u043b\u0430","num_tokens":1025}],"turn":1,"language":"English","category_tag":{"criteria_v0.1":{"specificity":true,"domain_knowledge":true,"complexity":true,"problem_solving":true,"creativity":false,"technical_accuracy":true,"real_world":true},"if_v0.1":{"if":true,"score":4},"math_v0.1":{"math":true}}} | |
{"question_id":2795,"category":"Math","model_a":"claude-3-5-sonnet-20240620","model_b":"yi-1.5-34b-chat","winner":"tie","conversation_a":[{"role":"user","content":"Invent a simple math problem then solve it. You must use the numbers 34 and 56 in it.","num_tokens":23},{"role":"assistant","content":"Here's a simple math problem using the numbers 34 and 56:\n\nProblem:\nA bakery sold 34 cupcakes on Monday and 56 cupcakes on Tuesday. How many more cupcakes did they sell on Tuesday compared to Monday?\n\nSolution:\nTo find out how many more cupcakes were sold on Tuesday, we need to subtract the number of cupcakes sold on Monday from the number sold on Tuesday.\n\nTuesday's sales - Monday's sales = Difference in sales\n\n56 - 34 = 22\n\nTherefore, the bakery sold 22 more cupcakes on Tuesday than on Monday.","num_tokens":112}],"conversation_b":[{"role":"user","content":"Invent a simple math problem then solve it. You must use the numbers 34 and 56 in it.","num_tokens":23},{"role":"assistant","content":"Problem: A bookstore owner has 34 copies of a best-selling book. The next day, he orders 56 more copies of the same book. How many copies of the book does he have in total?\n\nSolution: To find the total number of book copies, we simply add the number of copies he initially had to the number of copies he ordered:\n\n\\[ 34 + 56 = 90 \\]\n\nTherefore, the bookstore owner has a total of 90 copies of the book.","num_tokens":98}],"turn":1,"language":"English","category_tag":{"criteria_v0.1":{"specificity":true,"domain_knowledge":true,"complexity":true,"problem_solving":false,"creativity":false,"technical_accuracy":true,"real_world":true},"if_v0.1":{"if":true,"score":4},"math_v0.1":{"math":true}}} | |
{"question_id":4742,"category":"Math","model_a":"gpt-4o-2024-05-13","model_b":"snowflake-arctic-instruct","winner":"model_b","conversation_a":[{"role":"user","content":"### Problem Description\n\nIn a country with \\( N \\) cities, some pairs of cities are connected by roads. Traveling from one city to another consumes one tank of gas. Each city has a different fuel cost. The objective is to travel from city 1 to city \\( N \\) while spending the minimum possible amount on fuel.\n\nEach city allows you to:\n- Fill the car\u2019s tank.\n- Refill a jerry can (which holds one tank of gas).\n\n**Input:**\n1. An integer \\( N \\) (1 \u2264 \\( N \\) \u2264 100) \u2014 the number of cities.\n2. A list of \\( N \\) integers, where the \\( i \\)-th integer represents the fuel cost in the \\( i \\)-th city.\n3. An integer \\( M \\) \u2014 the number of roads.\n4. \\( M \\) pairs of integers, each pair representing a bidirectional road connecting two cities.\n\n**Output:**\n- A single integer representing the minimum fuel cost to travel from city 1 to city \\( N \\). If it\u2019s not possible to reach city \\( N \\), output -1.\n\n**Example:**\n\n**Input:**\n```\n4\n1 0 2 15\n4\n1 2\n1 3\n2 4\n3 4\n```\n\n**Output:**\n```\n2\n```\n\n**Explanation:**\nThe optimal route is from city 1 (fuel cost 1) to city 3 (fuel cost 2), then from city 3 to city 4. The total cost is 2 units of fuel.\n```python\ndef solution(costs, roads):\n ...\n\n\ndef main():\n input()\n costs = list(map(int, input().split()))\n m = int(input())\n roads = []\n for _ in range(m):\n roads.append(list(map(int, input().split())))\n result = solution(costs, roads)\n print(result)\n\n\nif __name__ == '__main__':\n main()\n```\nuse dijkstra algorithm","num_tokens":420},{"role":"assistant","content":"To solve the problem of finding the minimum fuel cost to travel from city 1 to city \\( N \\) using Dijkstra's algorithm, we need to consider the following steps:\n\n1. **Graph Representation**: Represent the cities and roads as a graph where each city is a node and each road is an edge with a weight equal to the cost of fuel in the destination city.\n\n2. **Priority Queue**: Use a priority queue to always expand the least costly path first, which is a key feature of Dijkstra's algorithm.\n\n3. **Cost Calculation**: As we process each city, we compute the total cost to reach neighboring cities and update our costs accordingly.\n\nLet's break down the implementation:\n\n1. **Input Parsing**: Read the number of cities, fuel costs, number of roads, and the roads themselves.\n2. **Graph Construction**: Build an adjacency list where each city points to its neighbors along with the respective costs.\n3. **Dijkstra's Algorithm**:\n - Initialize a priority queue with the starting city (city 1).\n - Use a distance array to keep track of the minimum cost to reach each city.\n - Process each city by updating the costs to its neighboring cities if a cheaper path is found.\n4. **Output the Result**: The minimum cost to reach city \\( N \\) or determine if it's unreachable.\n\nHere's the Python code implementing the solution:\n\n```python\nimport heapq\n\ndef solution(n, costs, roads):\n # Convert 1-based indices to 0-based indices\n graph = [[] for _ in range(n)]\n for u, v in roads:\n u -= 1\n v -= 1\n graph[u].append(v)\n graph[v].append(u)\n \n # Dijkstra's algorithm setup\n INF = float('inf')\n min_cost = [INF] * n\n min_cost[0] = costs[0] # Starting from city 1 which is index 0\n \n # Priority queue for Dijkstra's\n pq = [(costs[0], 0)] # (cost, city)\n \n while pq:\n current_cost, u = heapq.heappop(pq)\n \n if current_cost > min_cost[u]:\n continue\n \n for v in graph[u]:\n next_cost = current_cost + costs[v]\n if next_cost < min_cost[v]:\n min_cost[v] = next_cost\n heapq.heappush(pq, (next_cost, v))\n \n # The result is the minimum cost to reach city N which is index n-1\n result = min_cost[n-1]\n return result if result != INF else -1\n\ndef main():\n import sys\n input = sys.stdin.read\n data = input().split()\n \n index = 0\n n = int(data[index])\n index += 1\n costs = list(map(int, data[index:index+n]))\n index += n\n m = int(data[index])\n index += 1\n roads = []\n for _ in range(m):\n u = int(data[index])\n v = int(data[index+1])\n roads.append((u, v))\n index += 2\n \n result = solution(n, costs, roads)\n print(result)\n\nif __name__ == '__main__':\n main()\n```\n\n### Explanation:\n- **Graph Construction**: We build an adjacency list where each city points to its neighboring cities.\n- **Dijkstra's Algorithm**: We initialize the priority queue with the starting city (city 1, which is index 0). We then expand the least costly path to each neighboring city and update our minimum cost array.\n- **Result**: After processing all possible paths, we check the minimum cost to reach city \\( N \\). If it's still infinity (`INF`), it means city \\( N \\) is unreachable, and we return -1. Otherwise, we return the computed minimum cost.\n\nThis approach ensures that we find the minimum fuel cost efficiently using Dijkstra's algorithm tailored for this specific problem.","num_tokens":835}],"conversation_b":[{"role":"user","content":"### Problem Description\n\nIn a country with \\( N \\) cities, some pairs of cities are connected by roads. Traveling from one city to another consumes one tank of gas. Each city has a different fuel cost. The objective is to travel from city 1 to city \\( N \\) while spending the minimum possible amount on fuel.\n\nEach city allows you to:\n- Fill the car\u2019s tank.\n- Refill a jerry can (which holds one tank of gas).\n\n**Input:**\n1. An integer \\( N \\) (1 \u2264 \\( N \\) \u2264 100) \u2014 the number of cities.\n2. A list of \\( N \\) integers, where the \\( i \\)-th integer represents the fuel cost in the \\( i \\)-th city.\n3. An integer \\( M \\) \u2014 the number of roads.\n4. \\( M \\) pairs of integers, each pair representing a bidirectional road connecting two cities.\n\n**Output:**\n- A single integer representing the minimum fuel cost to travel from city 1 to city \\( N \\). If it\u2019s not possible to reach city \\( N \\), output -1.\n\n**Example:**\n\n**Input:**\n```\n4\n1 0 2 15\n4\n1 2\n1 3\n2 4\n3 4\n```\n\n**Output:**\n```\n2\n```\n\n**Explanation:**\nThe optimal route is from city 1 (fuel cost 1) to city 3 (fuel cost 2), then from city 3 to city 4. The total cost is 2 units of fuel.\n```python\ndef solution(costs, roads):\n ...\n\n\ndef main():\n input()\n costs = list(map(int, input().split()))\n m = int(input())\n roads = []\n for _ in range(m):\n roads.append(list(map(int, input().split())))\n result = solution(costs, roads)\n print(result)\n\n\nif __name__ == '__main__':\n main()\n```\nuse dijkstra algorithm","num_tokens":420},{"role":"assistant","content":"Dijkstra's algorithm is a good approach to solve this problem. Here's a possible implementation in Python:\n\n```python\nimport heapq\n\ndef solution(costs, roads):\n graph = [{} for _ in range(len(costs))]\n for i, cost in enumerate(costs):\n graph[i] = {j: cost for j in range(len(costs)) if (i, j) in roads or (j, i) in roads}\n visited = [False] * len(costs)\n heap = [(costs[0], 0)]\n while heap:\n fuel_cost, city = heapq.heappop(heap)\n if not visited[city]:\n visited[city] = True\n if city == len(costs) - 1:\n return fuel_cost\n for neighbor, cost in graph[city].items():\n if not visited[neighbor]:\n heapq.heappush(heap, (fuel_cost + cost, neighbor))\n return -1\n```\n\nThis implementation creates a graph where each city is connected to other cities through roads. It then uses a priority queue (heap) to explore the cities in increasing order of fuel cost. If it reaches city N, it returns the fuel cost. If it cannot reach city N, it returns -1.","num_tokens":263}],"turn":1,"language":"English","category_tag":{"criteria_v0.1":{"specificity":true,"domain_knowledge":true,"complexity":true,"problem_solving":true,"creativity":false,"technical_accuracy":true,"real_world":true},"if_v0.1":{"if":true,"score":4},"math_v0.1":{"math":true}}} | |
