Spaces:
Runtime error
Runtime error
File size: 10,771 Bytes
d4607d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import os
import time
from io import BytesIO
import uuid
import torch
import gradio as gr
import spaces
import numpy as np
from einops import rearrange
from PIL import Image, ExifTags
from dataclasses import dataclass
from flux.sampling import denoise, get_noise, get_schedule, prepare, unpack, prepare_tokens
from flux.util import configs, embed_watermark, load_ae, load_clip, load_flow_model, load_t5
import jax
import jax.numpy as jnp
from flax import nnx
from jax import Array as Tensor
from einops import repeat
@dataclass
class SamplingOptions:
prompt: str
width: int
height: int
num_steps: int
guidance: float
seed: int | None
NSFW_THRESHOLD = 0.85
@spaces.GPU
def get_models(name: str, device: torch.device, offload: bool, is_schnell: bool):
t5 = load_t5(device, max_length=256 if is_schnell else 512)
clip = load_clip(device)
model = load_flow_model(name, device="cpu" if offload else device)
ae = load_ae(name, device="cpu" if offload else device)
# nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection", device=device)
# return model, ae, t5, clip, nsfw_classifier
return nnx.split(model), nnx.split(ae), nnx.split(t5), t5.tokenizer, nnx.split(clip), clip.tokenizer, None
@jax.jit
def encode(ae,x):
ae=nnx.merge(*ae)
return ae.encode(x)
def _generate(model, ae, t5, clip, x, t5_tokens, clip_tokens, num_steps, guidance,
#init_image=None,
#image2image_strength=0.0,
shift=True):
b,h,w,c=x.shape
model=nnx.merge(*model)
ae=nnx.merge(*ae)
t5=nnx.merge(*t5)
clip=nnx.merge(*clip)
timesteps = get_schedule(
num_steps,
x.shape[-1] * x.shape[-2] // 4,
shift=shift,
)
# if init_image is not None:
# t_idx = int((1 - image2image_strength) * num_steps)
# t = timesteps[t_idx]
# timesteps = timesteps[t_idx:]
# x = t * x + (1.0 - t) * init_image.astype(x.dtype)
inp = prepare(t5, clip, x, t5_tokens, clip_tokens)
x = denoise(model, **inp, timesteps=timesteps, guidance=guidance)
x = unpack(x.astype(jnp.float32), h*8, w*8)
x = ae.decode(x)
return x
generate=jax.jit(_generate, static_argnames=("num_steps","shift"))
def prepare_tokens(t5_tokenizer, clip_tokenizer, prompt: str | list[str]) -> tuple[Tensor, Tensor]:
if isinstance(prompt, str):
prompt = [prompt]
t5_tokens = t5_tokenizer(
prompt,
truncation=True,
max_length=512,
return_length=False,
return_overflowing_tokens=False,
padding="max_length",
return_tensors="jax",
)["input_ids"]
clip_tokens = clip_tokenizer(
prompt,
truncation=True,
max_length=77,
return_length=False,
return_overflowing_tokens=False,
padding="max_length",
return_tensors="jax",
)["input_ids"]
return t5_tokens, clip_tokens
class FluxGenerator:
def __init__(self, model_name: str, device: str, offload: bool):
self.device = None
self.offload = offload
self.model_name = model_name
self.is_schnell = model_name == "flux-schnell"
self.model, self.ae, self.t5, self.t5_tokenizer, self.clip, self.clip_tokenizer, self.nsfw_classifier = get_models(
model_name,
device=self.device,
offload=self.offload,
is_schnell=self.is_schnell,
)
self.key = jax.random.key(0)
@spaces.GPU(duration=180)
def generate_image(
self,
img_size,
num_steps,
guidance,
seed,
prompt,
# init_image=None,
# image2image_strength=0.0,
add_sampling_metadata=True,
):
seed = int(seed)
if seed == -1:
seed = None
if img_size == "1,024x1,024":
width, height = 1024, 1024
else:
width, height = 512, 512
opts = SamplingOptions(
prompt=prompt,
width=width,
height=height,
num_steps=num_steps,
guidance=guidance,
seed=seed,
)
if opts.seed is None:
# opts.seed = torch.Generator(device="cpu").seed()
key,self.key=jax.random.split(self.key,2)
opts.seed=jax.random.randint(key,(),0,2**30)
print(f"Generating '{opts.prompt}' with seed {opts.seed}")
t0 = time.perf_counter()
# if init_image is not None:
# if isinstance(init_image, np.ndarray):
# init_image = jnp.asarray(init_image).astype(jnp.float32) / 255.0
# init_image = init_image[None]
# # init_image = torch.nn.functional.interpolate(init_image, (opts.height, opts.width))
# init_image = jax.image.resize(init_image, (opts.height, opts.width), method="lanczos5")
# # if self.offload:
# # self.ae.encoder.to(self.device)
# # init_image = self.ae.encode(init_image)
# init_image = encode(self.ae, init_image)
# prepare input
t5_tokens, clip_tokens = prepare_tokens(self.t5_tokenizer, self.clip_tokenizer, prompt=opts.prompt)
x = get_noise(
1,
opts.height,
opts.width,
device=None,
dtype=jnp.bfloat16,
seed=opts.seed,
)
x = generate(self.model, self.ae, self.t5, self.clip, x, t5_tokens, clip_tokens, opts.num_steps, opts.guidance, shift=(not self.is_schnell))
t1 = time.perf_counter()
