Spaces:
Runtime error
Runtime error
lorocksUMD
commited on
Commit
•
7124b11
1
Parent(s):
599f85f
Update app.py
Browse files
app.py
CHANGED
@@ -3,13 +3,50 @@ from huggingface_hub import InferenceClient
|
|
3 |
from transformers import AutoTokenizer
|
4 |
from llava.model.language_model.llava_mistral import LlavaMistralForCausalLM
|
5 |
from llava.model.builder import load_pretrained_model
|
6 |
-
from llava.mm_utils import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
"""
|
9 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
10 |
"""
|
11 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
model_path = "liuhaotian/llava-v1.6-mistral-7b"
|
14 |
model_name = get_model_name_from_path(model_path)
|
15 |
# tokenizer = AutoTokenizer.from_pretrained(model_path)
|
@@ -19,10 +56,101 @@ model_name = get_model_name_from_path(model_path)
|
|
19 |
# # offload_folder="/content/sample_data"
|
20 |
# )
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
tokenizer, model, image_processor, context_len = load_pretrained_model(
|
23 |
model_path, None, model_name
|
24 |
)
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
def respond(
|
28 |
message,
|
|
|
3 |
from transformers import AutoTokenizer
|
4 |
from llava.model.language_model.llava_mistral import LlavaMistralForCausalLM
|
5 |
from llava.model.builder import load_pretrained_model
|
6 |
+
from llava.mm_utils import (
|
7 |
+
process_images,
|
8 |
+
tokenizer_image_token,
|
9 |
+
get_model_name_from_path,
|
10 |
+
)
|
11 |
+
from llava.constants import (
|
12 |
+
IMAGE_TOKEN_INDEX,
|
13 |
+
DEFAULT_IMAGE_TOKEN,
|
14 |
+
DEFAULT_IM_START_TOKEN,
|
15 |
+
DEFAULT_IM_END_TOKEN,
|
16 |
+
IMAGE_PLACEHOLDER,
|
17 |
+
)
|
18 |
+
from llava.conversation import conv_templates, SeparatorStyle
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
|
23 |
"""
|
24 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
25 |
"""
|
26 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
27 |
|
28 |
+
# Functions for inference
|
29 |
+
def image_parser(args):
|
30 |
+
out = args.image_file.split(args.sep)
|
31 |
+
return out
|
32 |
+
|
33 |
+
|
34 |
+
def load_image(image_file):
|
35 |
+
if image_file.startswith("http") or image_file.startswith("https"):
|
36 |
+
response = requests.get(image_file)
|
37 |
+
image = Image.open(BytesIO(response.content)).convert("RGB")
|
38 |
+
else:
|
39 |
+
image = Image.open(image_file).convert("RGB")
|
40 |
+
return image
|
41 |
+
|
42 |
+
|
43 |
+
def load_images(image_files):
|
44 |
+
out = []
|
45 |
+
for image_file in image_files:
|
46 |
+
image = load_image(image_file)
|
47 |
+
out.append(image)
|
48 |
+
return out
|
49 |
+
|
50 |
model_path = "liuhaotian/llava-v1.6-mistral-7b"
|
51 |
model_name = get_model_name_from_path(model_path)
|
52 |
# tokenizer = AutoTokenizer.from_pretrained(model_path)
|
|
|
56 |
# # offload_folder="/content/sample_data"
|
57 |
# )
|
58 |
|
59 |
+
prompt = "What are the things I should be cautious about when I visit here?"