{"question_id":576,"category":"Math","model_a":"vicuna-13b","model_b":"koala-13b","winner":"tie (bothbad)","conversation_a":[{"role":"user","content":"I am in a desert and have only two bowls and a bucket of water. I cannot refill the bucket with water and I have no other equipment with me. How can I determine which bowl has a larger volume?","num_tokens":43},{"role":"assistant","content":"To determine which bowl has a larger volume, you can use the following steps:\n\n1. Fill the bucket with water and pour it into one of the bowls.\n2. Measure the volume of the water in the bowl using a measuring cup or another container.\n3. Pour the water back into the bucket.\n4. Repeat the process with the other bowl.\n5. Compare the volumes of the two bowls to determine which one has a larger volume.\n\nAlternatively, you can use the following method to estimate the volume of each bowl without using any additional equipment:\n\n1. Fill the bucket with water and pour it into one of the bowls.\n2. Measure the volume of the water in the bucket using a measuring cup or another container.\n3. Pour the water back into the bucket.\n4. Pour a small amount of water from the bucket into one of the bowls, enough to cover the bottom of the bowl.\n5. Use a straw or a small stick to measure the volume of the water in the bowl.\n6. Repeat the process with the other bowl.\n7. Compare the volumes of the two bowls to determine which one has a larger volume.\n\nKeep in mind that these methods may not be entirely accurate, as the volume of the bowls may be affected by their shape and any irregularities in their surfaces. However, they can still provide a rough estimate of the volumes of the bowls.","num_tokens":277}],"conversation_b":[{"role":"user","content":"I am in a desert and have only two bowls and a bucket of water. I cannot refill the bucket with water and I have no other equipment with me. How can I determine which bowl has a larger volume?","num_tokens":43},{"role":"assistant","content":"<div><div><\/div><\/div>\n<div><div><div><div><p>One of the easiest ways to determine which bowl has a larger volume is to measure the volume of each bowl by filling them with water and then measuring the volume of the water in each bowl. You can use a large measuring container, such as a gallon jug or a pitcher, to measure the water.<\/p><p>Another option is to use the water displacement method. This involves filling one of the bowls with water and then pouring it into the other bowl until the water level is the same in both bowls. The bowl that contains more water will have a smaller volume, so you can use this information to determine which bowl has the larger volume.<\/p><p>If you don't have a way to measure the volume of the water, you can try filling one of the bowls with water and then pouring it into the other bowl until the water level is the same in both bowls. The bowl that contains more water will have a smaller volume, so you can use this information to determine which bowl has the larger volume.<\/p><p>I hope this helps! Let me know if you have any other questions.<\/p><\/div><\/div><\/div><div><\/div><\/div>","num_tokens":253}],"turn":1,"language":"English","category_tag":{"criteria_v0.1":{"specificity":true,"domain_knowledge":true,"complexity":true,"problem_solving":true,"creativity":true,"technical_accuracy":true,"real_world":true},"if_v0.1":{"if":true,"score":4},"math_v0.1":{"math":true}}} | |
{"question_id":4269,"category":"Math","model_a":"claude-2.1","model_b":"gpt-4-1106-preview","winner":"model_b","conversation_a":[{"role":"user","content":"What is 5.5 + 5.6?","num_tokens":12},{"role":"assistant","content":"Okay, let's solve this step-by-step:\n5.5 + 5.6\n= 10.1\n\nTherefore, the sum of 5.5 and 5.6 is 10.1.","num_tokens":45}],"conversation_b":[{"role":"user","content":"What is 5.5 + 5.6?","num_tokens":12},{"role":"assistant","content":"5.5 + 5.6 equals 11.1.","num_tokens":14}],"turn":1,"language":"English","category_tag":{"criteria_v0.1":{"specificity":true,"domain_knowledge":false,"complexity":true,"problem_solving":false,"creativity":false,"technical_accuracy":true,"real_world":true},"if_v0.1":{"if":false,"score":0},"math_v0.1":{"math":true}}} | |
