Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from transformers import AutoTokenizer | |
from llava.model.language_model.llava_mistral import LlavaMistralForCausalLM | |
from llava.model.builder import load_pretrained_model | |
from llava.mm_utils import ( | |
process_images, | |
tokenizer_image_token, | |
get_model_name_from_path, | |
) | |
from llava.constants import ( | |
IMAGE_TOKEN_INDEX, | |
DEFAULT_IMAGE_TOKEN, | |
DEFAULT_IM_START_TOKEN, | |
DEFAULT_IM_END_TOKEN, | |
IMAGE_PLACEHOLDER, | |
) | |
from llava.conversation import conv_templates, SeparatorStyle | |
import torch | |
import requests | |
from PIL import Image | |
from io import BytesIO | |
import re | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# Functions for inference | |
def image_parser(args): | |
out = args.image_file.split(args.sep) | |
return out | |
def load_image(image_file): | |
if image_file.startswith("http") or image_file.startswith("https"): | |
response = requests.get(image_file) | |
image = Image.open(BytesIO(response.content)).convert("RGB") | |
else: | |
image = Image.open(image_file).convert("RGB") | |
return image | |
def load_images(image_files): | |
out = [] | |
for image_file in image_files: | |
image = load_image(image_file) | |
out.append(image) | |
return out | |
model_path = "liuhaotian/llava-v1.6-mistral-7b" | |
model_name = get_model_name_from_path(model_path) | |
# tokenizer = AutoTokenizer.from_pretrained(model_path) | |
# model = LlavaMistralForCausalLM.from_pretrained( | |
# model_path, | |
# low_cpu_mem_usage=True, | |
# # offload_folder="/content/sample_data" | |
# ) | |
prompt = "What are the things I should be cautious about when I visit here?" | |
image_file = "Great-Room-4.jpg" | |
args = type('Args', (), { | |
"model_path": model_path, | |
"model_base": None, | |
"model_name": get_model_name_from_path(model_path), | |
"query": prompt, | |
"conv_mode": None, | |
"image_file": image_file, | |
"sep": ",", | |
"temperature": 0, | |
"top_p": None, | |
"num_beams": 1, | |
"max_new_tokens": 512 | |
})() | |
tokenizer, model, image_processor, context_len = load_pretrained_model( | |
model_path, None, model_name | |
) | |
qs = args.query | |
image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN | |
if IMAGE_PLACEHOLDER in qs: | |
if model.config.mm_use_im_start_end: | |
qs = re.sub(IMAGE_PLACEHOLDER, image_token_se, qs) | |
else: | |
qs = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, qs) | |
else: | |
if model.config.mm_use_im_start_end: | |
qs = image_token_se + "\n" + qs | |
else: | |
qs = DEFAULT_IMAGE_TOKEN + "\n" + qs | |
if "llama-2" in model_name.lower(): | |
conv_mode = "llava_llama_2" | |
elif "mistral" in model_name.lower(): | |
conv_mode = "mistral_instruct" | |
elif "v1.6-34b" in model_name.lower(): | |
conv_mode = "chatml_direct" | |
elif "v1" in model_name.lower(): | |
conv_mode = "llava_v1" | |
elif "mpt" in model_name.lower(): | |
conv_mode = "mpt" | |
else: | |
conv_mode = "llava_v0" | |
if args.conv_mode is not None and conv_mode != args.conv_mode: | |
print( | |
"[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format( | |
conv_mode, args.conv_mode, args.conv_mode | |
) | |
) | |
else: | |
args.conv_mode = conv_mode | |
conv = conv_templates[args.conv_mode].copy() | |
conv.append_message(conv.roles[0], qs) | |
conv.append_message(conv.roles[1], None) | |
prompt = conv.get_prompt() | |
image_files = image_parser(args) | |
images = load_images(image_files) | |
image_sizes = [x.size for x in images] | |
images_tensor = process_images( | |
images, | |
image_processor, | |
model.config | |
).to(model.device, dtype=torch.float16) | |
input_ids = ( | |
tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") | |
.unsqueeze(0) | |
# .cuda() | |
) | |
with torch.inference_mode(): | |
output_ids = model.generate( | |
input_ids, | |
images=images_tensor, | |
image_sizes=image_sizes, | |
do_sample=True if args.temperature > 0 else False, | |
temperature=args.temperature, | |
top_p=args.top_p, | |
num_beams=args.num_beams, | |
max_new_tokens=args.max_new_tokens, | |
use_cache=True, | |
) | |
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() | |
print(outputs) | |
# End Llava inference | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |