UnderPolygon / app.py
loztcontrol's picture
Updating app.py and txt
e44dedb verified
import torch
import gradio as gr
from diffusers import StableDiffusionPipeline
# Cargar el modelo Stable Diffusion
model_id = "stabilityai/stable-diffusion-2-1"
pipe = StableDiffusionPipeline.from_pretrained(model_id)
pipe.to("cuda") # Si est谩s usando GPU
# Funci贸n para generar im谩genes
def generate_image(prompt, style, width, height, guidance_scale, steps, seed):
# Configurar el generador de semillas
generator = torch.manual_seed(seed) if seed is not None else None
# Ajustar el estilo en funci贸n del input del usuario
if style == "Realismo":
prompt += ", realistic, high detail, photorealistic"
elif style == "Arte digital":
prompt += ", digital art, sharp details, vibrant colors"
elif style == "Ciencia Ficci贸n":
prompt += ", sci-fi, futuristic, high-tech"
elif style == "Surrealismo":
prompt += ", surreal, dream-like, abstract"
# Generar la imagen con Stable Diffusion
image = pipe(prompt, height=height, width=width, guidance_scale=guidance_scale,
num_inference_steps=steps, generator=generator).images[0]
return image
# Configuraci贸n de la interfaz de Gradio
with gr.Blocks() as demo:
gr.Markdown("# Generador de Im谩genes estilo MidJourney")
prompt = gr.Textbox(label="Descripci贸n (Prompt)", placeholder="Describe la imagen...")
style = gr.Dropdown(choices=["Realismo", "Arte digital", "Ciencia Ficci贸n", "Surrealismo"], label="Estilo", value="Realismo")
width = gr.Slider(512, 1024, step=64, label="Ancho", value=768)
height = gr.Slider(512, 1024, step=64, label="Altura", value=768)
guidance_scale = gr.Slider(5, 20, step=0.5, label="Nivel de gu铆a del prompt", value=7.5)
steps = gr.Slider(10, 100, step=5, label="N煤mero de pasos de inferencia", value=50)
seed = gr.Number(label="Semilla (dejar vac铆o para aleatorio)", value=None, optional=True)
# Bot贸n para generar la imagen
btn = gr.Button("Generar imagen")
# Salida de la imagen generada
output = gr.Image(label="Imagen generada")
# Vincular los inputs y outputs
btn.click(generate_image, inputs=[prompt, style, width, height, guidance_scale, steps, seed], outputs=output)
# Lanzar la aplicaci贸n Gradio
demo.launch()