Lisa Dunlap commited on
Commit
dd2eba6
Β·
1 Parent(s): fc1f33c

adding leaderboard back!

Browse files
Files changed (1) hide show
  1. app.py +719 -0
app.py ADDED
@@ -0,0 +1,719 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """A gradio app that renders a static leaderboard. This is used for Hugging Face Space."""
2
+ import ast
3
+ import argparse
4
+ import glob
5
+ import pickle
6
+
7
+ import gradio as gr
8
+ import numpy as np
9
+ import pandas as pd
10
+ import re
11
+
12
+ # notebook_url = "https://colab.research.google.com/drive/1RAWb22-PFNI-X1gPVzc927SGUdfr6nsR?usp=sharing"
13
+ notebook_url = "https://colab.research.google.com/drive/1KdwokPjirkTmpO_P1WByFNFiqxWQquwH#scrollTo=o_CpbkGEbhrK"
14
+
15
+ basic_component_values = [None] * 6
16
+ leader_component_values = [None] * 5
17
+
18
+
19
+ def make_default_md(arena_df, elo_results):
20
+ total_votes = sum(arena_df["num_battles"]) // 2
21
+ total_models = len(arena_df)
22
+
23
+ leaderboard_md = f"""
24
+ # πŸ† LMSYS Chatbot Arena Leaderboard
25
+ | [Vote](https://chat.lmsys.org) | [Blog](https://lmsys.org/blog/2023-05-03-arena/) | [GitHub](https://github.com/lm-sys/FastChat) | [Paper](https://arxiv.org/abs/2306.05685) | [Dataset](https://github.com/lm-sys/FastChat/blob/main/docs/dataset_release.md) | [Twitter](https://twitter.com/lmsysorg) | [Discord](https://discord.gg/HSWAKCrnFx) |
26
+
27
+ ## **This is a mirror of the leaderboard on the LMSys website. Go to [lmsys.org](https://lmsys.org) to learn more.**
28
+ LMSYS [Chatbot Arena](https://lmsys.org/blog/2023-05-03-arena/) is a crowdsourced open platform for LLM evals.
29
+ We've collected over **500,000** human preference votes to rank LLMs with the Elo ranking system.
30
+ """
31
+ return leaderboard_md
32
+
33
+
34
+ def make_arena_leaderboard_md(arena_df):
35
+ total_votes = sum(arena_df["num_battles"]) // 2
36
+ total_models = len(arena_df)
37
+ space = "   "
38
+ leaderboard_md = f"""
39
+ Total #models: **{total_models}**.{space} Total #votes: **{"{:,}".format(total_votes)}**.{space} Last updated: April 11, 2024.
40
+
41
+ πŸ“£ **NEW!** View leaderboard for different categories (e.g., coding, long user query)!
42
+
43
+ Code to recreate leaderboard tables and plots in this [notebook]({notebook_url}). Cast your vote πŸ—³οΈ at [chat.lmsys.org](https://chat.lmsys.org)!
44
+ """
45
+ return leaderboard_md
46
+
47
+ def make_category_arena_leaderboard_md(arena_df, arena_subset_df, name="Overall"):
48
+ total_votes = sum(arena_df["num_battles"]) // 2
49
+ total_models = len(arena_df)
50
+ space = "   "
51
+ total_subset_votes = sum(arena_subset_df["num_battles"]) // 2
52
+ total_subset_models = len(arena_subset_df)
53
+ leaderboard_md = f"""### {cat_name_to_explanation[name]}
54
+ #### [Coverage] {space} #models: **{total_subset_models} ({round(total_subset_models/total_models *100)}%)** {space} #votes: **{"{:,}".format(total_subset_votes)} ({round(total_subset_votes/total_votes * 100)}%)**{space}
55
+ """
56
+ return leaderboard_md
57
+
58
+ def make_full_leaderboard_md(elo_results):
59
+ leaderboard_md = f"""
60
+ Three benchmarks are displayed: **Arena Elo**, **MT-Bench** and **MMLU**.
61
+ - [Chatbot Arena](https://chat.lmsys.org/?arena) - a crowdsourced, randomized battle platform. We use 500K+ user votes to compute Elo ratings.
62
+ - [MT-Bench](https://arxiv.org/abs/2306.05685): a set of challenging multi-turn questions. We use GPT-4 to grade the model responses.
