LlavaMistral1 / llava /eval /model_qa.py
lorocksUMD's picture
Upload 78 files
6351d80 verified
raw
history blame
2.49 kB
import argparse
from transformers import AutoTokenizer, AutoModelForCausalLM, StoppingCriteria
import torch
import os
import json
from tqdm import tqdm
import shortuuid
from llava.conversation import default_conversation
from llava.utils import disable_torch_init
@torch.inference_mode()
def eval_model(model_name, questions_file, answers_file):
# Model
disable_torch_init()
model_name = os.path.expanduser(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_name,
torch_dtype=torch.float16).cuda()
ques_file = open(os.path.expanduser(questions_file), "r")
ans_file = open(os.path.expanduser(answers_file), "w")
for i, line in enumerate(tqdm(ques_file)):
idx = json.loads(line)["question_id"]
qs = json.loads(line)["text"]
cat = json.loads(line)["category"]
conv = default_conversation.copy()
conv.append_message(conv.roles[0], qs)
prompt = conv.get_prompt()
inputs = tokenizer([prompt])
input_ids = torch.as_tensor(inputs.input_ids).cuda()
output_ids = model.generate(
input_ids,
do_sample=True,
use_cache=True,
temperature=0.7,
max_new_tokens=1024,)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
try:
index = outputs.index(conv.sep, len(prompt))
except ValueError:
outputs += conv.sep
index = outputs.index(conv.sep, len(prompt))
outputs = outputs[len(prompt) + len(conv.roles[1]) + 2:index].strip()
ans_id = shortuuid.uuid()
ans_file.write(json.dumps({"question_id": idx,
"text": outputs,
"answer_id": ans_id,
"model_id": model_name,
"metadata": {}}) + "\n")
ans_file.flush()
ans_file.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-name", type=str, default="facebook/opt-350m")
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
args = parser.parse_args()
eval_model(args.model_name, args.question_file, args.answers_file)