import gradio as gr from huggingface_hub import InferenceClient from transformers import AutoTokenizer from llava.model.language_model.llava_mistral import LlavaMistralForCausalLM from llava.model.builder import load_pretrained_model from llava.mm_utils import ( process_images, tokenizer_image_token, get_model_name_from_path, ) from llava.constants import ( IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IMAGE_PLACEHOLDER, ) from llava.conversation import conv_templates, SeparatorStyle import torch import requests from PIL import Image from io import BytesIO import re """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Functions for inference def image_parser(args): out = args.image_file.split(args.sep) return out def load_image(image_file): if image_file.startswith("http") or image_file.startswith("https"): response = requests.get(image_file) image = Image.open(BytesIO(response.content)).convert("RGB") else: image = Image.open(image_file).convert("RGB") return image def load_images(image_files): out = [] for image_file in image_files: image = load_image(image_file) out.append(image) return out model_path = "liuhaotian/llava-v1.6-mistral-7b" model_name = get_model_name_from_path(model_path) # tokenizer = AutoTokenizer.from_pretrained(model_path) # model = LlavaMistralForCausalLM.from_pretrained( # model_path, # low_cpu_mem_usage=True, # # offload_folder="/content/sample_data" # ) prompt = "What are the things I should be cautious about when I visit here?" image_file = "Great-Room-4.jpg" args = type('Args', (), { "model_path": model_path, "model_base": None, "model_name": get_model_name_from_path(model_path), "query": prompt, "conv_mode": None, "image_file": image_file, "sep": ",", "temperature": 0, "top_p": None, "num_beams": 1, "max_new_tokens": 512 })() tokenizer, model, image_processor, context_len = load_pretrained_model( model_path, None, model_name, device_name="cpu" ) qs = args.query image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN if IMAGE_PLACEHOLDER in qs: if model.config.mm_use_im_start_end: qs = re.sub(IMAGE_PLACEHOLDER, image_token_se, qs) else: qs = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, qs) else: if model.config.mm_use_im_start_end: qs = image_token_se + "\n" + qs else: qs = DEFAULT_IMAGE_TOKEN + "\n" + qs if "llama-2" in model_name.lower(): conv_mode = "llava_llama_2" elif "mistral" in model_name.lower(): conv_mode = "mistral_instruct" elif "v1.6-34b" in model_name.lower(): conv_mode = "chatml_direct" elif "v1" in model_name.lower(): conv_mode = "llava_v1" elif "mpt" in model_name.lower(): conv_mode = "mpt" else: conv_mode = "llava_v0" if args.conv_mode is not None and conv_mode != args.conv_mode: print( "[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format( conv_mode, args.conv_mode, args.conv_mode ) ) else: args.conv_mode = conv_mode conv = conv_templates[args.conv_mode].copy() conv.append_message(conv.roles[0], qs) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() image_files = image_parser(args) images = load_images(image_files) image_sizes = [x.size for x in images] images_tensor = process_images( images, image_processor, model.config ).to(model.device, dtype=torch.float16) input_ids = ( tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") .unsqueeze(0) # .cuda() ) with torch.inference_mode(): output_ids = model.generate( input_ids, images=images_tensor, image_sizes=image_sizes, do_sample=True if args.temperature > 0 else False, temperature=args.temperature, top_p=args.top_p, num_beams=args.num_beams, max_new_tokens=args.max_new_tokens, use_cache=True, ) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() print(outputs) # End Llava inference def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()