63
+ - [MMLU](https://arxiv.org/abs/2009.03300) (5-shot): a test to measure a model's multitask accuracy on 57 tasks.
64
+
65
+ πŸ’» Code: The MT-bench scores (single-answer grading on a scale of 10) are computed by [fastchat.llm_judge](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge).
66
+ The MMLU scores are mostly computed by [InstructEval](https://github.com/declare-lab/instruct-eval).
67
+ Higher values are better for all benchmarks. Empty cells mean not available.
68
+ """
69
+ return leaderboard_md
70
+
71
+
72
+ def make_leaderboard_md_live(elo_results):
73
+ leaderboard_md = f"""
74
+ # Leaderboard
75
+ Last updated: {elo_results["last_updated_datetime"]}
76
+ {elo_results["leaderboard_table"]}
77
+ """
78
+ return leaderboard_md
79
+
80
+
81
+ def update_elo_components(max_num_files, elo_results_file):
82
+ log_files = get_log_files(max_num_files)
83
+
84
+ # Leaderboard
85
+ if elo_results_file is None: # Do live update
86
+ battles = clean_battle_data(log_files)
87
+ elo_results = report_elo_analysis_results(battles)
88
+
89
+ leader_component_values[0] = make_leaderboard_md_live(elo_results)
90
+ leader_component_values[1] = elo_results["win_fraction_heatmap"]
91
+ leader_component_values[2] = elo_results["battle_count_heatmap"]
92
+ leader_component_values[3] = elo_results["bootstrap_elo_rating"]
93
+ leader_component_values[4] = elo_results["average_win_rate_bar"]
94
+
95
+ # Basic stats
96
+ basic_stats = report_basic_stats(log_files)
97
+ md0 = f"Last updated: {basic_stats['last_updated_datetime']}"
98
+
99
+ md1 = "### Action Histogram\n"
100
+ md1 += basic_stats["action_hist_md"] + "\n"
101
+
102
+ md2 = "### Anony. Vote Histogram\n"
103
+ md2 += basic_stats["anony_vote_hist_md"] + "\n"
104
+
105
+ md3 = "### Model Call Histogram\n"
106
+ md3 += basic_stats["model_hist_md"] + "\n"
107
+
108
+ md4 = "### Model Call (Last 24 Hours)\n"
109
+ md4 += basic_stats["num_chats_last_24_hours"] + "\n"
110
+
111
+ basic_component_values[0] = md0
112
+ basic_component_values[1] = basic_stats["chat_dates_bar"]
113
+ basic_component_values[2] = md1
114
+ basic_component_values[3] = md2
115
+ basic_component_values[4] = md3
116
+ basic_component_values[5] = md4
117
+
118
+
119
+ def update_worker(max_num_files, interval, elo_results_file):
120
+ while True:
121
+ tic = time.time()
122
+ update_elo_components(max_num_files, elo_results_file)
123
+ durtaion = time.time() - tic
124
+ print(f"update duration: {durtaion:.2f} s")
125
+ time.sleep(max(interval - durtaion, 0))
126
+
127
+
128
+ def load_demo(url_params, request: gr.Request):
129
+ logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
130
+ return basic_component_values + leader_component_values
131
+
132
+
133
+ def model_hyperlink(model_name, link):
134
+ return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
135
+
136
+
137
+ def load_leaderboard_table_csv(filename, add_hyperlink=True):
138
+ lines = open(filename).readlines()
139
+ heads = [v.strip() for v in lines[0].split(",")]
140
+ rows = []
141
+ for i in range(1, len(lines)):
142
+ row = [v.strip() for v in lines[i].split(",")]
143
+ for j in range(len(heads)):
144
+ item = {}
145
+ for h, v in zip(heads, row):
146
+ if h == "Arena Elo rating":
147
+ if v != "-":
148
+ v = int(ast.literal_eval(v))
149
+ else:
150
+ v = np.nan
151
+ elif h == "MMLU":
152
+ if v != "-":
153
+ v = round(ast.literal_eval(v) * 100, 1)
154
+ else:
155
+ v = np.nan
156
+ elif h == "MT-bench (win rate %)":
157
+ if v != "-":
158
+ v = round(ast.literal_eval(v[:-1]), 1)
159
+ else:
160
+ v = np.nan
161
+ elif h == "MT-bench (score)":
162
+ if v != "-":
163
+ v = round(ast.literal_eval(v), 2)
164
+ else:
165
+ v = np.nan
166
+ item[h] = v
167
+ if add_hyperlink:
168
+ item["Model"] = model_hyperlink(item["Model"], item["Link"])
169
+ rows.append(item)
170
+
171
+ return rows
172
+
173
+
174
+ def build_basic_stats_tab():
175
+ empty = "Loading ..."
