import gradio as gr from huggingface_hub import InferenceClient from transformers import AutoTokenizer from llava.model.language_model import * from llava.model.builder import load_pretrained_model from llava.mm_utils import get_model_name_from_path """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") model_path = "liuhaotian/llava-v1.6-mistral-7b" model_name = get_model_name_from_path(model_path) tokenizer = AutoTokenizer.from_pretrained(model_path) model = LlavaMistralForCausalLM.from_pretrained( model_path, low_cpu_mem_usage=True, # offload_folder="/content/sample_data" ) # tokenizer, model, image_processor, context_len = load_pretrained_model( # model_path, None, model_name # ) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()