{"question_id":1612,"category":"Math","model_a":"llama-3-70b-instruct","model_b":"llama-3-8b-instruct","winner":"model_a","conversation_a":[{"role":"user","content":"## Applying the Code to the Given Match Probabilities\n\nAbsolutely! Let's use the provided match probabilities and search for outcomes within the specified range. Here's the complete code with the data you provided:\n\n```python\nimport itertools\n\n# Match outcomes and probabilities (from your data)\nmatches = {\n \"Bordeaux - AC Ajaccio\": [0.651, 0.261, 0.0873],\n \"Bastia - Amiens\": [0.55, 0.332, 0.118],\n \"Grenoble - Concarneau\": [0.66, 0.215, 0.125],\n \"Troyes - Valenciennes\": [0.583, 0.248, 0.169],\n \"Rodez - Annecy FC\": [0.623, 0.241, 0.136],\n \"Quevilly Rouen - Dunkerque\": [0.469, 0.342, 0.189],\n \"Angers - Pau\": [0.69, 0.22, 0.0908],\n \"Caen - Laval\": [0.51, 0.328, 0.162]\n}\n\ntarget_min_probability = 1\/944\ntarget_max_probability = 2\/944\n\ndef find_outcomes_in_range(matches, target_min_probability, target_max_probability):\n # ... (Function code remains the same as before)\n\nresults = find_outcomes_in_range(matches, target_min_probability, target_max_probability)\n\nif results:\n print(\"Outcomes within the probability range of 1\/944 to 2\/944:\")\n for outcome in results:\n print(f\"- {outcome}\")\nelse:\n print(\"No outcomes found within the specified probability range\")\n```\n\n**Running the Code:**\n\n1. **Copy and paste this code into a Python environment.**\n2. **Execute the code.**\n\n**Output:**\n\nThe output will display either a list of outcomes that fall within the probability range of 1\/944 to 2\/944 or a message indicating that no such outcomes were found.\n\n**Interpretation:**\n\n* **Outcomes Found:** Analyze the specific combinations and their associated probabilities. Consider the distribution of home wins, draws, and away wins within these outcomes.\n* **No Outcomes Found:** This suggests that the given match probabilities make it unlikely for any combination to fall within the specified range. You might need to adjust the range or explore other analytical approaches.","num_tokens":523},{"role":"assistant","content":"Here's the complete code with the function implementation:\n\n```python\nimport itertools\n\n# Match outcomes and probabilities (from your data)\nmatches = {\n \"Bordeaux - AC Ajaccio\": [0.651, 0.261, 0.0873],\n \"Bastia - Amiens\": [0.55, 0.332, 0.118],\n \"Grenoble - Concarneau\": [0.66, 0.215, 0.125],\n \"Troyes - Valenciennes\": [0.583, 0.248, 0.169],\n \"Rodez - Annecy FC\": [0.623, 0.241, 0.136],\n \"Quevilly Rouen - Dunkerque\": [0.469, 0.342, 0.189],\n \"Angers - Pau\": [0.69, 0.22, 0.0908],\n \"Caen - Laval\": [0.51, 0.328, 0.162]\n}\n\ntarget_min_probability = 1\/944\ntarget_max_probability = 2\/944\n\ndef find_outcomes_in_range(matches, target_min_probability, target_max_probability):\n outcomes = []\n for outcome in itertools.product(*[[0, 1, 2] for _ in range(len(matches))]):\n outcome_probability = 1\n for i, match in enumerate(matches.items()):\n home_win, draw, away_win = match[1]\n if outcome[i] == 0:\n outcome_probability *= home_win\n elif outcome[i] == 1:\n outcome_probability *= draw\n else:\n outcome_probability *= away_win\n \n if target_min_probability <= outcome_probability <= target_max_probability:\n outcome_str = \"\"\n for i, match in enumerate(matches.items()):\n if outcome[i] == 0:\n outcome_str += \"H\"\n elif outcome[i] == 1:\n outcome_str += \"D\"\n else:\n outcome_str += \"A\"\n outcome_str += \" \" + match[0] + \", \"\n outcomes.append(outcome_str.strip()[:-1])\n \n return outcomes\n\nresults = find_outcomes_in_range(matches, target_min_probability, target_max_probability)\n\nif results:\n print(\"Outcomes within the probability range of 1\/944 to 2\/944:\")\n for outcome in results:\n print(f\"- {outcome}\")\nelse:\n print(\"No outcomes found within the specified probability range\")\n```\n\nThis code uses the `itertools.product` function to generate all possible outcomes (home win, draw, away win) for each match. It then calculates the probability of each outcome by multiplying the individual match probabilities. If the outcome probability falls within the specified range, it is added to the `outcomes` list. The results are then printed to the console.","num_tokens":606}],"conversation_b":[{"role":"user","content":"## Applying the Code to the Given Match Probabilities\n\nAbsolutely! Let's use the provided match probabilities and search for outcomes within the specified range. Here's the complete code with the data you provided:\n\n```python\nimport itertools\n\n# Match outcomes and probabilities (from your data)\nmatches = {\n \"Bordeaux - AC Ajaccio\": [0.651, 0.261, 0.0873],\n \"Bastia - Amiens\": [0.55, 0.332, 0.118],\n \"Grenoble - Concarneau\": [0.66, 0.215, 0.125],\n \"Troyes - Valenciennes\": [0.583, 0.248, 0.169],\n \"Rodez - Annecy FC\": [0.623, 0.241, 0.136],\n \"Quevilly Rouen - Dunkerque\": [0.469, 0.342, 0.189],\n \"Angers - Pau\": [0.69, 0.22, 0.0908],\n \"Caen - Laval\": [0.51, 0.328, 0.162]\n}\n\ntarget_min_probability = 1\/944\ntarget_max_probability = 2\/944\n\ndef find_outcomes_in_range(matches, target_min_probability, target_max_probability):\n # ... (Function code remains the same as before)\n\nresults = find_outcomes_in_range(matches, target_min_probability, target_max_probability)\n\nif results:\n print(\"Outcomes within the probability range of 1\/944 to 2\/944:\")\n for outcome in results:\n print(f\"- {outcome}\")\nelse:\n print(\"No outcomes found within the specified probability range\")\n```\n\n**Running the Code:**\n\n1. **Copy and paste this code into a Python environment.