176
+ basic_component_values[:] = [empty, None, empty, empty, empty, empty]
177
+
178
+ md0 = gr.Markdown(empty)
179
+ gr.Markdown("#### Figure 1: Number of model calls and votes")
180
+ plot_1 = gr.Plot(show_label=False)
181
+ with gr.Row():
182
+ with gr.Column():
183
+ md1 = gr.Markdown(empty)
184
+ with gr.Column():
185
+ md2 = gr.Markdown(empty)
186
+ with gr.Row():
187
+ with gr.Column():
188
+ md3 = gr.Markdown(empty)
189
+ with gr.Column():
190
+ md4 = gr.Markdown(empty)
191
+ return [md0, plot_1, md1, md2, md3, md4]
192
+
193
+ def get_full_table(arena_df, model_table_df):
194
+ values = []
195
+ for i in range(len(model_table_df)):
196
+ row = []
197
+ model_key = model_table_df.iloc[i]["key"]
198
+ model_name = model_table_df.iloc[i]["Model"]
199
+ # model display name
200
+ row.append(model_name)
201
+ if model_key in arena_df.index:
202
+ idx = arena_df.index.get_loc(model_key)
203
+ row.append(round(arena_df.iloc[idx]["rating"]))
204
+ else:
205
+ row.append(np.nan)
206
+ row.append(model_table_df.iloc[i]["MT-bench (score)"])
207
+ row.append(model_table_df.iloc[i]["MMLU"])
208
+ # Organization
209
+ row.append(model_table_df.iloc[i]["Organization"])
210
+ # license
211
+ row.append(model_table_df.iloc[i]["License"])
212
+
213
+ values.append(row)
214
+ values.sort(key=lambda x: -x[1] if not np.isnan(x[1]) else 1e9)
215
+ return values
216
+
217
+ def create_ranking_str(ranking, ranking_difference):
218
+ if ranking_difference > 0:
219
+ # return f"{int(ranking)} (\u2191{int(ranking_difference)})"
220
+ return f"{int(ranking)} \u2191"
221
+ elif ranking_difference < 0:
222
+ # return f"{int(ranking)} (\u2193{int(-ranking_difference)})"
223
+ return f"{int(ranking)} \u2193"
224
+ else:
225
+ return f"{int(ranking)}"
226
+
227
+ def recompute_final_ranking(arena_df):
228
+ # compute ranking based on CI
229
+ ranking = {}
230
+ for i, model_a in enumerate(arena_df.index):
231
+ ranking[model_a] = 1
232
+ for j, model_b in enumerate(arena_df.index):
233
+ if i == j:
234
+ continue
235
+ if arena_df.loc[model_b]["rating_q025"] > arena_df.loc[model_a]["rating_q975"]:
236
+ ranking[model_a] += 1
237
+ return list(ranking.values())
238
+
239
+ def get_arena_table(arena_df, model_table_df, arena_subset_df=None):
240
+ arena_df = arena_df.sort_values(by=["final_ranking", "rating"], ascending=[True, False])
241
+ arena_df = arena_df[arena_df["num_battles"] > 2000]
242
+ arena_df["final_ranking"] = recompute_final_ranking(arena_df)
243
+ arena_df = arena_df.sort_values(by=["final_ranking"], ascending=True)
244
+
245
+ # arena_df["final_ranking"] = range(1, len(arena_df) + 1)
246
+ # sort by rating
247
+ if arena_subset_df is not None:
248
+ # filter out models not in the arena_df
249
+ arena_subset_df = arena_subset_df[arena_subset_df.index.isin(arena_df.index)]
250
+ arena_subset_df = arena_subset_df.sort_values(by=["rating"], ascending=False)
251
+ # arena_subset_df = arena_subset_df.sort_values(by=["final_ranking"], ascending=True)
252
+ # arena_subset_df = arena_subset_df[arena_subset_df["num_battles"] > 500]
253
+ arena_subset_df["final_ranking"] = recompute_final_ranking(arena_subset_df)
254
+ # keep only the models in the subset in arena_df and recompute final_ranking
255
+ arena_df = arena_df[arena_df.index.isin(arena_subset_df.index)]
256
+ # recompute final ranking
257
+ arena_df["final_ranking"] = recompute_final_ranking(arena_df)
258
+
259
+ # assign ranking by the order
260
+ arena_subset_df["final_ranking_no_tie"] = range(1, len(arena_subset_df) + 1)
261
+ arena_df["final_ranking_no_tie"] = range(1, len(arena_df) + 1)
262
+ # join arena_df and arena_subset_df on index
263
+ arena_df = arena_subset_df.join(arena_df["final_ranking"], rsuffix="_global", how="inner")
264
+ arena_df["ranking_difference"] = arena_df["final_ranking_global"] - arena_df["final_ranking"]
265
+
266
+ # no tie version
267
+ # arena_df = arena_subset_df.join(arena_df["final_ranking_no_tie"], rsuffix="_global", how="inner")
268
+ # arena_df["ranking_difference"] = arena_df["final_ranking_no_tie_global"] - arena_df["final_ranking_no_tie"]
269
+
270
+ arena_df = arena_df.sort_values(by=["final_ranking", "rating"], ascending=[True, False])
271
+ arena_df["final_ranking"] = arena_df.apply(lambda x: create_ranking_str(x["final_ranking"], x["ranking_difference"]), axis=1)
272
+
273
+ values = []
274
+ for i in range(len(arena_df)):
275
+ row = []
276
+ model_key = arena_df.index[i]
277
+ try: # this is a janky fix for where the model key is not in the model table (model table and arena table dont contain all the same models)
278
+ model_name = model_table_df[model_table_df["key"] == model_key]["Model"].values[
279
+ 0
280
+ ]
281
+ # rank
282
+ ranking = arena_df.iloc[i].get("final_ranking") or i+1
283
+ row.append(ranking)
284
+ if arena_subset_df is not None:
285
+ row.append(arena_df.iloc[i].get("ranking_difference") or 0)
286
+ # model display name
287
+ row.append(model_name)
288
+ # elo rating
289
+ row.append(round(arena_df.iloc[i]["rating"]))
290
+ upper_diff = round(
291
+ arena_df.iloc[i]["rating_q975"] - arena_df.iloc[i]["rating"]
292
+ )
293
+ lower_diff = round(
294
+ arena_df.iloc[i]["rating"] - arena_df.iloc[i]["rating_q025"]
295
+ )
296
+ row.append(f"+{upper_diff}/-{lower_diff}")
297
+ # num battles
298
+ row.append(round(arena_df.iloc[i]["num_battles"]))
299
+ # Organization
300
+ row.append(
301
+ model_table_df[model_table_df["key"] == model_key]["Organization"].values[0]
302
+ )
303
+ # license
304
+ row.append(
305
+ model_table_df[model_table_df["key"] == model_key]["License"].values[0]
306
+ )
307
+ cutoff_date = model_table_df[model_table_df["key"] == model_key]["Knowledge cutoff date"].values[0]
308
+ if cutoff_date == "-":
309
+ row.append("Unknown")
310
+ else:
311
+ row.append(cutoff_date)
312
+ values.append(row)
313
+ except Exception as e:
314
+ print(f"{model_key} - {e}")
315
+ return values
316
+
317
+ key_to_category_name = {
318
+ "full": "Overall",
319
+ "coding": "Coding",
320
+ "long_user": "Longer Query",
321
+ "english": "English",
322
+ "chinese": "Chinese",
323
+ "french": "French",
324
+ "no_tie": "Exclude Ties",
325
+ "no_short": "Exclude Short",
326
+ "no_refusal": "Exclude Refusal",
327
+ }
328
+ cat_name_to_explanation = {
329
+ "Overall": "Overall Questions",
330
+ "Coding": "Coding: whether conversation contains code snippets",
331
+ "Longer Query": "Longer Query (>= 500 tokens)",
332
+ "English": "English Prompts",
333
+ "Chinese": "Chinese Prompts",
334
+ "French": "French Prompts",
335
+ "Exclude Ties": "Exclude Ties and Bothbad",
336
+ "Exclude Short": "User Query >= 5 tokens",
337
+ "Exclude Refusal": 'Exclude model responses with refusal (e.g., "I cannot answer")',
338
+ }
339
+
340
+
341
+ def build_leaderboard_tab(elo_results_file, leaderboard_table_file, show_plot=False):
342
+ arena_dfs = {}
343
+ category_elo_results = {}
344
+ if elo_results_file is None: # Do live update
345
+ default_md = "Loading ..."
