import openai openai.api_key_path = './openai_api_key.txt' import streamlit as st from streamlit_chat import message from transformers import pipeline summarizer = pipeline("summarization", model="philschmid/bart-large-cnn-samsum") sentiment_task = pipeline("sentiment-analysis", model='cardiffnlp/twitter-roberta-base-sentiment-latest', tokenizer='cardiffnlp/twitter-roberta-base-sentiment-latest') from math import log completion = openai.Completion() start_prompt = '[Instruction] Act as a friendly, compasionate, insightful, and empathetic AI therapist named Joy. Joy listens and offers advices. End the conversation when the patient wishes to.' start_message = 'I am Joy, your AI therapist. How are you feeling today?' start_sequence = "\nJoy:" restart_sequence = "\n\nPatient:" def ask(question: str, chat_log: str, model='text-davinci-003', temp=0.9) -> (str, str): prompt = f'{chat_log}{restart_sequence} {question}{start_sequence}' response = completion.create( prompt = prompt, model = model, stop = ["Patient:",'Joy:'], temperature = temp, #the higher the more creative frequency_penalty = 0.9, #prevents word repetition, larger -> higher penalty presence_penalty = 1, #prevents topic repetition, larger -> higher penalty top_p =1, best_of=1, max_tokens=170 ) answer = response.choices[0].text.strip() log = f'{restart_sequence}{question}{start_sequence}{answer}' return str(answer), str(log) def clean_chat_log(chat_log): chat_log = ' '.join(chat_log) # find the first /n first_newline = chat_log.find('\n') chat_log = chat_log[first_newline:] # remove all \n chat_log = chat_log.replace('\n', ' ') return chat_log def summarize(chat_log): chat_log = clean_chat_log(chat_log) summary = summarizer(chat_log, max_length=150, do_sample=False)[0]['summary_text'] return summary def analyze_sentiment(chat_log): # split chat_log into smaller chunks # analyze each chunk # return the average sentiment chat_log = clean_chat_log(chat_log) sentiment = sentiment_task(chat_log) return sentiment def main(): st.title("Chat with Joy - the AI therapist!") col1, col2 = st.columns(2) temp = col1.slider("Bot-Creativeness", 0.0, 1.0, 0.9, 0.1) model = col2.selectbox("Model", ["text-davinci-003", "text-curie-001", "curie:ft-personal-2023-02-03-17-06-53"]) if 'generated' not in st.session_state: st.session_state['generated'] = [start_message] if 'past' not in st.session_state: st.session_state['past'] = [] if 'summary' not in st.session_state: st.session_state['summary'] = [] if 'chat_log' not in st.session_state: st.session_state['chat_log'] = [start_prompt+start_sequence+start_message] if len(st.session_state['generated']) > 2: if st.button("Clear and summerize", key='clear'): chat_log = clean_chat_log(st.session_state['chat_log']) summary = summarizer(chat_log, max_length=100, min_length=30, do_sample=False) st.write(summary) user_sentiment = st.session_state['past'] user_sentiment = ' '.join(user_sentiment) user_sentiment = clean_chat_log(user_sentiment) st.write(sentiment_task(user_sentiment)) st.session_state['generated'] = [start_message] st.session_state['past'] = [] st.session_state['chat_log'] = [start_prompt+start_sequence+start_message] st.session_state['summary'] = [] user_input=st.text_input("You:",key='input') if user_input: output, chat_log = ask(user_input, st.session_state['chat_log'], model=model, temp=temp) st.session_state['chat_log'].append(chat_log) st.session_state['past'].append(user_input) st.session_state['generated'].append(output) print(model) print(temp) print(st.session_state['chat_log']) if st.session_state['generated']: for i in range(len(st.session_state['generated'])-1, -1, -1): if i < len(st.session_state['past']): message(st.session_state['past'][i], is_user=True, key=str(i) + '_user') message(st.session_state["generated"][i], key=str(i)) if __name__ == "__main__": main() # save the user's input and the model's output to the database and analyze the user's input and the model's output # if len(st.seesion_state['generated']) : # save the user's input and the model's output to the database # analyze the user's input and the model's output