|
60 |
+
image_file = "https://llava-vl.github.io/static/images/view.jpg"
|
61 |
+
|
62 |
+
args = type('Args', (), {
|
63 |
+
"model_path": model_path,
|
64 |
+
"model_base": None,
|
65 |
+
"model_name": get_model_name_from_path(model_path),
|
66 |
+
"query": prompt,
|
67 |
+
"conv_mode": None,
|
68 |
+
"image_file": image_file,
|
69 |
+
"sep": ",",
|
70 |
+
"temperature": 0,
|
71 |
+
"top_p": None,
|
72 |
+
"num_beams": 1,
|
73 |
+
"max_new_tokens": 512
|
74 |
+
})()
|
75 |
+
|
76 |
+
|
77 |
tokenizer, model, image_processor, context_len = load_pretrained_model(
|
78 |
model_path, None, model_name
|
79 |
)
|
80 |
|
81 |
+
qs = args.query
|
82 |
+
image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN
|
83 |
+
if IMAGE_PLACEHOLDER in qs:
|
84 |
+
if model.config.mm_use_im_start_end:
|
85 |
+
qs = re.sub(IMAGE_PLACEHOLDER, image_token_se, qs)
|
86 |
+
else:
|
87 |
+
qs = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, qs)
|
88 |
+
else:
|
89 |
+
if model.config.mm_use_im_start_end:
|
90 |
+
qs = image_token_se + "\n" + qs
|
91 |
+
else:
|
92 |
+
qs = DEFAULT_IMAGE_TOKEN + "\n" + qs
|
93 |
+
|
94 |
+
if "llama-2" in model_name.lower():
|
95 |
+
conv_mode = "llava_llama_2"
|
96 |
+
elif "mistral" in model_name.lower():
|
97 |
+
conv_mode = "mistral_instruct"
|
98 |
+
elif "v1.6-34b" in model_name.lower():
|
99 |
+
conv_mode = "chatml_direct"
|
100 |
+
elif "v1" in model_name.lower():
|
101 |
+
conv_mode = "llava_v1"
|
102 |
+
elif "mpt" in model_name.lower():
|
103 |
+
conv_mode = "mpt"
|
104 |
+
else:
|
105 |
+
conv_mode = "llava_v0"
|
106 |
+
|
107 |
+
if args.conv_mode is not None and conv_mode != args.conv_mode:
|
108 |
+
print(
|
109 |
+
"[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format(
|
110 |
+
conv_mode, args.conv_mode, args.conv_mode
|
111 |
+
)
|
112 |
+
)
|
113 |
+
else:
|
114 |
+
args.conv_mode = conv_mode
|
115 |
+
|
116 |
+
conv = conv_templates[args.conv_mode].copy()
|
117 |
+
conv.append_message(conv.roles[0], qs)
|
118 |
+
conv.append_message(conv.roles[1], None)
|
119 |
+
prompt = conv.get_prompt()
|
120 |
+
|
121 |
+
image_files = image_parser(args)
|
122 |
+
images = load_images(image_files)
|
123 |
+
image_sizes = [x.size for x in images]
|
124 |
+
images_tensor = process_images(
|
125 |
+
images,
|
126 |
+
image_processor,
|
127 |
+
model.config
|
128 |
+
).to(model.device, dtype=torch.float16)
|
129 |
+
|
130 |
+
input_ids = (
|
131 |
+
tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
|
132 |
+
.unsqueeze(0)
|
133 |
+
.cuda()
|
134 |
+
)
|
135 |
+
|
136 |
+
with torch.inference_mode():
|
137 |
+
output_ids = model.generate(
|
138 |
+
input_ids,
|
139 |
+
images=images_tensor,
|
140 |
+
image_sizes=image_sizes,
|
141 |
+
do_sample=True if args.temperature > 0 else False,
|
142 |
+
temperature=args.temperature,
|
143 |
+
top_p=args.top_p,
|
144 |
+
num_beams=args.num_beams,
|
145 |
+
max_new_tokens=args.max_new_tokens,
|
146 |
+
use_cache=True,
|
147 |
+
)
|
148 |
+
|
149 |
+
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
150 |
+
print(outputs)
|
151 |
+
# End Llava inference
|
152 |
+
|
153 |
+
|
154 |
|
155 |
def respond(
|
156 |
message,
|