346
+ p1 = p2 = p3 = p4 = None
347
+ else:
348
+ with open(elo_results_file, "rb") as fin:
349
+ elo_results = pickle.load(fin)
350
+ if "full" in elo_results:
351
+ print("KEYS ", elo_results.keys())
352
+ for k in key_to_category_name.keys():
353
+ if k not in elo_results:
354
+ continue
355
+ arena_dfs[key_to_category_name[k]] = elo_results[k]["leaderboard_table_df"]
356
+ category_elo_results[key_to_category_name[k]] = elo_results[k]
357
+
358
+ p1 = category_elo_results["Overall"]["win_fraction_heatmap"]
359
+ p2 = category_elo_results["Overall"]["battle_count_heatmap"]
360
+ p3 = category_elo_results["Overall"]["bootstrap_elo_rating"]
361
+ p4 = category_elo_results["Overall"]["average_win_rate_bar"]
362
+ arena_df = arena_dfs["Overall"]
363
+ default_md = make_default_md(arena_df, category_elo_results["Overall"])
364
+
365
+ md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown")
366
+ if leaderboard_table_file:
367
+ data = load_leaderboard_table_csv(leaderboard_table_file)
368
+ model_table_df = pd.DataFrame(data)
369
+
370
+ with gr.Tabs() as tabs:
371
+ # arena table
372
+ arena_table_vals = get_arena_table(arena_df, model_table_df)
373
+ with gr.Tab("Arena Elo", id=0):
374
+ md = make_arena_leaderboard_md(arena_df)
375
+ leaderboard_markdown = gr.Markdown(md, elem_id="leaderboard_markdown")
376
+ with gr.Row():
377
+ with gr.Column(scale=2):
378
+ category_dropdown = gr.Dropdown(choices=list(arena_dfs.keys()), label="Category", value="Overall")
379
+ default_category_details = make_category_arena_leaderboard_md(arena_df, arena_df, name="Overall")
380
+ with gr.Column(scale=4, variant="panel"):
381
+ category_deets = gr.Markdown(default_category_details, elem_id="category_deets")
382
+
383
+ elo_display_df = gr.Dataframe(
384
+ headers=[
385
+ "Rank",
386
+ "πŸ€– Model",
387
+ "⭐ Arena Elo",
388
+ "πŸ“Š 95% CI",
389
+ "πŸ—³οΈ Votes",
390
+ "Organization",
391
+ "License",
392
+ "Knowledge Cutoff",
393
+ ],
394
+ datatype=[
395
+ "number",
396
+ "markdown",
397
+ "number",
398
+ "str",
399
+ "number",
400
+ "str",
401
+ "str",
402
+ "str",
403
+ ],
404
+ value=arena_table_vals,
405
+ elem_id="arena_leaderboard_dataframe",
406
+ height=700,
407
+ column_widths=[70, 190, 110, 100, 90, 160, 150, 140],
408
+ wrap=True,
409
+ )
410
+
411
+ gr.Markdown(
412
+ f"""Note: we take the 95% confidence interval into account when determining a model's ranking.
413
+ A model is ranked higher only if its lower bound of model score is higher than the upper bound of the other model's score.
414
+ See Figure 3 below for visualization of the confidence intervals. More details in [notebook]({notebook_url}).
415
+ """,
416
+ elem_id="leaderboard_markdown"
417
+ )
418
+
419
+ leader_component_values[:] = [default_md, p1, p2, p3, p4]
420
+
421
+ if show_plot:
422
+ more_stats_md = gr.Markdown(
423
+ f"""## More Statistics for Chatbot Arena (Overall)""",
424
+ elem_id="leaderboard_header_markdown"
425
+ )
426
+ with gr.Row():
427
+ with gr.Column():
428
+ gr.Markdown(
429
+ "#### Figure 1: Fraction of Model A Wins for All Non-tied A vs. B Battles", elem_id="plot-title"
430
+ )
431
+ plot_1 = gr.Plot(p1, show_label=False, elem_id="plot-container")
432
+ with gr.Column():
433
+ gr.Markdown(
434
+ "#### Figure 2: Battle Count for Each Combination of Models (without Ties)", elem_id="plot-title"
435
+ )
436
+ plot_2 = gr.Plot(p2, show_label=False)
437
+ with gr.Row():
438
+ with gr.Column():
439
+ gr.Markdown(
440
+ "#### Figure 3: Confidence Intervals on Model Strength (via Bootstrapping)", elem_id="plot-title"
441
+ )
442
+ plot_3 = gr.Plot(p3, show_label=False)
443
+ with gr.Column():
444
+ gr.Markdown(
445
+ "#### Figure 4: Average Win Rate Against All Other Models (Assuming Uniform Sampling and No Ties)", elem_id="plot-title"
446
+ )
447
+ plot_4 = gr.Plot(p4, show_label=False)
448
+
449
+ with gr.Tab("Full Leaderboard", id=1):
450
+ md = make_full_leaderboard_md(elo_results)
451
+ gr.Markdown(md, elem_id="leaderboard_markdown")
452
+ full_table_vals = get_full_table(arena_df, model_table_df)
453
+ gr.Dataframe(
454
+ headers=[
455
+ "πŸ€– Model",
456
+ "⭐ Arena Elo",
457
+ "πŸ“ˆ MT-bench",
458
+ "πŸ“š MMLU",
459
+ "Organization",
460
+ "License",
461
+ ],
462
+ datatype=["markdown", "number", "number", "number", "str", "str"],
463
+ value=full_table_vals,
464
+ elem_id="full_leaderboard_dataframe",
465
+ column_widths=[200, 100, 100, 100, 150, 150],
466
+ height=700,
467
+ wrap=True,
468
+ )
469
+ if not show_plot:
470
+ gr.Markdown(
471
+ """ ## Visit our [HF space](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard) for more analysis!
472
+ If you want to see more models, please help us [add them](https://github.com/lm-sys/FastChat/blob/main/docs/arena.md#how-to-add-a-new-model).
473
+ """,
474
+ elem_id="leaderboard_markdown",
475
+ )
476
+ else:
477
+ pass
478
+
479
+ def update_leaderboard_df(arena_table_vals):
480
+ elo_datarame = pd.DataFrame(arena_table_vals, columns=[ "Rank", "Delta", "πŸ€– Model", "⭐ Arena Elo", "πŸ“Š 95% CI", "πŸ—³οΈ Votes", "Organization", "License", "Knowledge Cutoff"])
481
+
482
+ # goal: color the rows based on the rank with styler
483
+ def highlight_max(s):
484
+ # all items in S which contain up arrow should be green, down arrow should be red, otherwise black
485
+ return ["color: green; font-weight: bold" if "\u2191" in v else "color: red; font-weight: bold" if "\u2193" in v else "" for v in s]
486
+
487
+ def highlight_rank_max(s):
488
+ return ["color: green; font-weight: bold" if v > 0 else "color: red; font-weight: bold" if v < 0 else "" for v in s]
489
+
490
+ return elo_datarame.style.apply(highlight_max, subset=["Rank"]).apply(highlight_rank_max, subset=["Delta"])
491
+
492
+ def update_leaderboard_and_plots(category):
493
+ arena_subset_df = arena_dfs[category]
494
+ arena_subset_df = arena_subset_df[arena_subset_df["num_battles"] > 500]
495
+ elo_subset_results = category_elo_results[category]
496
+ arena_df = arena_dfs["Overall"]
497
+ arena_values = get_arena_table(arena_df, model_table_df, arena_subset_df = arena_subset_df if category != "Overall" else None)
498
+ if category != "Overall":
499
+ arena_values = update_leaderboard_df(arena_values)
500
+ arena_values = gr.Dataframe(
501
+ headers=[
502
+ "Rank",
503
+ "Delta",
504
+ "πŸ€– Model",
505
+ "⭐ Arena Elo",
506
+ "πŸ“Š 95% CI",
507
+ "πŸ—³οΈ Votes",
508
+ "Organization",
509
+ "License",
510
+ "Knowledge Cutoff",
511
+ ],
512
+ datatype=[
513
+ "number",
514
+ "number",
515
+ "markdown",
516
+ "number",
517
+ "str",
518
+ "number",
519
+ "str",
520
+ "str",
521
+ "str",
522
+ ],
523
+ value=arena_values,
524
+ elem_id="arena_leaderboard_dataframe",
525
+ height=700,
526
