import gradio as gr import matplotlib.pyplot as plt import networkx as nx from model import Parser parser = Parser() def parse(text): output = parser.parse(text) dependency_tree = render_dependency_tree(output["forms"], output["heads"], output["deprel"]) table = render_table(output["forms"], output["lemmas"], output["upos"], output["xpos"], output["feats"], output["ne"]) return dependency_tree, table def render_dependency_tree(words, parents, labels): fig, ax = plt.subplots(figsize=(40, 16)) main_font_size = 40 if len(words) < 10 else 30 if len(words) < 20 else 24 if len(words) < 40 else 16 minor_font_size = 30 if len(words) < 10 else 22 if len(words) < 20 else 16 if len(words) < 40 else 12 pad = main_font_size // 2 # Create a directed graph G = nx.DiGraph() # Adding nodes to the graph for i, word in enumerate(words): G.add_node(i, label=word) # Adding edges with labels for i, (parent, label) in enumerate(zip(parents, labels)): if parent != 0: G.add_edge(parent - 1, i, label=label) # Position nodes using Graphviz pos = nx.nx_agraph.graphviz_layout(G, prog='dot') # Draw the graph nx.draw(G, pos, ax=ax, with_labels=True, labels=nx.get_node_attributes(G, 'label'), arrows=True, node_color='#ffffff', node_size=0, node_shape='s', font_size=main_font_size, bbox = dict(facecolor="white", pad=pad) ) # Draw edge labels edge_labels = nx.get_edge_attributes(G, 'label') nx.draw_networkx_edge_labels(G, pos, ax=ax, edge_labels=edge_labels, rotate=False, alpha=1.0, font_size=minor_font_size) return fig description = """

Norsk UD (Bokmål og Nynorsk)

""" def render_table(forms, lemmas, upos, xpos, feats, named_entities): feats = [[f"*{f.split('=')[0]}:* {f.split('=')[1]}" for f in (feat.split("|")) if '=' in f] for feat in feats] max_len = max(1, max([len(feat) for feat in feats])) feats = [feat + [""] * (max_len - len(feat)) for feat in feats] feats = list(zip(*feats)) named_entities_converted = [] for i, ne in enumerate(named_entities): if ne == "O": named_entities_converted.append("") elif ne.startswith("B") and (i + 1 == len(named_entities) or named_entities[i + 1].startswith("I")): named_entities_converted.append(f"<<— {ne.split('-')[1]} —") elif ne.startswith("B"): named_entities_converted.append(f"<<— {ne.split('-')[1]} —>>") elif ne.startswith("I") and i + 1 < len(named_entities) and named_entities[i + 1].startswith("I"): named_entities_converted.append("————") else: named_entities_converted.append(f"——>>") array = [ [""] + forms, ["*LEMMAS:*"] + lemmas, ["*UPOS:*"] + upos, ["*XPOS:*"] + xpos, ["*UFEATS:*"] + list(feats[0]), *([""] + list(row) for row in feats[1:]), ["*NE:*"] + named_entities_converted, ['' for _ in range(len(forms) + 1)] ] return {"data": array[1:], "headers": array[0]} custom_css = \ """ /* Hide sort buttons at gr.DataFrame */ .sort-button { display: none !important; } """ with gr.Blocks(theme='sudeepshouche/minimalist', css=custom_css) as demo: gr.HTML(description) with gr.Row(): with gr.Column(scale=1, variant="panel"): source = gr.Textbox( label="Input sentence", placeholder="Write a sentence to parse", show_label=False, lines=1, max_lines=5, autofocus=True ) submit = gr.Button("Submit", variant="primary") with gr.Column(scale=1, variant="panel"): dataset = gr.Dataset(components=[gr.Textbox(visible=False)], label="Input examples", samples=[ ["Thomassen er på vei til sin neste gjerning."], ["På toppen av dette kom de metodiske utfordringer."], ["Berntsen har påtatt seg en både viktig og vanskelig oppgave."], ["Ikke bare har det vært et problem, som han selv skriver i forordet, å bli klok på Borten."], ["Statsministeren i Norges første brede og varige borgerlige koalisjonsregjering etterlot seg timelange radiointervjuer med tidligere Dagsnytt-redaktør Per Bøhn og 70-80 stappfulle esker med usorterte papirer på loft og i kjeller hjemme på gården i Flå."] ] ) with gr.Column(scale=1, variant="panel"): #gr.Label("", show_label=False, container=False) table = gr.DataFrame([[""] * 42 for _ in range(8)], headers=[""] * 42, interactive=False, datatype="markdown") dependency_plot = gr.Plot(None, container=False) source.submit( fn=parse, inputs=[source], outputs=[dependency_plot, table], queue=True ) submit.click( fn=parse, inputs=[source], outputs=[dependency_plot, table], queue=True ) dataset.click( fn=lambda text: text[0], inputs=[dataset], outputs=[source] ).then( fn=parse, inputs=[source], outputs=[dependency_plot, table], queue=True ) demo.queue(max_size=32) demo.launch()