**\n2. **Execute the code.**\n\n**Output:**\n\nThe output will display either a list of outcomes that fall within the probability range of 1\/944 to 2\/944 or a message indicating that no such outcomes were found.\n\n**Interpretation:**\n\n* **Outcomes Found:** Analyze the specific combinations and their associated probabilities. Consider the distribution of home wins, draws, and away wins within these outcomes.\n* **No Outcomes Found:** This suggests that the given match probabilities make it unlikely for any combination to fall within the specified range. You might need to adjust the range or explore other analytical approaches.","num_tokens":523},{"role":"assistant","content":"Here is the code with the provided match probabilities:\n\n```python\nimport itertools\n\n# Match outcomes and probabilities (from your data)\nmatches = {\n \"Bordeaux - AC Ajaccio\": [0.651, 0.261, 0.0873],\n \"Bastia - Amiens\": [0.55, 0.332, 0.118],\n \"Grenoble - Concarneau\": [0.66, 0.215, 0.125],\n \"Troyes - Valenciennes\": [0.583, 0.248, 0.169],\n \"Rodez - Annecy FC\": [0.623, 0.241, 0.136],\n \"Quevilly Rouen - Dunkerque\": [0.469, 0.342, 0.189],\n \"Angers - Pau\": [0.69, 0.22, 0.0908],\n \"Caen - Laval\": [0.51, 0.328, 0.162]\n}\n\ntarget_min_probability = 1\/944\ntarget_max_probability = 2\/944\n\ndef find_outcomes_in_range(matches, target_min_probability, target_max_probability):\n outcomes = []\n for outcome in itertools.product([0, 1, 2], repeat=len(matches)):\n probability = 1\n for i, match in enumerate(matches):\n if outcome[i] == 0: # Home win\n probability *= matches[match][0]\n elif outcome[i] == 1: # Draw\n probability *= matches[match][1]\n else: # Away win\n probability *= matches[match][2]\n if target_min_probability <= probability <= target_max_probability:\n outcomes.append(outcome)\n return outcomes\n\nresults = find_outcomes_in_range(matches, target_min_probability, target_max_probability)\n\nif results:\n print(\"Outcomes within the probability range of 1\/944 to 2\/944:\")\n for outcome in results:\n print(f\"- {' - '.join([str(matches.keys()[i][0] if outcome[i] == 0 else 'D' if outcome[i] == 1 else ' '][0] for i in range(len(matches))])}\")\nelse:\n print(\"No outcomes found within the specified probability range\")\n```\n\nWhen you run this code, it will check each combination of outcomes (home win, draw, or away win for each match) and calculate the corresponding probability. If the probability falls within the specified range, it will be added to the list of results.","num_tokens":550}],"turn":1,"language":"English","category_tag":{"criteria_v0.1":{"specificity":true,"domain_knowledge":true,"complexity":true,"problem_solving":true,"creativity":false,"technical_accuracy":true,"real_world":true},"if_v0.1":{"if":true,"score":4},"math_v0.1":{"math":true}}} | |
{"question_id":432,"category":"Math","model_a":"qwen2-72b-instruct","model_b":"glm-4-0520","winner":"model_a","conversation_a":[{"role":"user","content":"explain the formula for how the golf statistic \"shots gained\" is calculated","num_tokens":14},{"role":"assistant","content":"The \"Shots Gained\" statistic in golf measures how many strokes a player gains or loses relative to the field on a given hole, based on the number of strokes it takes them to complete that hole compared to the expected number of strokes for an average tour player.\nThe formula for calculating Shots Gained is:\nShots Gained = (Player's Score - Adjusted Par) - (Field Average Score - Adjusted Par)\nwhere:\n\n * Player's Score: The actual score the player achieved on the hole.\n * Adjusted Par: The expected score for an average tour player on that hole, taking into account factors such as course difficulty and weather conditions.\n * Field Average Score: The average score achieved by all players in the tournament on that hole.\n\nFor example, let's say a player scores a 4 on a par-4 hole, while the adjusted par for that hole is 3.95 and the field average score is 4.2. In this case, the player's shots gained would be calculated as follows:\nShots Gained = (4 - 3.95) - (4.2 - 3.95) = -0.25\nThis means that the player lost 0.25 shots relative to the field on that hole. If the player had scored a 3 on the same hole, their shots gained would have been +0.25, meaning they gained 0.25 shots relative to the field.\nOverall, the Shots Gained statistic provides a more nuanced way of evaluating a player's performance than simply looking at their raw score, since it takes into account the difficulty of the course and the strength of the competition.","num_tokens":341}],"conversation_b":[{"role":"user","content":"explain the formula for how the golf statistic \"shots gained\" is calculated","num_tokens":14},{"role":"assistant","content":"\"Shots gained\" is a golf statistic that measures the number of strokes a golfer gains (or loses) on the field compared to the average player over a round of golf. It is a differential statistic, meaning it compares a player's performance to a benchmark, which is usually the performance of the average PGA Tour player.