File size: 435 Bytes
4ce523b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import gradio as gr
import transformers
from transformers import pipeline

model_name = "lsb/wikipedia-protected-classes"
model_name = "lsb/test_trainer" # lol no time to get it right

pipe = pipeline("text-classification", model_name)

def predict(text):
    return "🛡️ Protected" if pipe(text)[0]['label'] == "LABEL_1" else "✅ General Interest"

iface = gr.Interface(fn=predict, inputs="text", outputs="text")
iface.launch()