LlavaMistral1 / app.py
lorocksUMD's picture
Update app.py
12dcab4 verified
raw
history blame
2.33 kB
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer
from llava.model.language_model import *
from llava.mobel.builder import load_pretrained_model
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
model_path = "liuhaotian/llava-v1.6-mistral-7b"
model_name = get_model_name_from_path(model_path)
# tokenizer = AutoTokenizer.from_pretrained(model_path)
# model = LlavaMistralForCausalLM.from_pretrained(
# model_path,
# low_cpu_mem_usage=True,
# # offload_folder="/content/sample_data"
# )
tokenizer, model, image_processor, context_len = load_pretrained_model(
model_path, None, model_name
)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()