\n\nThe formula for calculating shots gained is as follows:\n\nShots Gained = (Player's Strokes - Field Average Strokes) \/ Number of Rounds Played\n\nHowever, the statistic is often broken down into different aspects of the game (driving, approach, around-the-green, putting, etc.), so the calculation can be more complex. Here's a more detailed breakdown:\n\n1. **Shots Gained per Round (SG.Round):**\n This is the overall shots gained by a player in a round.\n\n SG.Round = (Player's Score - Field Average Score for the Round) \/ Number of Rounds Played\n\n2. **Shots Gained for a Specific Aspect of the Game (e.g., SG.Putt for putting):**\n This measures how many strokes a player gains or loses in a specific aspect compared to the field.\n\n SG.Aspect = (Player's Strokes in Aspect - Field Average Strokes in Aspect) \/ Number of Rounds Played\n\nFor example, calculating SG.Putt (shots gained in putting) involves:\n\n - Counting the number of putts the player takes from different distances.\n - Comparing those numbers to the average number of putts a PGA Tour player would take from the same distances.\n - Adjusting for the field's performance from those distances, which is often done using strokes gained data from the PGA Tour.\n\nTo calculate the field average strokes for a specific aspect, data is typically aggregated from all players in the field, and then adjustments are made based on the difficulty of the course and conditions.\n\nThe overall shots gained number is useful because it normalizes a player's performance relative to the difficulty of the courses they've played, meaning it accounts for the fact that some courses are harder than others. This makes it possible to compare players who have played different schedules.\n\nIt's also worth noting that the \"shots gained\" statistic is a relative measure. A positive number indicates a player gained shots on the field, while a negative number indicates they lost shots. The higher the number, the better the performance relative to the field.","num_tokens":485}],"turn":1,"language":"English","category_tag":{"criteria_v0.1":{"specificity":true,"domain_knowledge":true,"complexity":false,"problem_solving":false,"creativity":false,"technical_accuracy":true,"real_world":true},"if_v0.1":{"if":true,"score":4},"math_v0.1":{"math":true}}} | |
{"question_id":469,"category":"Math","model_a":"reka-core-20240501","model_b":"gemini-1.5-pro-api-0514","winner":"tie (bothbad)","conversation_a":[{"role":"user","content":"The position of an object as a function of time is given by x =(0.10)t3 + (-1.5)t2 + (10.0)t + 6.0, where x is in meters and t is in seconds. Determine the average acceleration in the x-direction between t = 1.0 s and 3.0 s.","num_tokens":73},{"role":"assistant","content":"To find the average acceleration in the x-direction between two times \\( t_1 \\) and \\( t_2 \\), we can use the second derivative of the position function \\( x(t) \\) with respect to time \\( t \\), which represents the velocity function \\( v(t) \\), and then find the difference in velocity over the time interval and divide by the time interval to get the average acceleration.\n\nGiven the position function:\n\\[ x(t) = 0.10t^3 - 1.5t^2 + 10.0t + 6.0 \\]\n\nFirst, we find the first derivative (velocity function):\n\\[ v(t) = \\frac{dx}{dt} = 0.30t^2 - 3.0t + 10.0 \\]\n\nThen, we find the second derivative (acceleration function):\n\\[ a(t) = \\frac{dv}{dt} = 0.60t - 3.0 \\]\n\nTo find the average acceleration between \\( t = 1.0 \\) s and \\( t = 3.0 \\) s, we use the acceleration function directly, since the average acceleration is constant over the interval if the acceleration function is linear (which it is in this case):\n\\[ a_{\\text{avg}} = a(3.0) - a(1.0) \\]\n\nCalculate \\( a(3.0) \\) and \\( a(1.0) \\):\n\\[ a(3.0) = 0.60(3.0) - 3.0 = 1.8 - 3.0 = -1.2 \\, \\text{m\/s}^2 \\]\n\\[ a(1.0) = 0.60(1.0) - 3.0 = 0.6 - 3.0 = -2.4 \\, \\text{m\/s}^2 \\]\n\nNow, find the difference:\n\\[ a_{\\text{avg}} = (-1.2) - (-2.4) = 1.2 \\, \\text{m\/s}^2 \\]\n\nTherefore, the average acceleration in the x-direction between \\( t = 1.0 \\) s and \\( t = 3.0 \\) s is \\( 1.2 \\, \\text{m\/s}^2 \\).","num_tokens":494}],"conversation_b":[{"role":"user","content":"The position of an object as a function of time is given by x =(0.10)t3 + (-1.5)t2 + (10.0)t + 6.0, where x is in meters and t is in seconds. Determine the average acceleration in the x-direction between t = 1.0 s and 3.0 s.","num_tokens":73},{"role":"assistant","content":"Here's how to determine the average acceleration:\n\n**1. Understand Average Acceleration**\n\nAverage acceleration is the change in velocity over a period of time. Mathematically:\n\n* average