+ column_widths=[60, 70, 190, 110, 100, 90, 160, 150, 140],
527
+ wrap=True,
528
+ )
529
+ else:
530
+ arena_values = gr.Dataframe(
531
+ headers=[
532
+ "Rank",
533
+ "πŸ€– Model",
534
+ "⭐ Arena Elo",
535
+ "πŸ“Š 95% CI",
536
+ "πŸ—³οΈ Votes",
537
+ "Organization",
538
+ "License",
539
+ "Knowledge Cutoff",
540
+ ],
541
+ datatype=[
542
+ "number",
543
+ "markdown",
544
+ "number",
545
+ "str",
546
+ "number",
547
+ "str",
548
+ "str",
549
+ "str",
550
+ ],
551
+ value=arena_values,
552
+ elem_id="arena_leaderboard_dataframe",
553
+ height=700,
554
+ column_widths=[70, 190, 110, 100, 90, 160, 150, 140],
555
+ wrap=True,
556
+ )
557
+
558
+ p1 = elo_subset_results["win_fraction_heatmap"]
559
+ p2 = elo_subset_results["battle_count_heatmap"]
560
+ p3 = elo_subset_results["bootstrap_elo_rating"]
561
+ p4 = elo_subset_results["average_win_rate_bar"]
562
+ more_stats_md = f"""## More Statistics for Chatbot Arena - {category}
563
+ """
564
+ leaderboard_md = make_category_arena_leaderboard_md(arena_df, arena_subset_df, name=category)
565
+ return arena_values, p1, p2, p3, p4, more_stats_md, leaderboard_md
566
+
567
+ category_dropdown.change(update_leaderboard_and_plots, inputs=[category_dropdown], outputs=[elo_display_df, plot_1, plot_2, plot_3, plot_4, more_stats_md, category_deets])
568
+
569
+ with gr.Accordion(
570
+ "πŸ“ Citation",
571
+ open=True,
572
+ ):
573
+ citation_md = """
574
+ ### Citation
575
+ Please cite the following paper if you find our leaderboard or dataset helpful.
576
+ ```
577
+ @misc{chiang2024chatbot,
578
+ title={Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference},
579
+ author={Wei-Lin Chiang and Lianmin Zheng and Ying Sheng and Anastasios Nikolas Angelopoulos and Tianle Li and Dacheng Li and Hao Zhang and Banghua Zhu and Michael Jordan and Joseph E. Gonzalez and Ion Stoica},
580
+ year={2024},
581
+ eprint={2403.04132},
582
+ archivePrefix={arXiv},
583
+ primaryClass={cs.AI}
584
+ }
585
+ """
586
+ gr.Markdown(citation_md, elem_id="leaderboard_markdown")
587
+ gr.Markdown(acknowledgment_md)
588
+
589
+ if show_plot:
590
+ return [md_1, plot_1, plot_2, plot_3, plot_4]
591
+ return [md_1]
592
+
593
+
594
+ block_css = """
595
+ #notice_markdown {
596
+ font-size: 104%
597
+ }
598
+ #notice_markdown th {
599
+ display: none;
600
+ }
601
+ #notice_markdown td {
602
+ padding-top: 6px;
603
+ padding-bottom: 6px;
604
+ }
605
+
606
+ #category_deets {
607
+ text-align: center;
608
+ padding: 0px;
609
+ padding-left: 5px;
610
+ }
611
+
612
+ #leaderboard_markdown {
613
+ font-size: 104%
614
+ }
615
+ #leaderboard_markdown td {
616
+ padding-top: 6px;
617
+ padding-bottom: 6px;
618
+ }
619
+
620
+ #leaderboard_header_markdown {
621
+ font-size: 104%;
622
+ text-align: center;
623
+ display:block;
624
+ }
625
+
626
+ #leaderboard_dataframe td {
627
+ line-height: 0.1em;
628
+ }
629
+
630
+ #plot-title {
631
+ text-align: center;
632
+ display:block;
633
+ }
634
+
635
+ #non-interactive-button {
636
+ display: inline-block;
637
+ padding: 10px 10px;
638
+ background-color: #f7f7f7; /* Super light grey background */
639
+ text-align: center;
640
+ font-size: 26px; /* Larger text */
641
+ border-radius: 0; /* Straight edges, no border radius */
642
+ border: 0px solid #dcdcdc; /* A light grey border to match the background */
643
+ user-select: none; /* The text inside the button is not selectable */
644
+ pointer-events: none; /* The button is non-interactive */
645
+ }
646
+
647
+ footer {
648
+ display:none !important
649
+ }
650
+ .sponsor-image-about img {
651
+ margin: 0 20px;
652
+ margin-top: 20px;
653
+ height: 40px;
654
+ max-height: 100%;
655
+ width: auto;
656
+ float: left;
657
+ }
658
+ """
659
+
660
+ acknowledgment_md = """
661
+ ### Acknowledgment
662
+ We thank [Kaggle](https://www.kaggle.com/), [MBZUAI](https://mbzuai.ac.ae/), [a16z](https://www.a16z.com/), [Together AI](https://www.together.ai/), [Anyscale](https://www.anyscale.com/), [HuggingFace](https://huggingface.co/) for their generous [sponsorship](https://lmsys.org/donations/).