# print(f"Done in {t1 - t0:.1f}s.")
runtime = t1 - t0
# print(f"Done in {t1 - t0:.1f}s.")
# bring into PIL format
x= jnp.clip(x, -1, 1)
# x = embed_watermark(x.astype(jnp.float32))
# x = rearrange(x[0], "c h w -> h w c")
img = Image.fromarray(np.asarray((127.5 * (x[0] + 1.0))).astype(np.uint8))
# img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
# nsfw_score = [x["score"] for x in self.nsfw_classifier(img) if x["label"] == "nsfw"][0]
if True:
filename = f"output/gradio/{uuid.uuid4()}.jpg"
os.makedirs(os.path.dirname(filename), exist_ok=True)
exif_data = Image.Exif()
# if init_image is None:
exif_data[ExifTags.Base.Software] = "AI generated;txt2img;flux"
# else:
# exif_data[ExifTags.Base.Software] = "AI generated;img2img;flux"
exif_data[ExifTags.Base.Make] = "Black Forest Labs"
exif_data[ExifTags.Base.Model] = self.model_name
if add_sampling_metadata:
exif_data[ExifTags.Base.ImageDescription] = prompt
img.save(filename, format="jpeg", exif=exif_data, quality=95, subsampling=0)
return img, runtime, str(opts.seed), filename, None
else:
return None, str(opts.seed), None, "Your generated image may contain NSFW content."
@spaces.GPU(duration=300)
def create_demo(model_name: str, device: str = "cuda", offload: bool = False):
generator = FluxGenerator(model_name, device, offload)
is_schnell = model_name == "flux-schnell"
with open("./assets/banner.html") as f:
banner = f.read()
with gr.Blocks() as demo:
with gr.Column(elem_id="app-container"):
gr.HTML(f"""<iframe scrolling="no" style="width: 100%; height: 125px; border: 0" srcdoc='{banner}'>""")
gr.Markdown(f"""🚀 [Flux-Flax](https://github.com/lkwq007/flux-flax) is a JAX implementation of Flux models. 1-step time statistics for `FLUX.1-schnell`: `0.4s` for 1024x1024, `0.1s` for 512x512; 2-step: `0.6s` for 1024x1024, `0.2s` for 512x512; 4-step: `2.4s` for 1024x1024, `0.8s` for 512x512.
""")
with gr.Row():
with gr.Column(scale=3):
output_image = gr.Image(label="Generated Image")
warning_text = gr.Textbox(label="Warning", visible=False)
download_btn = gr.File(label="Download full-resolution")
gr.Markdown("""
💡 Note: More resolutions are supports, but here this demo limits to 1024x1024 and 512x512 to avoid jit recompilation (which takes 130s). Flux-Flax also support `FLUX.1-dev`, 50-step time statistics: `18s` for 1024x1024, `6s` for 512x512""")
with gr.Column(scale=1):
prompt = gr.Textbox(label="Prompt", value="a photo of a forest with mist swirling around the tree trunks. The word \"FLUX\" is painted over it in big, red brush strokes with visible texture")
generate_btn = gr.Button("Generate")
with gr.Row():
seed_output = gr.Number(label="Used Seed")
runtime = gr.Number(label="Inference Time", precision=3)
with gr.Row():
seed = gr.Textbox(-1, label="Seed (-1 for random)")
img_size = gr.Radio(["1,024x1,024", "512x512"], label="Image Resolution", value="1,024x1,024")
num_steps = gr.Slider(1, 4, 1, step=1, label="Number of steps")
add_sampling_metadata = gr.Checkbox(label="Add sampling parameters to metadata?", value=True)
guidance = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="Guidance", interactive=not is_schnell, visible=False)
# def update_img2img(do_img2img):
# return {
# init_image: gr.update(visible=do_img2img),
# image2image_strength: gr.update(visible=do_img2img),
# }
# do_img2img.change(update_img2img, do_img2img, [init_image, image2image_strength])
generate_btn.click(
fn=generator.generate_image,
inputs=[img_size, num_steps, guidance, seed, prompt, add_sampling_metadata],
outputs=[output_image, runtime, seed_output, download_btn, warning_text],
)
return demo
# if __name__ == "__main__":
# import argparse
# parser = argparse.ArgumentParser(description="Flux")
# parser.add_argument("--name", type=str, default="flux-schnell", choices=list(configs.keys()), help="Model name")
# parser.add_argument("--device", type=str, default="cpu", help="Device to use")
# parser.add_argument("--offload", action="store_true", help="Offload model to CPU when not in use")
# parser.add_argument("--share", action="store_true", help="Create a public link to your demo")
# args = parser.parse_args()
demo = create_demo("flux-schnell", None, False)
demo.launch() |