acceleration (a_avg) = (v_final - v_initial) \/ (t_final - t_initial)\n\n**2. Find the Velocity Function**\n\nVelocity is the derivative of the position function. Let's find the derivative of the given position function, x(t):\n\n* x(t) = (0.10)t\u00b3 + (-1.5)t\u00b2 + (10.0)t + 6.0\n* v(t) = dx\/dt = (0.30)t\u00b2 + (-3.0)t + 10.0 \n\n**3. Calculate Velocities at Given Times**\n\n* **v(1.0 s):** (0.30)(1.0)\u00b2 + (-3.0)(1.0) + 10.0 = 7.3 m\/s\n* **v(3.0 s):** (0.30)(3.0)\u00b2 + (-3.0)(3.0) + 10.0 = 11.8 m\/s\n\n**4. Calculate Average Acceleration**\n\n* a_avg = (v(3.0 s) - v(1.0 s)) \/ (3.0 s - 1.0 s)\n* a_avg = (11.8 m\/s - 7.3 m\/s) \/ (2.0 s)\n* a_avg = 2.25 m\/s\u00b2\n\n**Therefore, the average acceleration in the x-direction between t = 1.0 s and t = 3.0 s is 2.25 m\/s\u00b2.**","num_tokens":358}],"turn":1,"language":"English","category_tag":{"criteria_v0.1":{"specificity":true,"domain_knowledge":true,"complexity":true,"problem_solving":true,"creativity":false,"technical_accuracy":true,"real_world":true},"if_v0.1":{"if":true,"score":4},"math_v0.1":{"math":true}}} | |
{"question_id":5979,"category":"Math","model_a":"reka-core-20240501","model_b":"llama-3-70b-instruct","winner":"tie (bothbad)","conversation_a":[{"role":"user","content":"\u0636\u0631\u06cc\u0628 c \u0631\u0627 \u062c\u0648\u0631\u06cc \u067e\u06cc\u062f\u0627 \u06a9\u0646\u06cc\u062f \u06a9\u0647 \u0628\u0631\u0627\u06cc \u0647\u0631 1<n\u00a0 \u062f\u0627\u0634\u062a\u0647 \u0628\u0627\u0634\u06cc\u0645 f(n) < cg(n) \nf(n)= 2n^2 +4n , g(n) = n^3","num_tokens":63},{"role":"assistant","content":"\u0628\u0631\u0627\u06cc \u0627\u062b\u0628\u0627\u062a \u0627\u06cc\u0646\u06a9\u0647 \u0628\u0631\u0627\u06cc \u0647\u0631 \\( n > 1 \\) \u062f\u0627\u0631\u06cc\u0645 \\( f(n) < c \\cdot g(n) \\)\u060c \u0627\u0628\u062a\u062f\u0627 \u0628\u0627\u06cc\u062f \u0636\u0631\u06cc\u0628 \\( c \\) \u0631\u0627 \u06cc\u0627\u0641\u062a \u06a9\u0647 \u0627\u06cc\u0646 \u0646\u0627\u0645\u0633\u0627\u0648\u06cc \u0628\u0631\u0642\u0631\u0627\u0631 \u0628\u0627\u0634\u062f. \u062f\u0627\u0631\u06cc\u0645:\n\n\\[ f(n) = 2n^2 + 4n \\]\n\\[ g(n) = n^3 \\]\n\n\u0645\u06cc\u200c\u062e\u0648\u0627\u0647\u06cc\u0645 \\( c \\) \u0631\u0627 \u06cc\u0627\u0628\u06cc\u0645 \u0628\u0647 \u06af\u0648\u0646\u0647\u200c\u0627\u06cc \u06a9\u0647:\n\n\\[ 2n^2 + 4n < c \\cdot n^3 \\]\n\n\u0628\u0631\u0627\u06cc \u0633\u0627\u062f\u0647\u200c\u0633\u0627\u0632\u06cc\u060c \u0645\u06cc\u200c\u062a\u0648\u0627\u0646\u06cc\u0645 \\( n > 0 \\) \u0631\u0627 \u062f\u0631 \u0646\u0638\u0631 \u0628\u06af\u06cc\u0631\u06cc\u0645 \u0632\u06cc\u0631\u0627 \u0628\u0631\u0627\u06cc \\( n = 0 \\)\u060c \u0646\u0627\u0645\u0633\u0627\u0648\u06cc \u0628\u0631\u0642\u0631\u0627\u0631 \u0646\u06cc\u0633\u062a. \u0633\u067e\u0633 \\( n \\) \u0631\u0627 \u0627\u0632 \u062f\u0648 \u0637\u0631\u0641 \u0646\u0627\u0645\u0633\u0627\u0648\u06cc \u062a\u0642\u0633\u06cc\u0645 \u0645\u06cc\u200c\u06a9\u0646\u06cc\u0645 (\u0628\u0627 \u062a\u0648\u062c\u0647 \u0628\u0647 \u0627\u06cc\u0646\u06a9\u0647 \\( n > 0 \\)):\n\n\\[ 2n + 4 < c \\cdot n^2 \\]\n\n\u062d\u0627\u0644\u060c \u0628\u0631\u0627\u06cc \u06cc\u0627\u0641\u062a\u0646 \u062d\u062f\u0627\u06a9\u062b\u0631 \u0645\u0642\u062f\u0627\u0631 \\( c \\) \u06a9\u0647 \u0646\u0627\u0645\u0633\u0627\u0648\u06cc \u0628\u0631\u0627\u06cc \u062a\u0645\u0627\u0645 \\( n > 1 \\) \u0628\u0631\u0642\u0631\u0627\u0631 \u0627\u0633\u062a\u060c \u0645\u06cc\u200c\u062a\u0648\u0627\u0646\u06cc\u0645 \\( n \\) \u0631\u0627 \u0628\u0647 \u062d\u062f\u0627\u0642\u0644 \u0645\u0642\u062f\u0627\u0631 \u0645\u0645\u06a9\u0646 \u0628\u0631\u0627\u06cc \\( n > 1 \\)\u060c \u06cc\u0639\u0646\u06cc \\( n = 2 \\)\u060c \u0642\u0631\u0627\u0631 \u062f\u0647\u06cc\u0645:\n\n\\[ 2 \\cdot 2 + 4 < c \\cdot 2^2 \\]\n\\[ 8 < 4c \\]\n\\[ c > 2 \\]\n\n\u067e\u0633\u060c \u0628\u0632\u0631\u06af\u200c\u062a\u0631\u06cc\u0646 \u0645\u0642\u062f\u0627\u0631 \\( c \\) \u06a9\u0647 \u0628\u0631\u0627\u06cc \u062a\u0645\u0627\u0645 \\( n > 1 \\) \u0646\u0627\u0645\u0633\u0627\u0648\u06cc \\( 2n^2 + 4n < c \\cdot n^3 \\) \u0628\u0631\u0642\u0631\u0627\u0631 \u0627\u0633\u062a\u060c \\( c = 3 \\) \u0627\u0633\u062a. \u0628\u0646\u0627\u0628\u0631\u0627\u06cc\u0646\u060c \u0628\u0631\u0627\u06cc \u0647\u0631 \\( n > 1 \\) \u062f\u0627\u0631\u06cc\u0645:\n\n\\[ 2n^2 + 4n < 3n^3 \\]","num_tokens":567}],"conversation_b":[{"role":"user","content":"\u0636\u0631\u06cc\u0628 c \u0631\u0627 \u062c\u0648\u0631\u06cc \u067e\u06cc\u062f\u0627 \u06a9\u0646\u06cc\u062f \u06a9\u0647 \u0628\u0631\u0627\u06cc \u0647\u0631 1<n\u00a0 \u062f\u0627\u0634\u062a\u0647 \u0628\u0627\u0634\u06cc\u0645 f(n) < cg(n) \nf(n)= 2n^2 +4n , g(n) = n^3","num_tokens":63},{"role":"assistant","content":"A nice problem in asymptotic analysis!\n\nWe want to find a constant `c` such that `f(n) < cg(n)` for all `n > 1`.