663
+
664
+ <div class="sponsor-image-about">
665
+ <img src="https://storage.googleapis.com/public-arena-asset/kaggle.png" alt="Kaggle">
666
+ <img src="https://storage.googleapis.com/public-arena-asset/mbzuai.jpeg" alt="MBZUAI">
667
+ <img src="https://storage.googleapis.com/public-arena-asset/a16z.jpeg" alt="a16z">
668
+ <img src="https://storage.googleapis.com/public-arena-asset/together.png" alt="Together AI">
669
+ <img src="https://storage.googleapis.com/public-arena-asset/anyscale.png" alt="AnyScale">
670
+ <img src="https://storage.googleapis.com/public-arena-asset/huggingface.png" alt="HuggingFace">
671
+ </div>
672
+ """
673
+
674
+ def build_demo(elo_results_file, leaderboard_table_file):
675
+ text_size = gr.themes.sizes.text_lg
676
+ theme = gr.themes.Base(text_size=text_size)
677
+ theme.set(button_secondary_background_fill_hover="*primary_300",
678
+ button_secondary_background_fill_hover_dark="*primary_700")
679
+ with gr.Blocks(
680
+ title="Chatbot Arena Leaderboard",
681
+ theme=theme,
682
+ # theme = gr.themes.Base.load("theme.json"), # uncomment to use new cool theme
683
+ css=block_css,
684
+ ) as demo:
685
+ leader_components = build_leaderboard_tab(
686
+ elo_results_file, leaderboard_table_file, show_plot=True
687
+ )
688
+ return demo
689
+
690
+
691
+ if __name__ == "__main__":
692
+ parser = argparse.ArgumentParser()
693
+ parser.add_argument("--share", action="store_true")
694
+ parser.add_argument("--host", default="0.0.0.0")
695
+ parser.add_argument("--port", type=int, default=7860)
696
+ args = parser.parse_args()
697
+
698
+ elo_result_files = glob.glob("elo_results_*.pkl")
699
+ def extract_sort_key(filename):
700
+ match = re.search(r'(\d{8})-(\d+)', filename)
701
+ if match:
702
+ # Extract the date and identifier parts, converting them to integers for sorting
703
+ date_part = int(match.group(1))
704
+ id_part = int(match.group(2))
705
+ return (date_part, id_part)
706
+ else:
707
+ # Fallback sort key if the filename does not match the expected format
708
+ return (0, 0)
709
+ # elo_result_files.sort(key=lambda x: int(x[12:-4]))
710
+ elo_result_files.sort(key=lambda x: extract_sort_key(x[12:-4]))
711
+ elo_result_file = elo_result_files[-1]
712
+
713
+ leaderboard_table_files = glob.glob("leaderboard_table_*.csv")
714
+ leaderboard_table_files.sort(key=lambda x: extract_sort_key(x[18:-4]))
715
+ # leaderboard_table_files.sort(key=lambda x: int(x[18:-4]))
716
+ leaderboard_table_file = leaderboard_table_files[-1]
717
+
718
+ demo = build_demo(elo_result_file, leaderboard_table_file)
719
+ demo.launch(share=args.share, server_name=args.host, server_port=args.port)