\n\nLet's rewrite the inequality:\n\n`2n^2 + 4n < cn^3`\n\nNow, divide both sides by `n^2` (which is positive for `n > 1`):\n\n`2 + 4\/n < cn`\n\nAs `n` grows, `4\/n` approaches 0, so we can focus on the `2` term:\n\n`2 < cn`\n\nNow, divide both sides by `2`:\n\n`1 < c(n\/2)`\n\nSince `n\/2` grows without bound as `n` grows, we can choose a value of `c` such that `c(n\/2)` is always greater than 1. A simple choice is `c = 4`, since:\n\n`1 < c(n\/2) = 4(n\/2) = 2n`\n\nwhich is true for all `n > 1`.\n\nTherefore, the value of `c` that satisfies the inequality is `c = 4`.\n\nSo, for all `n > 1`, we have:\n\n`f(n) = 2n^2 + 4n < 4n^3 = cg(n)`\n\nGreat!","num_tokens":277}],"turn":1,"language":"Persian","category_tag":{"criteria_v0.1":{"specificity":true,"domain_knowledge":true,"complexity":true,"problem_solving":true,"creativity":false,"technical_accuracy":true,"real_world":true},"if_v0.1":{"if":true,"score":4},"math_v0.1":{"math":true}}} | |
{"question_id":465,"category":"Math","model_a":"gemini-1.5-pro-api-0409-preview","model_b":"gpt-4-0613","winner":"model_b","conversation_a":[{"role":"user","content":"43255*24539 =","num_tokens":6},{"role":"assistant","content":"## Multiplying 43255 and 24539\n\nTo find the product of 43255 and 24539, we'll perform a multiplication operation. Here's how it works:\n\n1. **Set up the multiplication:**\n ```\n 43255\nx 24539\n-------\n ```\n\n2. **Multiply each digit of 24539 by 5 (the digit in the ones place of 43255):**\n * 9 x 5 = 45. Write down 5 and carry over 4.\n * 3 x 5 + 4 (carry-over) = 19. Write down 9 and carry over 1.\n * 5 x 5 + 1 (carry-over) = 26. Write down 6 and carry over 2.\n * 4 x 5 + 2 (carry-over) = 22. Write down 2 and carry over 2.\n * 2 x 5 + 2 (carry-over) = 12. Write down 12.\n * The first partial product is 122695.\n ```\n 43255\nx 24539\n-------\n 122695 \n ```\n\n3. **Multiply each digit of 24539 by 5 (the digit in the tens place of 43255) and shift one position to the left:**\n * 9 x 5 = 45. Write down 5 and carry over 4.\n * 3 x 5 + 4 (carry-over) = 19. Write down 9 and carry over 1.\n * 5 x 5 + 1 (carry-over) = 26. Write down 6 and carry over 2.\n * 4 x 5 + 2 (carry-over) = 22. Write down 2 and carry over 2.\n * 2 x 5 + 2 (carry-over) = 12. Write down 12.\n * The second partial product is 1226950.\n ```\n 43255\nx 24539\n-------\n 122695 \n 1226950\n ```\n\n4. **Repeat this process for the digits in the hundreds, thousands, and ten-thousands places of 43255, shifting the partial products to the left each time.**\n\n5. **Finally, sum all the partial products to get the final product.**\n\nFollowing these steps, the final product of 43255 and 24539 is:\n\n**1,060,069,445**","num_tokens":527},{"role":"user","content":"No do it again","num_tokens":4},{"role":"assistant","content":"## Repeating the Multiplication of 43255 and 24539\n\nAs you requested, let's go through the multiplication of 43255 and 24539 once more:\n\n**1. Setting Up:**\n\nWe arrange the numbers one above the other, aligning them by place value:\n\n```\n 43255\nx 24539\n-------\n```\n\n**2. Multiplying by 9 (ones place of 24539):**\n\n* 9 x 5 = 45 (write down 5, carry over 4)\n* 9 x 5 + 4 = 49 (write down 9, carry over 4)\n* 9 x 2 + 4 = 22 (write down 2, carry over 2)\n* 9 x 3 + 2 = 29 (write down 9, carry over 2)\n* 9 x 4 + 2 = 38 (write down 38)\n\nThe first partial product is 3892295:\n\n```\n 43255\nx 24539\n-------\n 3892295\n```\n\n**3. Multiplying by 3 (tens place of 24539):**\n\n* 3 x 5 = 15 (write down 5, carry over 1)\n* 3 x 5 + 1 = 16 (write down 6, carry over 1)\n* 3 x 2 + 1 = 7 (write down 7)\n* 3 x 3 = 9 (write down 9) \n* 3 x 4 = 12 (write down 12)\n\nThe second partial product is 1297650 (shifted one position to the left):\n\n```\n 43255\nx 24539\n-------\n 3892295\n 1297650 \n```\n\n**4. Continuing with the Remaining Digits:**\n\nWe repeat this process for 5 (hundreds place), 4 (thousands place), and 2 (ten-thousands place) of 24539, shifting each partial product one position to the left: \n\n```\n 43255\nx 24539\n-------\n 3892295\n 1297650 \n 21627500\n 173020000\n 865100000\n-------\n```\n\n**5. Summing the Partial Products:**\n\nFinally, we add all the partial products to obtain the final product:\n\n```\n 43255\nx 24539\n-------\n 3892295\n 1297650 \n 21627500\n 173020000\n 865100000\n-------\n1060069445\n```\n\nTherefore, 43255 multiplied by 24539 equals **1,060,069,445**.","num_tokens":572}],"conversation_b":[{"role":"user","content":"43255*24539 =","num_tokens":6},{"role":"assistant","content":"1,061,474,845","num_tokens":7},{"role":"user","content":"No do it again","num_tokens":4},{"role":"assistant","content":"The multiplication of 43255 and 24539 equals 1,061,443,045.","num_tokens":20}],"turn":2,"language":"unknown","category_tag":{"criteria_v0.1":{"specificity":true,"domain_knowledge":false,"complexity":true,"problem_solving":false,"creativity":false,"technical_accuracy":true,"real_world":false},"if_v0.1":{"if":false,"score":3},"math_v0.1":{"math":true}}} | |